CN103400093A - 一种基于不稳定信道的射频标签数目估计方法及装置 - Google Patents

一种基于不稳定信道的射频标签数目估计方法及装置 Download PDF

Info

Publication number
CN103400093A
CN103400093A CN2013103101813A CN201310310181A CN103400093A CN 103400093 A CN103400093 A CN 103400093A CN 2013103101813 A CN2013103101813 A CN 2013103101813A CN 201310310181 A CN201310310181 A CN 201310310181A CN 103400093 A CN103400093 A CN 103400093A
Authority
CN
China
Prior art keywords
radio
frequency
tag
rho
sigma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013103101813A
Other languages
English (en)
Other versions
CN103400093B (zh
Inventor
龚伟
刘克彬
马强
苗欣
肖祟蕙
刘云浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ruan Internet Of Things Technology Group Co ltd
Run Technology Co ltd
Original Assignee
WUXI RUIAN TECHNOLOGY CO LTD
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WUXI RUIAN TECHNOLOGY CO LTD filed Critical WUXI RUIAN TECHNOLOGY CO LTD
Priority to CN201310310181.3A priority Critical patent/CN103400093B/zh
Publication of CN103400093A publication Critical patent/CN103400093A/zh
Application granted granted Critical
Publication of CN103400093B publication Critical patent/CN103400093B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明涉及射频识别领域,尤其涉及一种基于不稳定信道的射频标签数目估计方法及装置,本发明预先测量射频阅读器与射频标签之间的信道质量参数,并根据预设的相对误差参数和可靠性参数,对射频标签集合进行多次问答,通过统计每帧中前f个时隙中零时隙的数目,完成标签数目的匿名估计过程,该发明充分考虑了信道质量情况,且射频标签数目的估计精度可控,能达到用户指定的任意的精度。

Description

一种基于不稳定信道的射频标签数目估计方法及装置
技术领域
本发明涉及射频识别领域,尤其涉及一种基于不稳定信道的射频标签数目估计方法及装置。
背景技术
射频识别(Radio Frequency Identification)技术在供应链管理等诸多领域得到了广泛使用,射频识别技术在减少物流成本的同时,也大大加快了供应链管理中的货物处理速度,在标准的射频识别协议中,通常是标签等待射频阅读器的指令,然后将自己的唯一标志符或其他信息回复给射频阅读器,从而完成射频阅读器的信息搜集和进一步处理的需求,这样的方式中,都需要显式地处理标签的隐私数据,这样会对货物管理,物品追踪等应用带来一些安全威胁。同时,近来许多射频识别系统的测量研究表明,射频标签和射频阅读器之间的通讯时非常不稳定的,不同的标签大小、阅读距离、周围环境干扰、通信频率以及射频阅读器的类型等都是能够对通信质量造成较大的影响;而且,即使在同样的射频阅读器发射功率、射频阅读器对于不同的标签在不同的频率下的读取速率也是差别非常大的,但是,遗憾的是目前还没有将这些影响射频阅读器和标签之间通信质量因素的模型。
射频标签数目估计是大规模射频识别系统应用中的基本功能之一,射频标签数目估计能够根据用户的任意对估计结果的精度需求,给出一个接近真实值的有效估计,该类估计方法可以用于统计货物总量的变化,会议的参加人数及人流统计等诸多功能;但是,基于目前射频阅读器和标签之间通信的不稳定性,射频标签数目估计遇到了一定的挑战,因此,如何设计一种能够有效对射频阅读器和标签之间的不稳定信道建模,并在标签数目估计方法中充分考虑这个模型因素所造成的影响,并最终得到正确的标签数目估计是一个非常具有挑战性的问题。
发明内容
本发明的目的在于提出一种基于不稳定信道的射频标签数目估计方法及装置,能够在不稳定信道下快速估计射频标签的数目,且精度较高。
为达此目的,本发明采用以下技术方案:
一种基于不稳定信道的射频标签数目估计方法,包括:
步骤a、测量射频阅读器与射频标签之间的信道的质量参数,统计得到射频标签对射频阅读器成功回复的概率密度函数fR的均值μ和方差σ2
步骤b、预设相对误差参数β、可靠性参数α;
步骤c、根据所述相对误差参数β、可靠性参数α、均值μ和方差σ2计算得到最优持续概率q、最优帧长度f、问答轮次n;
步骤d、随机生成种子s,根据所述最优持续概率q和所述最优帧长度f进行问答模式通讯,得到本轮问答模式通讯中零时隙的数目Zi,其中,0<i≤n;
步骤e、重复n次步骤d,得到n个Zi,计算得到平均值
步骤f、根据所述均值μ、所述最优持续概率q、所述最优帧长度f和所述平均值Y,获得与所述射频阅读器和所述射频标签之间的信道质量相关的射频标签数目估计值公式为: t ^ = - f &mu;q log ( Y / f ) .
其中,步骤a具体为:
假设射频标签的位置服从一个w(x,y)的空间分布,其中,(x,y)为空间位置坐标,P(x,y)为射频标签在(x,y)这一空间位置能够与射频阅读器成功通讯的概率函数,设FR为射频标签在所有可能空间位置上对射频阅读器成功回复的累积分布函数,其对应的概率密度函数为fR,则 F R = &Integral; 0 p f R ( p &prime; ) d p &prime; = &Integral; &Integral; P ( x , y ) &le; p w ( x , y ) dxdy , 其中,fR的均值μ和方差σ2可通过测量射频阅读器与射频标签之间的信道的质量参数得到。
其中,步骤c具体为:
计算得到置信参数
Figure BDA00003549248900032
其中,erf为高斯误差函数, erf ( x ) = 2 &pi; &Integral; 0 x e - z 2 dz , 其中z为任意变量;
为保证至少存在一个零时隙的概率不小于1-α,得到公式1:
(1-e-ρμq)f=1-α;
为保证结果概率区间的对称性,得到公式2:
( e &mu;q &rho; l - 1 &mu; 2 q 2 &rho; l 2 - 1 &rho; l ( 1 + &sigma; 2 &mu; 2 ) ) f &beta; 2 4 Z &alpha; 2 - 1 &rho; l &sigma; 2 &mu; 2 = ( e &mu;q &rho; u - 1 &mu; 2 q 2 &rho; u 2 - 1 &rho; u ( 1 + &sigma; 2 &mu; 2 ) ) f &beta; 2 4 Z &alpha; 2 - 1 &rho; u &sigma; 2 &mu; 2 ;
由公式1及公式2求解可计算得到最优持续概率q、最优帧长度f;
所述问答轮次n的计算公式为:
Figure BDA00003549248900035
其中,
Figure BDA00003549248900036
tl为射频标签数目下限,tu为射频标签数目下限,记r=tl/tu
Figure BDA00003549248900037
其中,β>0,0<α<1。
其中,平均值Y服从均值为μy,方差为
Figure BDA00003549248900038
的正态分布:
&mu; y = f e - &rho;q&mu; , &sigma; y 2 = t q 2 &sigma; 2 e 2 &rho;q&mu; + f n e - &rho;q&mu; ( 1 - ( 1 + q 2 &rho; ) e - &rho;q&mu; ) ;
又因为μy是自变量为t的单调函数,所以它必然存在一个反函数g(μy(t))=t,从而可得到: t ^ = g ( Y ) = - f &mu;q log ( Y / f ) ;
&mu; gy = E [ g ( Y ) ] = t + ( e &rho;&mu;q - ( 1 + &rho; q 2 ( &mu; 2 + &sigma; 2 ) ) ) 2 n&mu;q ;
&sigma; gy 2 = Var [ g ( Y ) ] = t &sigma; 2 &mu; 2 + f ( e &rho;&mu;q - ( 1 + &rho; q 2 ( &mu; 2 + &sigma; 2 ) ) ) n &mu; 2 q 2 .
其中,问答模式通讯具体为:
射频阅读器向所有射频标签发送问讯指令,所述问讯指令包括随机生成的种子s、最优持续概率q和所述最优帧长度f;
所有射频标签收到问讯指令后,结合每个射频标签的唯一标志符在
Figure BDA00003549248900042
之间生成一个随机数RNG,射频标签的回复过程是一个时隙的长为
Figure BDA00003549248900043
的帧,每个射频标签在自己生成的第RNG个时隙向射频阅读器进行回复,射频阅读器从第一个时隙开始识别时隙的类型,如果该时隙没有标签回复,标记为0,称之为零时隙,如果该时隙有一个或多个标签回复,标记为X,称之为非零时隙,扫描到第f个时隙停止,记Zi为本轮问答模式通讯中零时隙的数目。
一种基于不稳定信道的射频标签数目估计装置,包括:
测量单元,用于测量射频阅读器与射频标签之间的信道的质量参数,统计得到射频标签对射频阅读器成功回复的概率密度函数fR的均值μ和方差σ2
预设单元,用于预设相对误差参数β、可靠性参数α;
计算单元,用于根据所述相对误差参数β、可靠性参数α、均值μ和方差σ2计算得到最优持续概率q、最优帧长度f、问答轮次n;
问答单元,用于随机生成种子s,根据所述最优持续概率q和所述最优帧长度f进行问答模式通讯,得到本轮问答模式通讯中零时隙的数目Zi,其中,0<i≤n;
循环单元,用于重复运行n次问答单元,得到n个Zi,计算得到平均值 Y = &Sigma; i = 1 n Z i n ;
估计单元,用于根据所述均值μ、所述最优持续概率q、所述最优帧长度f和所述平均值Y,获得与所述射频阅读器和所述射频标签之间的信道质量相关的射频标签数目估计,其公式为:
Figure BDA00003549248900051
其中,预设单元工作方法为:
假设射频标签的位置服从一个w(x,y)的空间分布,其中,(x,y)为空间位置坐标,P(x,y)为射频标签在(x,y)这一空间位置能够与射频阅读器成功通讯的概率函数,设FR为射频标签在所有可能空间位置上对射频阅读器成功回复的累积分布函数,其对应的概率密度函数为fR,则 F R = &Integral; 0 p f R ( p &prime; ) d p &prime; = &Integral; &Integral; P ( x , y ) &le; p w ( x , y ) dxdy , 其中,fR的均值μ和方差σ2可通过测量射频阅读器与射频标签之间的信道的质量参数得到。
其中,问答单元计算方法为:
计算得到置信参数
Figure BDA00003549248900053
其中,erf为高斯误差函数, erf ( x ) = 2 &pi; &Integral; 0 x e - z 2 dz , 其中z为任意变量;
为保证至少存在一个零时隙的概率不小于1-α,得到公式1:
(1-e-ρμq)f=1-α;
为保证结果概率区间的对称性,得到公式2:
( e &mu;q &rho; l - 1 &mu; 2 q 2 &rho; l 2 - 1 &rho; l ( 1 + &sigma; 2 &mu; 2 ) ) f &beta; 2 4 Z &alpha; 2 - 1 &rho; l &sigma; 2 &mu; 2 = ( e &mu;q &rho; u - 1 &mu; 2 q 2 &rho; u 2 - 1 &rho; u ( 1 + &sigma; 2 &mu; 2 ) ) f &beta; 2 4 Z &alpha; 2 - 1 &rho; u &sigma; 2 &mu; 2 ;
由公式1及公式2求解可计算得到最优持续概率q、最优帧长度f;
所述问答轮次n的计算公式为:
Figure BDA00003549248900056
其中,
Figure BDA00003549248900057
tl为射频标签数目下限,tu为射频标签数目下限,记r=tl/tu
Figure BDA00003549248900061
其中,β>0,0<α<1。
其中,循环单元得到的平均值Y服从均值为μy,方差为
Figure BDA00003549248900062
的正态分布:
&mu; y = f e - &rho;q&mu; , &sigma; y 2 = t q 2 &sigma; 2 e 2 &rho;q&mu; + f n e - &rho;q&mu; ( 1 - ( 1 + q 2 &rho; ) e - &rho;q&mu; ) ;
又因为μy是自变量为t的单调函数,所以它必然存在一个反函数g(μy(t))=t,从而可得到: t ^ = g ( Y ) = - f &mu;q log ( Y / f ) ;
&mu; gy = E [ g ( Y ) ] = t + ( e &rho;&mu;q - ( 1 + &rho; q 2 ( &mu; 2 + &sigma; 2 ) ) ) 2 n&mu;q ;
&sigma; gy 2 = Var [ g ( Y ) ] = t &sigma; 2 &mu; 2 + f ( e &rho;&mu;q - ( 1 + &rho; q 2 ( &mu; 2 + &sigma; 2 ) ) ) n &mu; 2 q 2 .
其中,问答单元工作流程为:
射频阅读器向所有射频标签发送问讯指令,所述问讯指令包括随机生成的种子s、最优持续概率q和所述最优帧长度f;
射频标签集合收到问讯指令后,结合每个射频标签的唯一标志符在之间生成一个随机数RNG,射频标签的回复过程是一个时隙的长为
Figure BDA00003549248900068
的帧,每个射频标签在自己生成的第RNG个时隙向射频阅读器进行回复,射频阅读器从第一个时隙开始识别时隙的类型,如果该时隙没有标签回复,标记为0,称之为零时隙,如果该时隙有一个或多个标签回复,标记为X,称之为非零时隙,扫描到第f个时隙停止,记Zi为本轮问答模式通讯中零时隙的数目。
本发明的有益效果为:一种基于不稳定信道的射频标签数目估计方法,包括:测量射频阅读器与射频标签之间的信道的质量参数,统计得到射频标签对射频阅读器成功回复的概率密度函数fR的均值μ和方差σ2;预设相对误差参数β、可靠性参数α;计算得到最优持续概率q、最优帧长度f、问答轮次n;随机生成种子s,根据所述最优持续概率q和所述最优帧长度f进行问答模式通讯,得到本轮问答模式通讯中零时隙的数目Zi;重复n次,得到n个Zi,计算得到平均值
Figure BDA00003549248900071
射频标签数目估计值公式为:
Figure BDA00003549248900072
本发明预先测量射频阅读器与射频标签之间的信道质量参数,并根据预设的相对误差参数和可靠性参数,对射频标签集合进行多次问答,通过统计每帧中前f个时隙中零时隙的数目,完成标签数目的匿名估计过程,该发明充分考虑了信道质量情况,且射频标签数目的估计精度可控,能达到用户指定的任意的精度。
附图说明
图1是本发明实施例一不稳定信道下的射频标签数目估计方法流程图;
图2是本发明实施例二不稳定信道下的射频标签数目估计装置结构图。
具体实施方式
下面结合图1及图2并通过具体实施方式来进一步说明本发明的技术方案。
实施例一
图1是本发明实施例一不稳定信道下的射频标签数目估计方法流程图。
一种基于不稳定信道的射频标签数目估计方法,包括:
步骤a、测量射频阅读器与射频标签之间的信道的质量参数,统计得到射频标签对射频阅读器成功回复的概率密度函数fR的均值μ和方差σ2
步骤b、预设相对误差参数β、可靠性参数α;
步骤c、根据所述相对误差参数β、可靠性参数α、均值μ和方差σ2计算得到最优持续概率q、最优帧长度f、问答轮次n;
步骤d、随机生成种子s,根据所述最优持续概率q和所述最优帧长度f进行问答模式通讯,得到本轮问答模式通讯中零时隙的数目Zi,其中,0<i≤n;
步骤e、重复n次步骤d,得到n个Zi,计算得到平均值
Figure BDA00003549248900073
步骤f、根据所述均值μ、所述最优持续概率q、所述最优帧长度f和所述平均值Y,获得与所述射频阅读器和所述射频标签之间的信道质量相关的射频标签数目估计值公式为: t ^ = - f &mu;q log ( Y / f ) .
在本实施例中,首先测量射频阅读器与射频标签之间的信道的质量参数,再根据预设的相对误差参数β和可靠性参数α,对射频标签集合进行多次问答,保证了射频标签数目的估计精度;且因为是通过统计每帧中前f个时隙中零时隙的数目,未涉及射频标签的具体信息,保证了射频标签的隐私数据,减少了射频标签对应的货物的安全威胁。
在本实施例中,所述问答轮次n即为问答模式通讯的次数。
在本实施例中,步骤a具体为:
假设射频标签的位置服从一个w(x,y)的空间分布,其中,(x,y)为空间位置坐标,P(x,y)为射频标签在(x,y)这一空间位置能够与射频阅读器成功通讯的概率函数,设FR为射频标签在所有可能空间位置上对射频阅读器成功回复的累积分布函数,其对应的概率密度函数为fR,则 F R = &Integral; 0 p f R ( p &prime; ) d p &prime; = &Integral; &Integral; P ( x , y ) &le; p w ( x , y ) dxdy , 其中,fR的均值μ和方差σ2可通过测量射频阅读器与射频标签之间的信道的质量参数得到。
为使结果更加准确,整个问答过程通常进行多轮,问答轮次数目为n,记Zi为第i轮中,前f个时隙中零时隙的数目,n轮平均值记为
Figure BDA00003549248900083
n轮次的具体数目,取决于用户的精度需求:相对误差参数β>0和可靠性参数0<α<1,设射频标签数目估计值为
Figure BDA00003549248900087
那么它满足以下公式:
Pr [ t ^ t &Element; ( 1 - &beta; 2 , 1 + &beta; 2 ) ] &GreaterEqual; 1 - &alpha;
它表示,射频标签数目估计值
Figure BDA00003549248900085
与射频标签真实数目t的比值在
Figure BDA00003549248900086
区间内的概率不小于1-α。
假设1次问答后,射频阅读器得到的零时隙的数目记为Z0,可以知道Z0这个随机变量服从均值为μ0,方差为的正态分布,其中
&mu; 0 = f e - &rho;q&mu; , &sigma; 0 2 = t q 2 &sigma; 2 e 2 &rho;q&mu; + f e - &rho;q&mu; ( 1 - ( 1 + q 2 &rho; ) e - &rho;q&mu; )
假设整个问答过程重复n次,那么将产生n个Zi值以及射频标签数目估计值
Figure BDA00003549248900093
又因为
Figure BDA00003549248900094
可以知道Y服从均值为μy,方差为
Figure BDA00003549248900095
的正态分布,其中
&mu; y = f e - &rho;q&mu; , &sigma; y 2 = t q 2 &sigma; 2 e 2 &rho;q&mu; + f n e - &rho;q&mu; ( 1 - ( 1 + q 2 &rho; ) e - &rho;q&mu; )
又可以知道μy是自变量为t的函数,这个函数是一个单调函数,所以它必然存在一个反函数g(μy(t))=t,因此我们得到射频标签数目估计值
Figure BDA00003549248900097
的公式为:
t ^ = g ( Y ) = - f &mu;q log ( Y / f )
其均值为:
&mu; gy = E [ g ( Y ) ] = t + ( e &rho;&mu;q - ( 1 + &rho; q 2 ( &mu; 2 + &sigma; 2 ) ) ) 2 n&mu;q
其方差为:
&sigma; gy 2 = Var [ g ( Y ) ] = t &sigma; 2 &mu; 2 + f ( e &rho;&mu;q - ( 1 + &rho; q 2 ( &mu; 2 + &sigma; 2 ) ) ) n &mu; 2 q 2
在本实施例中,步骤c具体为:
计算得到置信参数
Figure BDA000035492489000911
其中,erf为高斯误差函数, erf ( x ) = 2 &pi; &Integral; 0 x e - z 2 dz , 其中z为任意变量;
为保证至少存在一个零时隙的概率不小于1-α,得到公式1:
(1-e-ρμq)f=1-α;
为保证结果概率区间的对称性,得到公式2:
( e &mu;q &rho; l - 1 &mu; 2 q 2 &rho; l 2 - 1 &rho; l ( 1 + &sigma; 2 &mu; 2 ) ) f &beta; 2 4 Z &alpha; 2 - 1 &rho; l &sigma; 2 &mu; 2 = ( e &mu;q &rho; u - 1 &mu; 2 q 2 &rho; u 2 - 1 &rho; u ( 1 + &sigma; 2 &mu; 2 ) ) f &beta; 2 4 Z &alpha; 2 - 1 &rho; u &sigma; 2 &mu; 2 ;
由公式1及公式2求解可计算得到最优持续概率q、最优帧长度f;
所述问答轮次n的计算公式为:
Figure BDA00003549248900101
其中,
Figure BDA00003549248900102
tl为射频标签数目下限,tu为射频标签数目下限,记r=tl/tu其中,β>0,0<α<1。
在本实施例中,问答模式通讯具体为:
射频阅读器向射频标签集合发送问讯指令,所述问讯指令包括随机生成的种子s、最优持续概率q和所述最优帧长度f;在本实施例中,随机生成的种子s为一个随机整数,用于触发问答模式通讯。
射频标签集合收到问讯指令后,结合每个射频标签的唯一标志符在之间生成一个随机数RNG,射频标签的回复过程是一个时隙的长为
Figure BDA00003549248900105
的帧,每个射频标签在自己生成的第RNG个时隙向射频阅读器进行回复,射频阅读器从第一个时隙开始识别时隙的类型,如果该时隙没有标签回复,标记为0,称之为零时隙,如果该时隙有一个或多个标签回复,标记为X,称之为非零时隙,扫描到第f个时隙停止,记Zi为本轮问答模式通讯中零时隙的数目,假设射频标签集合的真实数目为t,那么装载指数为
Figure BDA00003549248900106
实施例二
图2是本发明实施例二不稳定信道下的射频标签数目估计装置结构图。
一种基于不稳定信道的射频标签数目估计装置,包括:
测量单元,用于测量射频阅读器与射频标签之间的信道的质量参数,统计得到射频标签对射频阅读器成功回复的概率密度函数fR的均值μ和方差σ2
预设单元,用于预设相对误差参数β、可靠性参数α;
计算单元,用于根据所述相对误差参数β、可靠性参数α、均值μ和方差σ2计算得到最优持续概率q、最优帧长度f、问答轮次n;
问答单元,用于随机生成种子s,根据所述最优持续概率q和所述最优帧长度f进行问答模式通讯,得到本轮问答模式通讯中零时隙的数目Zi,其中,0<i≤n;
循环单元,用于重复运行n次问答单元,得到n个Zi,计算得到平均值 Y = &Sigma; i = 1 n Z i n ;
估计单元,用于根据所述均值μ、所述最优持续概率q、所述最优帧长度f和所述平均值Y,获得与所述射频阅读器和所述射频标签之间的信道质量相关的射频标签数目估计,其公式为:
在本实施例中,预设单元工作方法为:
假设射频标签的位置服从一个w(x,y)的空间分布,其中,(x,y)为空间位置坐标,P(x,y)为射频标签在(x,y)这一空间位置能够与射频阅读器成功通讯的概率函数,设FR为射频标签在所有可能空间位置上对射频阅读器成功回复的累积分布函数,其对应的概率密度函数为fR,则 F R = &Integral; 0 p f R ( p &prime; ) d p &prime; = &Integral; &Integral; P ( x , y ) &le; p w ( x , y ) dxdy , 其中,fR的均值μ和方差σ2可通过测量射频阅读器与射频标签之间的信道的质量参数得到。
在本实施例中,问答单元计算方法为:
计算得到置信参数其中,erf为高斯误差函数, erf ( x ) = 2 &pi; &Integral; 0 x e - z 2 dz , 其中z为任意变量;
为保证至少存在一个零时隙的概率不小于1-α,得到公式1:
(1-e-ρμq)f=1-α;
为保证结果概率区间的对称性,得到公式2:
( e &mu;q &rho; l - 1 &mu; 2 q 2 &rho; l 2 - 1 &rho; l ( 1 + &sigma; 2 &mu; 2 ) ) f &beta; 2 4 Z &alpha; 2 - 1 &rho; l &sigma; 2 &mu; 2 = ( e &mu;q &rho; u - 1 &mu; 2 q 2 &rho; u 2 - 1 &rho; u ( 1 + &sigma; 2 &mu; 2 ) ) f &beta; 2 4 Z &alpha; 2 - 1 &rho; u &sigma; 2 &mu; 2 ;
由公式1及公式2求解可计算得到最优持续概率q、最优帧长度f;
所述问答轮次n的计算公式为:
Figure BDA00003549248900122
其中,
Figure BDA00003549248900123
tl为射频标签数目下限,tu为射频标签数目下限,记r=tl/tu
Figure BDA00003549248900124
其中,β>0,0<α<1。
在本实施例中,循环单元得到的平均值Y服从均值为μy,方差为
Figure BDA00003549248900125
的正态分布:
&mu; y = f e - &rho;q&mu; , &sigma; y 2 = t q 2 &sigma; 2 e 2 &rho;q&mu; + f n e - &rho;q&mu; ( 1 - ( 1 + q 2 &rho; ) e - &rho;q&mu; ) ;
又因为μy是自变量为t的单调函数,所以它必然存在一个反函数g(μy(t))=t,从而可得到: t ^ = g ( Y ) = - f &mu;q log ( Y / f ) ;
&mu; gy = E [ g ( Y ) ] = t + ( e &rho;&mu;q - ( 1 + &rho; q 2 ( &mu; 2 + &sigma; 2 ) ) ) 2 n&mu;q ;
&sigma; gy 2 = Var [ g ( Y ) ] = t &sigma; 2 &mu; 2 + f ( e &rho;&mu;q - ( 1 + &rho; q 2 ( &mu; 2 + &sigma; 2 ) ) ) n &mu; 2 q 2 .
在本实施例中,问答单元工作流程为:
射频阅读器向射频标签集合发送问讯指令,所述问讯指令包括随机生成的种子s、最优持续概率q和所述最优帧长度f;
射频标签集合收到问讯指令后,结合每个射频标签的唯一标志符在
Figure BDA000035492489001210
之间生成一个随机数RNG,射频标签的回复过程是一个时隙的长为
Figure BDA000035492489001211
的帧,每个射频标签在自己生成的第RNG个时隙向射频阅读器进行回复,射频阅读器从第一个时隙开始识别时隙的类型,如果该时隙没有标签回复,标记为0,称之为零时隙,如果该时隙有一个或多个标签回复,标记为X,称之为非零时隙,扫描到第f个时隙停止,记Zi为本轮问答模式通讯中零时隙的数目。
以上所述仅为本发明的具体实施方式,这些描述只是为了解释本发明的原理,而不能以任何结构解释为对本发明保护范围的限制。基于此处的解释,本领域的技术人员不需要付出创造性的劳动即可联想到本发明的其它具体实施结构,这些结构都将落入本发明的保护范围之内。

Claims (10)

1.一种基于不稳定信道的射频标签数目估计方法,其特征在于,包括:
步骤a、测量射频阅读器与射频标签之间的信道的质量参数,统计得到射频标签对射频阅读器成功回复的概率密度函数fR的均值μ和方差σ2
步骤b、预设相对误差参数β、可靠性参数α;
步骤c、根据所述相对误差参数β、可靠性参数α、均值μ和方差σ2计算得到最优持续概率q、最优帧长度f、问答轮次n;
步骤d、随机生成种子s,根据所述最优持续概率q和所述最优帧长度f进行问答模式通讯,得到本轮问答模式通讯中零时隙的数目Zi,其中,0<i≤n;
步骤e、重复n次步骤d,得到n个Zi,计算得到平均值
Figure FDA00003549248800011
步骤f、根据所述均值μ、所述最优持续概率q、所述最优帧长度f和所述平均值Y,获得与所述射频阅读器和所述射频标签之间的信道质量相关的射频标签数目估计值公式为: t ^ = - f &mu;q log ( Y / f ) .
2.根据权利要求1所述的一种基于不稳定信道的射频标签数目估计方法,其特征在于,所述步骤a具体为:
假设射频标签的位置服从一个w(x,y)的空间分布,其中,(x,y)为空间位置坐标,P(x,y)为射频标签在(x,y)这一空间位置能够与射频阅读器成功通讯的概率函数,设FR为射频标签在所有可能空间位置上对射频阅读器成功回复的累积分布函数,其对应的概率密度函数为fR,则 F R = &Integral; 0 p f R ( p &prime; ) d p &prime; = &Integral; &Integral; P ( x , y ) &le; p w ( x , y ) dxdy , 其中,fR的均值μ和方差σ2可通过测量射频阅读器与射频标签之间的信道的质量参数得到。
3.根据权利要求1所述的一种基于不稳定信道的射频标签数目估计方法,其特征在于,所述步骤c具体为:
计算得到置信参数
Figure FDA00003549248800014
其中,erf为高斯误差函数, erf ( x ) = 2 &pi; &Integral; 0 x e - z 2 dz , 其中z为任意变量;
为保证至少存在一个零时隙的概率不小于1-α,得到公式1:
(1-e-ρμq)f=1-α;
为保证结果概率区间的对称性,得到公式2:
( e &mu;q &rho; l - 1 &mu; 2 q 2 &rho; l 2 - 1 &rho; l ( 1 + &sigma; 2 &mu; 2 ) ) f &beta; 2 4 Z &alpha; 2 - 1 &rho; l &sigma; 2 &mu; 2 = ( e &mu;q &rho; u - 1 &mu; 2 q 2 &rho; u 2 - 1 &rho; u ( 1 + &sigma; 2 &mu; 2 ) ) f &beta; 2 4 Z &alpha; 2 - 1 &rho; u &sigma; 2 &mu; 2 ;
由公式1及公式2求解可计算得到最优持续概率q、最优帧长度f;
所述问答轮次n的计算公式为:
Figure FDA00003549248800023
其中,
Figure FDA00003549248800024
tl为射频标签数目下限,tu为射频标签数目下限,记r=tl/tu
Figure FDA00003549248800025
其中,β>0,0<α<1。
4.根据权利要求1所述的一种基于不稳定信道的射频标签数目估计方法,其特征在于,所述平均值Y服从均值为μy,方差为
Figure FDA00003549248800026
的正态分布:
&mu; y = f e - &rho;q&mu; , &sigma; y 2 = t q 2 &sigma; 2 e 2 &rho;q&mu; + f n e - &rho;q&mu; ( 1 - ( 1 + q 2 &rho; ) e - &rho;q&mu; ) ;
又因为μy是自变量为t的单调函数,所以它必然存在一个反函数g(μy(t))=t,从而可得到: t ^ = g ( Y ) = - f &mu;q log ( Y / f ) ;
&mu; gy = E [ g ( Y ) ] = t + ( e &rho;&mu;q - ( 1 + &rho; q 2 ( &mu; 2 + &sigma; 2 ) ) ) 2 n&mu;q ;
&sigma; gy 2 = Var [ g ( Y ) ] = t &sigma; 2 &mu; 2 + f ( e &rho;&mu;q - ( 1 + &rho; q 2 ( &mu; 2 + &sigma; 2 ) ) ) n &mu; 2 q 2 .
5.根据权利要求1所述的一种基于不稳定信道的射频标签数目估计方法,其特征在于,所述问答模式通讯具体为:
射频阅读器向射频标签集合发送问讯指令,所述问讯指令包括随机生成的种子s、最优持续概率q和所述最优帧长度f;
射频标签集合收到问讯指令后,结合每个射频标签的唯一标志符在之间生成一个随机数RNG,射频标签的回复过程是一个时隙的长为
Figure FDA00003549248800032
的帧,每个射频标签在自己生成的第RNG个时隙向射频阅读器进行回复,射频阅读器从第一个时隙开始识别时隙的类型,如果该时隙没有标签回复,标记为0,称之为零时隙,如果该时隙有一个或多个标签回复,标记为X,称之为非零时隙,扫描到第f个时隙停止,记录本轮问答模式通讯中零时隙的数目Zi
6.一种基于不稳定信道的射频标签数目估计装置,其特征在于,包括:
测量单元,用于测量射频阅读器与射频标签之间的信道的质量参数,统计得到射频标签对射频阅读器成功回复的概率密度函数fR的均值μ和方差σ2
预设单元,用于预设相对误差参数β、可靠性参数α;
计算单元,用于根据所述相对误差参数β、可靠性参数α、均值μ和方差σ2计算得到最优持续概率q、最优帧长度f、问答轮次n;
问答单元,用于随机生成种子s,根据所述最优持续概率q和所述最优帧长度f进行问答模式通讯,得到本轮问答模式通讯中零时隙的数目Zi,其中,0<i≤n;
循环单元,用于重复运行n次问答单元,得到n个Zi,计算得到平均值 Y = &Sigma; i = 1 n Z i n ;
估计单元,用于根据所述均值μ、所述最优持续概率q、所述最优帧长度f和所述平均值Y,获得与所述射频阅读器和所述射频标签之间的信道质量相关的射频标签数目估计,其公式为:
Figure FDA00003549248800034
7.根据权利要求6所述的一种基于不稳定信道的射频标签数目估计装置,其特征在于,所述预设单元工作方法为:
假设射频标签的位置服从一个w(x,y)的空间分布,其中,(x,y)为空间位置坐标,P(x,y)为射频标签在(x,y)这一空间位置能够与射频阅读器成功通讯的概率函数,设FR为射频标签在所有可能空间位置上对射频阅读器成功回复的累积分布函数,其对应的概率密度函数为fR,则 F R = &Integral; 0 p f R ( p &prime; ) d p &prime; = &Integral; &Integral; P ( x , y ) &le; p w ( x , y ) dxdy , 其中,fR的均值μ和方差σ2可通过测量射频阅读器与射频标签之间的信道的质量参数得到。
8.根据权利要求6所述的一种基于不稳定信道的射频标签数目估计装置,其特征在于,所述问答单元计算方法为:
计算得到置信参数
Figure FDA00003549248800042
其中,erf为高斯误差函数, erf ( x ) = 2 &pi; &Integral; 0 x e - z 2 dz , 其中z为任意变量;
为保证至少存在一个零时隙的概率不小于1-α,得到公式1:
(1-e-ρμq)f=1-α;
为保证结果概率区间的对称性,得到公式2:
( e &mu;q &rho; l - 1 &mu; 2 q 2 &rho; l 2 - 1 &rho; l ( 1 + &sigma; 2 &mu; 2 ) ) f &beta; 2 4 Z &alpha; 2 - 1 &rho; l &sigma; 2 &mu; 2 = ( e &mu;q &rho; u - 1 &mu; 2 q 2 &rho; u 2 - 1 &rho; u ( 1 + &sigma; 2 &mu; 2 ) ) f &beta; 2 4 Z &alpha; 2 - 1 &rho; u &sigma; 2 &mu; 2 ;
由公式1及公式2求解可计算得到最优持续概率q、最优帧长度f;
所述问答轮次n的计算公式为:
Figure FDA00003549248800045
其中,
Figure FDA00003549248800046
tl为射频标签数目下限,tu为射频标签数目下限,记r=tl/tu其中,β>0,0<α<1。
9.根据权利要求6所述的一种基于不稳定信道的射频标签数目估计装置,其特征在于,所述循环单元得到的平均值Y服从均值为μy,方差为
Figure FDA00003549248800048
的正态分布:
&mu; y = f e - &rho;q&mu; , &sigma; y 2 = t q 2 &sigma; 2 e 2 &rho;q&mu; + f n e - &rho;q&mu; ( 1 - ( 1 + q 2 &rho; ) e - &rho;q&mu; ) ;
又因为μy是自变量为t的单调函数,所以它必然存在一个反函数g(μy(t))=t,从而可得到: t ^ = g ( Y ) = - f &mu;q log ( Y / f ) ;
&mu; gy = E [ g ( Y ) ] = t + ( e &rho;&mu;q - ( 1 + &rho; q 2 ( &mu; 2 + &sigma; 2 ) ) ) 2 n&mu;q ;
&sigma; gy 2 = Var [ g ( Y ) ] = t &sigma; 2 &mu; 2 + f ( e &rho;&mu;q - ( 1 + &rho; q 2 ( &mu; 2 + &sigma; 2 ) ) ) n &mu; 2 q 2 .
10.根据权利要求6所述的一种基于不稳定信道的射频标签数目估计装置,其特征在于,所述问答单元工作流程为:
射频阅读器向射频标签集合发送问讯指令,所述问讯指令包括随机生成的种子s、最优持续概率q和所述最优帧长度f;
射频标签集合收到问讯指令后,结合每个射频标签的唯一标志符在之间生成一个随机数RNG,射频标签的回复过程是一个时隙的长为
Figure FDA00003549248800056
的帧,每个射频标签在自己生成的第RNG个时隙向射频阅读器进行回复,射频阅读器从第一个时隙开始识别时隙的类型,如果该时隙没有标签回复,标记为0,称之为零时隙,如果该时隙有一个或多个标签回复,标记为X,称之为非零时隙,扫描到第f个时隙停止,记Zi为本轮问答模式通讯中零时隙的数目。
CN201310310181.3A 2013-07-22 2013-07-22 一种基于不稳定信道的射频标签数目估计方法及装置 Active CN103400093B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310310181.3A CN103400093B (zh) 2013-07-22 2013-07-22 一种基于不稳定信道的射频标签数目估计方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310310181.3A CN103400093B (zh) 2013-07-22 2013-07-22 一种基于不稳定信道的射频标签数目估计方法及装置

Publications (2)

Publication Number Publication Date
CN103400093A true CN103400093A (zh) 2013-11-20
CN103400093B CN103400093B (zh) 2016-09-07

Family

ID=49563714

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310310181.3A Active CN103400093B (zh) 2013-07-22 2013-07-22 一种基于不稳定信道的射频标签数目估计方法及装置

Country Status (1)

Country Link
CN (1) CN103400093B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103793670A (zh) * 2013-11-22 2014-05-14 清华大学 一种射频标签的数目估计方法和系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020063622A1 (en) * 2000-11-29 2002-05-30 Ludwig Kipp Method and system for communicating with and tracking RFID transponders
CN101405954A (zh) * 2006-03-06 2009-04-08 新号株式会社 用于消除移动通信直放站的干扰信号的装置和方法
CN101554015A (zh) * 2006-09-27 2009-10-07 卢森特技术有限公司 使用无线设备集合进行匿名追踪
CN101682400A (zh) * 2007-05-07 2010-03-24 诺基亚公司 提供用于广播和寻呼服务的控制信道的方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020063622A1 (en) * 2000-11-29 2002-05-30 Ludwig Kipp Method and system for communicating with and tracking RFID transponders
CN101405954A (zh) * 2006-03-06 2009-04-08 新号株式会社 用于消除移动通信直放站的干扰信号的装置和方法
CN101554015A (zh) * 2006-09-27 2009-10-07 卢森特技术有限公司 使用无线设备集合进行匿名追踪
CN101682400A (zh) * 2007-05-07 2010-03-24 诺基亚公司 提供用于广播和寻呼服务的控制信道的方法和装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103793670A (zh) * 2013-11-22 2014-05-14 清华大学 一种射频标签的数目估计方法和系统

Also Published As

Publication number Publication date
CN103400093B (zh) 2016-09-07

Similar Documents

Publication Publication Date Title
Su et al. Energy efficient tag identification algorithms for RFID: survey, motivation and new design
Shahzad et al. Every bit counts: Fast and scalable RFID estimation
US8299900B2 (en) Anonymous tracking using a set of wireless devices
Lin et al. Efficient estimation and collision-group-based anticollision algorithms for dynamic frame-slotted ALOHA in RFID networks
Popovski et al. Robust statistical methods for detection of missing RFID tags
CN104881693B (zh) 一种基于子帧观测的动态帧时隙aloha防碰撞算法
CN105373930B (zh) 应用于溯源系统的rfid标签估算方法和装置
CN107784247A (zh) 匿名射频识别系统分阶段丢失关键标签识别方法
CN103679099A (zh) 一种用于大量rfid标签系统中的防碰撞方法
CN101517972B (zh) 无线装置集合的基数的估计
Wu et al. Capture-aware Bayesian RFID tag estimate for large-scale identification
CN106559870A (zh) 基于无线网络的定位方法和定位装置
CN103793670A (zh) 一种射频标签的数目估计方法和系统
CN103400093A (zh) 一种基于不稳定信道的射频标签数目估计方法及装置
CN103559522B (zh) 一种非理想信道下的自适应射频标签数目估计方法
CN103336937A (zh) 一种基于几何分布的射频标签数目估计方法
CN103246860B (zh) 一种基于空闲时隙数目的射频标签数目估计方法与装置
CN103268464B (zh) 快速批量射频标签数目估计方法及装置
Wang et al. Dynamic frame-slotted ALOHA anti-collision algorithm in RFID based on non-linear estimation
Wang Efficient DFSA algorithm in RFID systems for the internet of things
Shakiba et al. Cubic spline-based tag estimation method in RFID multi-tags identification process
CN104063627B (zh) 一种最优q参数的确定方法及装置
CN113435220A (zh) Rfid系统中基于不可靠信道的丢失标签数量估计方法与装置
CN101369913B (zh) 一种无线通信网络节点数目估计方法
Dhakal et al. Precise Time System Efficiency of a Frame Slotted Aloha based Anti-Collision Algorithm in a RFID System.

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: 214135 Room 501, A District, Qingyuan Road, Wuxi science and Technology Park, Wuxi New District, Jiangsu

Patentee after: RUN TECHNOLOGY CO.,LTD.

Address before: 214135 Room 501, A District, Qingyuan Road, Wuxi science and Technology Park, Wuxi New District, Jiangsu

Patentee before: WUXI RUN TECHNOLOGY CO.,LTD.

CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: Room J1958, Building 6, No. 1288 Yecheng Road, Jiading District, Shanghai, 200000

Patentee after: Ruan Internet of things Technology Group Co.,Ltd.

Address before: 214135 Room 501, A District, Qingyuan Road, Wuxi science and Technology Park, Wuxi New District, Jiangsu

Patentee before: RUN TECHNOLOGY CO.,LTD.