CN103394972A - 基于声发射信号的铣削加工表面粗糙度在线预测方法 - Google Patents

基于声发射信号的铣削加工表面粗糙度在线预测方法 Download PDF

Info

Publication number
CN103394972A
CN103394972A CN2013103348568A CN201310334856A CN103394972A CN 103394972 A CN103394972 A CN 103394972A CN 2013103348568 A CN2013103348568 A CN 2013103348568A CN 201310334856 A CN201310334856 A CN 201310334856A CN 103394972 A CN103394972 A CN 103394972A
Authority
CN
China
Prior art keywords
milling process
milling
acoustic emission
frequency
surface roughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013103348568A
Other languages
English (en)
Other versions
CN103394972B (zh
Inventor
熊巍
李郝林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN201310334856.8A priority Critical patent/CN103394972B/zh
Publication of CN103394972A publication Critical patent/CN103394972A/zh
Application granted granted Critical
Publication of CN103394972B publication Critical patent/CN103394972B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Numerical Control (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

本发明涉及一种基于声发射信号的铣削加工表面粗糙度在线预测方法,在被铣削加工零件上安装一个声发射传感器,利用声发射传感器对铣削加工时被铣削加工零件材料变形所释放出的声发射信号进行监测;根据铣削加工理论中铣屑厚度的变化反映铣削加工表面粗糙度的理论,利用声发射信号对实际加工中铣屑厚度变化的敏感反应,对所探测到的被加工零件在加工时所释放出来的声发射信号进行分析和处理来预测铣削加工表面粗糙度的大小。本发明实现了铣削加工时在线预测铣削加工表面粗糙度的大小,对稳定工件的铣削加工质量,降低工件的报废率,提高铣削加工的效率有着重要的意义,同时为铣削加工进行过程中实时预判铣削加工工艺参数的合理性提供了重要依据。

Description

基于声发射信号的铣削加工表面粗糙度在线预测方法
技术领域
本发明涉及一种铣削加工表面粗糙度预测方法,特别涉及一种铣削加工过程中的粗糙度的监测方法。
背景技术
铣削加工表面粗糙度是衡量铣削加工质量的主要指标之一,加工出合格的零件除了有合格的尺寸精度外,还需获得与零件图纸一致的表面粗糙度。目前,铣削加工的监测技术中,尚没有对铣削加工表面粗糙度进行在线预测的技术,而现在对于铣削表面粗糙度的测量,还是只能在加工后进行,而此时测量出的粗糙度不合格工件往往只能报废。因此,能够在工件铣削加工的过程中预测铣削加工表面粗糙度,对稳定工件的铣削加工质量,降低工件的报废率,提高铣削加工的效率有着重要的意义,同时为铣削加工进行过程中实时预测铣削加工工艺参数的合理性提供了重要依据。
发明内容
本发明是要解决铣削加工表面粗糙度只有在铣削加工完成后才能进行测量判断的技术问题,提供一种基于声发射信号的铣削加工表面粗糙度在线预测方法,从而在铣削加工时在线稳定工件的铣削加工质量,降低工件的报废率,提高铣削加工的效率,为铣削加工进行过程中实时判断铣削加工工艺参数的合理性提供了重要依据。
为了实现上述目的,本发明的技术方案是:一种基于声发射信号的铣削加工表面粗糙度在线预测方法,包括以下步骤:
(1)安装连接声发射传感器
在被铣削加工零件上或者附近安装一个声发射传感器,利用声发射传感器对铣削加工进行在线监测;声发射传感器的信号输出端,通过数据采集装置与计算机相连;
(2)获取理论铣屑厚度变化曲线的频域特征
通过计算机计算并模拟出被铣削加工零件在铣削加工时的理论铣屑厚度变化的时域曲线及时域曲线图,通过计算机分析和处理,得到理论铣屑厚度变化曲线的频域特征;
(3)获取铣削加工时的声发射信号的频域特征
被铣削加工零件在铣削加工时,通过数据采集装置和计算机采集并记录下被铣削加工零件在铣削加工时所释放出的声发射信号,同时,通过计算机对所采集到的声发射信号进行分析和处理,得到所采集到的声发射信号的频域特征;
(4)    预测铣削加工表面粗糙度值
对比和计算被铣削加工零件在铣削加工时的声发射信号的频域特征与其理论铣屑厚度变化曲线的频域特征之间的差异,来预测铣削加工表面粗糙度的大小。
上述第二步骤中将理论铣屑厚度变化时域曲线及时域曲线图,通过计算机分析和处理,得到理论铣屑厚度变化曲线的频域特征的具体方法是:通过频域转换算法将理论铣屑厚度变化曲线时域图转换成频域图,读取频域图中各个频率上的峰值,并对其求和,表示为:
Figure 2013103348568100002DEST_PATH_IMAGE002
                    (1)
式中:P为所有频率上峰值的总和; pi为频率为i的峰值;
通过计算式(2)得到理论铣屑厚度变化曲线的切频比Rc理
Figure 2013103348568100002DEST_PATH_IMAGE004
              (2)
式中:P为所有频率上峰值的总和; pc为铣削频率上的峰值,
其中:铣削频率为:
Figure 2013103348568100002DEST_PATH_IMAGE006
               (3)
式中:C为铣削频率(单位:Hz);S为主轴转速(rpm);Z为刀具齿数。
上述第三步骤中通过计算机对所采集到的声发射信号进行分析和处理,得到所采集到的声发射信号的频域特征的具体方法:通过计算机显示和记录数据采集装置所采集到的所述声发射时域信号,同时,将所述的声发射时域信号转换成实时的频域信号,读取所述的频域信号中各个频率上的峰值,用上述计算式(1)、(2)、(3)计算得到声发射信号的切频比Rc
上述第四步骤中对比和计算被铣削加工零件(在铣削加工时的声发射信号的频域特征与其理论铣屑厚度变化曲线的频域特征之间的差异,来预测铣削加工表面粗糙度的大小的具体方法是:计算所测得的声发射信号与理论铣屑厚度曲线之间切频比Rc的差值d,表达式为:
式中:Rc理为理论铣屑厚度变化曲线的切频比;Rc声为声发射信号的切频比,根据切频比差值d的大小来判断铣削加工表面粗糙度大小,并建立切频比差值d与铣削加工表面粗糙度的关系曲线,利用该关系曲线来预测铣削加工表面粗糙度。
上述建立切频比差值d与铣削加工表面粗糙度的关系曲线方法是:通过实验铣削加工出一个或一个以上不同的铣削表面粗糙度;同时采集不同铣削表面粗糙度所对应的声发射信号,计算出如上述所述的切频比差值d,通过插值算法拟合出切频比差值d与铣削加工表面粗糙度的关系曲线。
本发明的有益效果是:
与现有技术相比,本发明提出了一种全新的铣削加工进行过程中在线预测铣削加工表面粗糙度的方法,填补了铣削加工监测领域对铣削加工表面粗糙度监测的空白。本发明根据声发射传感器探测材料加工中分子晶格发生位错、裂纹扩展及塑性变形时释放出的一种超高频应力波脉冲信号的原理,来反应铣削加工过程中铣屑厚度的变化情况,从而比较声发射信号所反应出的实际铣屑厚度的变化与理论铣屑厚度变化之间的差异,来预测铣削加工表面粗糙度。本发明理论依据充分,且大量的实验验证了其效果明显,预测准确可靠。本发明对稳定工件的铣削加工质量,降低工件的报废率,提高铣削加工的效率有着重要的意义,同时为铣削加工进行过程中实时判断铣削加工工艺参数的合理性提供了重要依据。
附图说明
图1是本发明的采用声发射信号的预测装置的示意图;
图2是铣屑厚度周期性变化在铣削加工表面上留下锯齿状的波纹而形成铣削加工表面粗糙度示意图;
图3是理论铣屑厚度变化曲线频域图;
图4是伴随着加工振动等因素的影响,实际加工的铣屑厚度变化呈现不规则性及非周期性而降低铣削加工表面粗糙度示意图;
图5是声发射信号频域图;
图6是切频比差值d与铣削加工表面粗糙度的关系曲线。
具体实施方式
    下面结合附图和具体实施方式对本发明作进一步描述,但不应以此限制本发明的保护范围。
本发明的技术思路是:根据铣削加工理论中铣屑厚度的变化反映铣削加工表面粗糙度的理论,利用声发射传感器探测被加工零件在加工时所释放出来的声发射信号来预测铣削加工表面粗糙度。
参见附图2,铣削切削时每个刀刃的切削过程是断续的,在不受任何其它因素的影响下,其铣屑厚度会随着刀刃位置的不同而不同,使铣屑厚度周期性变化,从而在铣削加工表面上留下锯齿状的波纹而形成铣削加工表面粗糙度。根据计算机的计算模拟分析发现,在不受任何其它因素影响的理想状态下,铣屑厚度依铣削频率(主轴转速×齿数÷60)周期性变化,参见附图3,从模拟出的理论铣屑厚度变化曲线频域图中也可以发现,其铣屑厚度变化的能量也主要集中在铣削频率上。
参见附图4,然而,实际加工中伴随着加工振动等因素的影响,其铣屑厚度变化呈现不规则性及非周期性,从而会降低铣削加工表面粗糙度(粗糙度值Ry、Ra增加),此时其不规则性和非周期性在理论铣屑厚度变化曲线频域图中会表现为在非铣削频率上出现能量,其非铣削频率上的能量越大,则铣削加工过程就越不平稳,实际铣屑厚度变化与理论铣屑厚度变化相去甚远,此时的铣削加工表面粗糙度值也就会越高;反之非铣削频率上的能量越小,则铣削加工过程越平稳,实际铣屑厚度变化与理论铣屑厚度变化接近,此时的铣削加工表面粗糙度值也就会越接近于理想的铣削表面粗糙度。因此,铣屑厚度变化曲线的频域特性可以用来预测铣削表面的粗糙度。
声发射信号是材料加工中分子晶格发生位错、裂纹扩展及塑性变形所释放出的一种超高频应力波脉冲信号,声发射的特点就是直接测量铣削加工过程中工件材料受刀具挤压破坏而从工件上剥离时发出的能量,能够直接的反应材料在切削变形中的情况,其对铣屑厚度的变化非常敏感。通过研究分析可以发现,声发射信号能量越大,材料受破坏变形就越大,因而所反映出的铣屑厚度也越大;而声发射信号能量越小,材料受破坏变形就越小,其所反映出的铣削厚度也就越小,因此声发射信号能量的变化可以反映出铣屑厚度的变化情况,参见附图5,对声发射信号做频域转换后得到的声发射信号频域图中非铣削频率上出现的能量,可以认为是铣屑厚度不规则和非周期性变化的表现。
因此,本发明利用声发射信号的这一特性,比较和分析声发射信号频域图的特征与理论铣屑厚度变化曲线的频域图特征之间的差异来预测铣削加工表面粗糙度的大小。
根据上述分析,本发明的基于声发射信号的铣削加工表面粗糙度在线预测方法,采用如图1所示的测量装置,该装置包括铣床主轴 1,铣刀2、工作台3,被铣削加工零件4,声发射传感器5,数据采集装置6,计算机7,并包括以下步骤:
1)在被铣削加工零件4上或者附近安装一个声发射传感器5,利用声发射传感器对铣削加工进行在线监测;
2)声发射传感器的另一端,通过数据采集装置6与计算机7相连;
3)通过计算机计算并模拟出被铣削加工零件4在铣削加工时的理论铣屑厚度变化曲线,通过分析和处理,得到理论铣屑厚度变化曲线的频域特征;
4)被铣削加工零件4在铣削加工时,通过数据采集装置6与计算机7采集并记录下被铣削加工零件4在铣削加工时所释放出的声发射信号,同时,通过计算机对所采集到的声发射信号进行分析和处理,得到所采集到的声发射信号的频域特征;
5)通过对比和计算被铣削加工零件4在铣削加工时的声发射信号的频域特征和其理论铣屑厚度变化曲线的频域特征之间的差异,来预测铣削加工表面粗糙度的大小。
所述的声发射传感器5可以直接安装在被铣削加工零件4上,也可以安装在与被铣削加工零件4相接触的或者间接接触的其他物体上。
所述数据采集装置6可以是外置的,也可以是内置的,也可以是利用计算机已有的数据接口。
所述的通过计算机计算并模拟出被铣削加工零件4在铣削加工时的理论铣屑厚度变化曲线,通过分析和处理,得到理论铣屑厚度变化曲线的频域特征,包括但不仅限于:在加工前通过计算机以及理论铣屑厚度计算公式,将所需加工的零件在加工时的理论铣屑厚度计算并模拟出来,模拟出的曲线可以是时域图,其特征是一个坐标为时间轴,而另一个坐标为时间轴上每个时间点所对应的铣屑厚度值,通过频域转换算法(包括但不仅限于傅立叶变换、快速傅立叶变换等算法)将理论铣屑厚度变化曲线时域图转换成频域图(参见附图3),所述的频域特征,可以是,读取所述的频域图中各个频率上的峰值,并对其求和,可表示为:
Figure 566978DEST_PATH_IMAGE002
式中:P:所有频率上峰值的总和;pi:频率为i的峰值。
同时,将铣削频率上的峰值pc与所有频率上峰值的总合P相除得到切频比Rc
所述的切频比Rc是用于描述频域图中铣削频率上的能量占频域图中总能量的比例,其特征在于,将频域图中铣削频率上的峰值pc与所有频率上峰值的总合P相除,其可表示为:
式中:P:所有频率上峰值的总和;pc:铣削频率上的峰值。
所述的铣削频率,可表示为:
Figure 656474DEST_PATH_IMAGE006
其中:  c:铣削频率(单位:Hz);S:主轴转速(rpm);Z:刀具齿数。
所述的通过数据采集装置6与计算机7采集并记录下被铣削加工零件4在铣削加工时所释放出的声发射信号,同时,通过计算机对所采集到的声发射信号进行分析和处理,得到所采集到的声发射信号的频域特征,包括但不仅限于:通过计算机7显示和记录数据采集装置6所采集到的所述声发射时域信号,同时,将所述的声发射时域信号转换成实时的频域信号(参见附图5),并显示在计算机7的屏幕上,所述声发射信号的频域特征,可以是,读取所述的频域信号中各个频率上的峰值,同样通过如上述所述的方法计算得到声发射信号的切频比Rc
所述的通过对比和计算被铣削加工零件4在铣削加工时的声发射信号的频域特征和其理论铣屑厚度变化曲线的频域特征之间的差异,来预测铣削加工表面粗糙度的大小,包括但不仅限于:计算所测得的声发射信号与理论铣屑厚度曲线之间切频比Rc的差值d,可表示为:
Figure 793057DEST_PATH_IMAGE008
式中:Rc理:理论铣屑厚度变化曲线的切频比;Rc声:声发射信号的切频比。
根据上述的差值d的大小来判断铣削加工表面粗糙度大小,其差值小,说明实际铣屑厚度变化趋于理想化,其在非铣削频率上的能量很小,此时的铣削加工表面粗糙度与理论铣削加工表面粗糙度相近,而差值大,说明实际铣屑厚度变化成非理想化,其在非铣削频率上的能量大,此时的铣削加工表面粗糙度与理论铣削加工表面粗糙度相去甚远。因此,可以根据上述分析来建立切频比差值d与铣削加工表面粗糙度的关系曲线,参见附图6,利用该关系曲线来预测铣削加工表面粗糙度。
所述的建立切频比差值d与铣削加工表面粗糙度的关系曲线,其特征在于,包括但不仅限于,参见附图6,通过实验铣削加工出一个或一个以上不同的铣削表面粗糙度;同时采集不同铣削表面粗糙度所对应的声发射信号,计算出如上述所述的切频比差值d。通过插值算法拟合出切频比差值d与铣削加工表面粗糙度的关系曲线。

Claims (5)

1.一种基于声发射信号的铣削加工表面粗糙度在线预测方法,其特征在于,包括以下步骤:
1)安装连接声发射传感器
在被铣削加工零件(4)上或者附近安装一个声发射传感器(5),利用声发射传感器对铣削加工进行在线监测;声发射传感器(5)的信号输出端,通过数据采集装置(6)与计算机(7)相连;
2)获取理论铣屑厚度变化曲线的频域特征
通过计算机计算并模拟出被铣削加工零件(4)在铣削加工时的理论铣屑厚度变化的时域曲线及时域曲线图,通过计算机分析和处理,得到理论铣屑厚度变化曲线的频域特征;
3)获取铣削加工时的声发射信号的频域特征
被铣削加工零件(4)在铣削加工时,通过数据采集装置(6)和计算机(7)采集并记录下被铣削加工零件(4)在铣削加工时所释放出的声发射信号,同时,通过计算机对所采集到的声发射信号进行分析和处理,得到所采集到的声发射信号的频域特征;
4)预测铣削加工表面粗糙度值
对比和计算被铣削加工零件(4)在铣削加工时的声发射信号的频域特征与其理论铣屑厚度变化曲线的频域特征之间的差异,来预测铣削加工表面粗糙度的大小。
2.根据权利要求1所述的基于声发射信号的铣削加工表面粗糙度在线预测方法,其特征在于,上述第二步骤中将理论铣屑厚度变化时域曲线及时域曲线图,通过计算机分析和处理,得到理论铣屑厚度变化曲线的频域特征的具体方法是:通过频域转换算法将理论铣屑厚度变化曲线时域图转换成频域图,读取频域图中各个频率上的峰值,并对其求和,表示为:
Figure 179318DEST_PATH_IMAGE002
                    (1)
式中:P为所有频率上峰值的总和; pi为频率为i的峰值;
通过计算式(2)得到理论铣屑厚度变化曲线的切频比Rc理
              (2)
式中:P为所有频率上峰值的总和; pc为铣削频率上的峰值,
其中:铣削频率为:
Figure 813878DEST_PATH_IMAGE006
               (3)
式中:C为铣削频率(单位:Hz);S为主轴转速(rpm);Z为刀具齿数。
3.根据权利要求1所述的基于声发射信号的铣削加工表面粗糙度在线预测方法,其特征在于,上述第三步骤中通过计算机对所采集到的声发射信号进行分析和处理,得到所采集到的声发射信号的频域特征的具体方法:通过计算机(7)显示和记录数据采集装置(6)所采集到的所述声发射时域信号,同时,将所述的声发射时域信号转换成实时的频域信号,读取所述的频域信号中各个频率上的峰值,用上述计算式(1)、(2)、(3)计算得到声发射信号的切频比Rc
4.根据权利要求1所述的基于声发射信号的铣削加工表面粗糙度在线预测方法,其特征在于,上述第四步骤中对比和计算被铣削加工零件(4)在铣削加工时的声发射信号的频域特征与其理论铣屑厚度变化曲线的频域特征之间的差异,来预测铣削加工表面粗糙度的大小的具体方法是:计算所测得的声发射信号与理论铣屑厚度曲线之间切频比Rc的差值d,表达式为:
Figure 209088DEST_PATH_IMAGE008
式中:Rc理为理论铣屑厚度变化曲线的切频比;Rc声为声发射信号的切频比,根据切频比差值d的大小来判断铣削加工表面粗糙度大小,并建立切频比差值d与铣削加工表面粗糙度的关系曲线,利用该关系曲线来预测铣削加工表面粗糙度。
5.根据权利要求4所述的基于声发射信号的铣削加工表面粗糙度在线预测方法,其特征在于:所述建立切频比差值d与铣削加工表面粗糙度的关系曲线方法是:通过实验铣削加工出一个或一个以上不同的铣削表面粗糙度;同时采集不同铣削表面粗糙度所对应的声发射信号,计算出如上述所述的切频比差值d,通过插值算法拟合出切频比差值d与铣削加工表面粗糙度的关系曲线。
CN201310334856.8A 2013-08-05 2013-08-05 基于声发射信号的铣削加工表面粗糙度在线预测方法 Expired - Fee Related CN103394972B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310334856.8A CN103394972B (zh) 2013-08-05 2013-08-05 基于声发射信号的铣削加工表面粗糙度在线预测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310334856.8A CN103394972B (zh) 2013-08-05 2013-08-05 基于声发射信号的铣削加工表面粗糙度在线预测方法

Publications (2)

Publication Number Publication Date
CN103394972A true CN103394972A (zh) 2013-11-20
CN103394972B CN103394972B (zh) 2016-06-08

Family

ID=49558796

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310334856.8A Expired - Fee Related CN103394972B (zh) 2013-08-05 2013-08-05 基于声发射信号的铣削加工表面粗糙度在线预测方法

Country Status (1)

Country Link
CN (1) CN103394972B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105899945A (zh) * 2013-12-17 2016-08-24 斯凯孚公司 来自解调的声发射的粘度估算
CN107036560A (zh) * 2016-11-09 2017-08-11 上海理工大学 光学玻璃精密磨削加工的表面粗糙度检测方法
CN107153731A (zh) * 2017-05-02 2017-09-12 上海理工大学 磁场辅助慢走丝线切割加工表面粗糙度预测方法
CN113168491A (zh) * 2020-03-06 2021-07-23 大连理工大学 一种无颤振铣削加工表面形貌仿真方法
CN114200017A (zh) * 2021-12-14 2022-03-18 北京理工大学 一种原位监测加工表面缺陷的方法、系统及存储介质
CN114897028A (zh) * 2022-05-27 2022-08-12 清华大学 数控加工表面粗糙度预测方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002001410A (ja) * 2000-06-19 2002-01-08 Kawasaki Steel Corp 調質圧延における鋼帯の表面粗さの制御方法
CN101363725A (zh) * 2008-09-28 2009-02-11 北京时代之峰科技有限公司 表面粗糙度检测装置
CN101537431A (zh) * 2008-03-21 2009-09-23 宝山钢铁股份有限公司 冷轧薄带钢表面粗糙度在线预测和控制方法
CN101561262A (zh) * 2009-05-31 2009-10-21 东南大学 一种不确定环境下表面粗糙度在线测量方法
CN102172990A (zh) * 2011-01-11 2011-09-07 哈尔滨工业大学 一种单点金刚石车削加工中表面粗糙度的预测方法
CN102592035A (zh) * 2012-03-20 2012-07-18 北京航空航天大学 一种车铣复合切削加工表面粗糙度及表面形貌仿真预测方法
CN103116673A (zh) * 2013-02-04 2013-05-22 陈慧群 一种铣削加工表面形貌预测方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002001410A (ja) * 2000-06-19 2002-01-08 Kawasaki Steel Corp 調質圧延における鋼帯の表面粗さの制御方法
CN101537431A (zh) * 2008-03-21 2009-09-23 宝山钢铁股份有限公司 冷轧薄带钢表面粗糙度在线预测和控制方法
CN101363725A (zh) * 2008-09-28 2009-02-11 北京时代之峰科技有限公司 表面粗糙度检测装置
CN101561262A (zh) * 2009-05-31 2009-10-21 东南大学 一种不确定环境下表面粗糙度在线测量方法
CN102172990A (zh) * 2011-01-11 2011-09-07 哈尔滨工业大学 一种单点金刚石车削加工中表面粗糙度的预测方法
CN102592035A (zh) * 2012-03-20 2012-07-18 北京航空航天大学 一种车铣复合切削加工表面粗糙度及表面形貌仿真预测方法
CN103116673A (zh) * 2013-02-04 2013-05-22 陈慧群 一种铣削加工表面形貌预测方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
刘贵杰: "基于摩擦声发射信号的磨削表面粗糙度", 《摩擦学学报》 *
吴德会: "铣削加工粗糙度的智能预测方法", 《计算机集成制造系统》 *
闫小青: "基于表面粗糙度影响的摩擦声发射特性研究", 《摩擦学学报》 *
陈惠贤: "2Cr13 不锈钢高速铣削表面粗糙度预测模型研究", 《工具技术》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105899945A (zh) * 2013-12-17 2016-08-24 斯凯孚公司 来自解调的声发射的粘度估算
US10724995B2 (en) 2013-12-17 2020-07-28 Aktiebolaget Skf Viscosity estimation from demodulated acoustic emission
CN107036560A (zh) * 2016-11-09 2017-08-11 上海理工大学 光学玻璃精密磨削加工的表面粗糙度检测方法
CN107036560B (zh) * 2016-11-09 2019-04-19 上海理工大学 光学玻璃精密磨削加工的表面粗糙度检测方法
CN107153731A (zh) * 2017-05-02 2017-09-12 上海理工大学 磁场辅助慢走丝线切割加工表面粗糙度预测方法
CN113168491A (zh) * 2020-03-06 2021-07-23 大连理工大学 一种无颤振铣削加工表面形貌仿真方法
CN113168491B (zh) * 2020-03-06 2021-11-19 大连理工大学 一种无颤振铣削加工表面形貌仿真方法
CN114200017A (zh) * 2021-12-14 2022-03-18 北京理工大学 一种原位监测加工表面缺陷的方法、系统及存储介质
CN114200017B (zh) * 2021-12-14 2023-09-26 北京理工大学 一种原位监测加工表面缺陷的方法、系统及存储介质
CN114897028A (zh) * 2022-05-27 2022-08-12 清华大学 数控加工表面粗糙度预测方法及装置

Also Published As

Publication number Publication date
CN103394972B (zh) 2016-06-08

Similar Documents

Publication Publication Date Title
CN103394972B (zh) 基于声发射信号的铣削加工表面粗糙度在线预测方法
Yan et al. Rotary machine health diagnosis based on empirical mode decomposition
US9523661B2 (en) Method and apparatus for locating a source of damage in a large composite material structure
Guo et al. An integrated wireless vibration sensing tool holder for milling tool condition monitoring with singularity analysis
CN109946763B (zh) 一种基于波群识别的畸形波短期预报方法
CN103940905A (zh) 基于平稳小波变换和分形分析的梁结构损伤检测方法
CN111890126A (zh) 一种基于声压能量峭度指标的早期车削颤振预警监测方法
Zhang et al. Online chatter detection in milling process based on fast iterative VMD and energy ratio difference
CN105500115A (zh) 一种铣削加工中刀具颤振的检测系统及其检测方法
CN110031552B (zh) 一种结构健康监测损伤特征值计算方法
CN104526465A (zh) 一种测量刀尖点振动位移的方法
CN112781820B (zh) 一种滚刀性能退化趋势评估方法
Mou et al. A study of tool tipping monitoring for titanium milling based on cutting vibration
WO2013003739A3 (en) Sonar method and apparatus for determining material interfaces in wheel servicing equipment
CN110186549A (zh) 基于叶尖定时传感器的叶片振动识别方法
CN110346130A (zh) 一种基于经验模态分解和时频多特征的镗削颤振检测方法
Winston et al. Structural health monitoring with piezoelectric active sensors
CN110987396B (zh) 一种用于采煤机摇臂的智能故障诊断及寿命预测方法
CN103097884B (zh) 用于测定机械部件中存在的缺陷的方位的方法和装置
CN104656562B (zh) 一种柔性结构件铣削加工的工艺参数优化方法
CN106363463B (zh) 基于占能比的铣削加工颤振在线监测方法
Mandal Applicability of tool condition monitoring methods used for conventional milling in micromilling: A comparative review
CN109531270B (zh) 基于内置传感器的数控机床进给系统的模态测试方法
CN202948288U (zh) 一种基于金属带锯条颤振特性的锯切负载检测装置
CN103033257B (zh) 一种滚动轴承振动状态的测定方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160608

Termination date: 20190805

CF01 Termination of patent right due to non-payment of annual fee