CN103384547A - 兼容磁共振成像的医用电导线以及制造其的方法 - Google Patents

兼容磁共振成像的医用电导线以及制造其的方法 Download PDF

Info

Publication number
CN103384547A
CN103384547A CN2012800084025A CN201280008402A CN103384547A CN 103384547 A CN103384547 A CN 103384547A CN 2012800084025 A CN2012800084025 A CN 2012800084025A CN 201280008402 A CN201280008402 A CN 201280008402A CN 103384547 A CN103384547 A CN 103384547A
Authority
CN
China
Prior art keywords
insulating barrier
wave filter
conductor
electrode
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012800084025A
Other languages
English (en)
Other versions
CN103384547B (zh
Inventor
K·R·赛弗特
M·T·马歇尔
M·拉泽布尼克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Medtronic Inc
Original Assignee
Medtronic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Medtronic Inc filed Critical Medtronic Inc
Publication of CN103384547A publication Critical patent/CN103384547A/zh
Application granted granted Critical
Publication of CN103384547B publication Critical patent/CN103384547B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/08Arrangements or circuits for monitoring, protecting, controlling or indicating
    • A61N1/086Magnetic resonance imaging [MRI] compatible leads
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49016Antenna or wave energy "plumbing" making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49016Antenna or wave energy "plumbing" making
    • Y10T29/49018Antenna or wave energy "plumbing" making with other electrical component

Landscapes

  • Health & Medical Sciences (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Electrotherapy Devices (AREA)

Abstract

本发明描述了植入性医用导线、以及制造这样的导线或该导线组件的方法,该导线减少了MRI设备生成的场对于植入性医疗导线和植入性医疗设备可能产生的不期望的影响。该植入性医用导线包括被放置为与通向该导线的电极的电路径串联的RF过滤器。在一个示例中,该RF过滤器可包括一导体,被缠绕以使得该导体提供电感和电容,该电感和电容向该RF过滤器提供共振频率,在一些情况下,提供多个共振频率。在RF滤波器的共振频率附近的频率处,RF过滤器呈现较高阻抗,藉此阻碍信号向电极传播或至少衰减了向电极传播的信号。在远离该共振频率的频率处,该RF滤波器呈现较低阻抗。

Description

兼容磁共振成像的医用电导线以及制造其的方法
技术领域
本发明涉及植入性医用导线和制造这样的导线或该导线的组件的方法。
背景技术
植入性导线被用于各种医疗设备以形成医疗系统,用于传递治疗给患者或感测患者的生理学参数。例如,植入性导线一般被连接至植入性起搏器、去纤颤器、心律转变器等来形成植入性心脏系统,向心脏系统电刺激或感测心脏的电活动。电刺激脉冲可被传递至心脏且设置在导线上(如,一般位于导线靠近远端处)的电极可感测到所感测到的电信号。在这个情况下,可植入导线从而相对于各心脏位置放置电极,从而心脏设备可传递或感测合适位置的活动。植入性导线还被用在神经学设备、肌肉刺激治疗、胃系统刺激器、和其他植入性医疗设备(IMD)中。
有时,具有植入性导线的患者可受益于、或甚至要求,各种医疗成像程序来获取患者内部结构的图像。一种常见的医疗成像程序是磁共振成像(MRI)。相比其他医疗成像技术,MRI程序可生成更高分辨率和/或更好对比度的(特别是软组织的)图像。MRI程序还在不给患者身体带来电离辐射的情况下生成这些图像,且因此,MRI程序可在不将患者暴露于这样的辐射的情况下被重复进行。
在MRI过程中,患者或患者身体的特定部分被放置在MRI设备内。该MRI设备生成各种磁场和电磁场来获得患者图像,包括静磁场、梯度磁场、和射频(RF)场。静态MRI场可由MRI设备内的主磁铁生成,且在MRI程序开始前就可存在。梯度磁场可由MRI设备的电磁体生成,且可在MRI程序的过程中存在。RF磁场可通过MRI设备发射/接收线圈生成,且可在MRI程序的过程中存在。如果经受MRI程序的患者具有植入性医疗系统,MRI设备产生的各种场可对于医用导线或这些导线耦合至的医疗设备产生不期望的影响。例如,在MRI程序过程中生成的梯度磁场或RF场可在植入性导线上感生出能量(如,以电流的形式),该能量可被传导至电极附近的组织且造成组织温度的上升。
概述
本发明描述了植入性医用导线、以及制造这样的导线或该导线组件的方法,该导线减少了MRI设备生成的场可对于植入性医用导线和植入性医疗设备产生的不期望的影响。该植入性医用导线包括被放置为与通向该导线的电极的电路径相串联的RF滤波器。在一个示例中,该RF滤波器可包括一导体,被缠绕以使得该导体提供电感和电容,该电感和电容向该RF滤波器提供共振频率,且在一些情况下,提供多个共振频率。在RF滤波器的共振频率附近的频率处,RF滤波器呈现较高阻抗,藉此阻碍信号向电极传播或至少衰减了向电极传播的信号。在远离该共振频率的频率处,该RF滤波器呈现较低阻抗。通过将RF滤波器设计为具有在MRI设备的频率附近的共振频率,由MRI设备在导线上感生的能量可被显著减少,同时允许与治疗相关联的能量通过而几乎不受到影响。
在一个示例中,本发明描述了一方法,包括获得具有导电芯的电导体、围绕该导电芯的第一绝缘层、和围绕该第一绝缘层的第二绝缘层。该第二绝缘层具有的热性质,相比第一绝缘层的相同热性质,在更低的温度处出现。该方法还包括缠绕该电导体从而形成RF滤波器并加热该RF滤波器的至少一部分至等于或高于第二绝缘层的热性质且低于该第一绝缘层的热性质的温度,以使电导体的相邻绕组的第二绝缘层遍布RF滤波器的该至少一部分地结合。
尽管主要在MRI程序的上下文进行描述,本发明的该植入性医用导线还可允许患者经受利用可能影响该医用电导线的操作的高频信号的其他医疗程序,诸如电烙术程序、电疗(diathermy)程序、消融程序、电治疗程序、磁性治疗程序等。另外,本发明中所描述的植入性医用导线还可减少在医疗和非医疗环境中,诸如在具有RFID读取设备的环境中(包括使用用RFID标签的仪器、毛巾等的手术),所遭遇到的高频信号的影响。
该概述意在提供本发明所描述的技术主题的概览。其并不意在对于技术给出排他性或穷尽的说明,该技术结合如下附图和描述而被详细描述。在以下的附图和描述中阐述一个或多个示例的进一步的细节。其它特征、目的、和优点将从描述和附图、以及从以下的陈述中显见。
附图简述
图1是示出一环境的概念性示图,其中植入性医疗系统处于具有MRI设备的环境中。
图2是示出植入性治疗系统的概念图。
图3是示出导线远端的纵向截面示图的示意性示图。
图4是示例性RF滤波器的纵向截面视图。
图5是示出可被用于形成RF滤波器的示例性导体的截面示图的示意性示图。
图6是示出制造RF滤波器的示例性方法的流程图。
图7是示出制造RF滤波器的另一个示例性方法的流程图。
图8是示出制造RF滤波器的另一个示例性方法的流程图。
图9是另一个示例性RF滤波器的纵向截面视图。
详细描述
图1是示出环境10的概念性示图,在环境10中,植入性医疗系统13被暴露于外部场11中。在图1所示的示例中,环境10包括生成外部场11的MRI设备16。MRI设备16生成磁场和RF场来产生身体结构的图像,用于诊断损伤、疾病和/或失调。特定地,MRI设备16生成静磁场、梯度磁场和RF场,这些是本领域已知的。静磁场是不随时间变化的场,无论MRI程序是否进行,一般总是存在于MRI设备16周围。梯度磁场是一般仅在MRI程序在进行中时才存在的脉冲磁场。RF场是一般仅在MRI程序在进行中时才存在的脉冲高频场。静磁场、梯度磁场、和RF场的磁性、频率、和其他特性可基于产生场的MRI设备的类型和执行的MRI程序的类型而变化。例如,1.5T的MRI设备,将产生约1.5特斯拉的静磁场且具有约64MHz的对应的RF频率,而3.0T的MRI设备将产生约3.0特斯拉的静磁场且具有约128MHz的对应的RF频率。
MRI设备16所产生的各种类型的场的一些或全部(可由能量场11来代表)可对于植入性医疗系统13具有不期望的影响。植入性医疗系统13包括诸如位于患者12的心脏(未示出)内的植入性医疗设备(IMD)14和从IMD14向患者12内的目标位置延伸的一个或多个医用导线15a,b。在一个示例中,在MRI程序过程中生成的RF场可在常规的植入性导线上感生出能量(如,以电流的形式),该能量可被传导至导线的电极附近的组织且造成组织温度的上升。
如下文将详细描述地,植入性医用导线15a,b中的一个或两者被设计为减少外部场11可对于该植入性医用导线和该植入性医疗设备所产生的不良影响。特定地,植入性医用导线15a,b在医用导线15a,b的远端附近可包括RF滤波器,减少由MRI设备16的能量场11在医用导线15a,b上所感生出的电流量。该RF滤波器可与通向医用导线15a,b的电极的电路径串联连接,且被设计为衰减在外部场11的频率范围内的频率处的能量。该RF滤波器减少了流向医用导线15a,b的电极的电流量。以此方式,该RF滤波器用作陷波(trap)滤波器或展平(choke)滤波器,来减少流向电极的和导线上整体的电流量。尽管主要在MRI程序的情境中进行描述,本发明的技术还可允许患者经受生成可影响医用电导线的操作的外部场(诸如高频RF信号)的其他医疗程序,诸如电烙术程序、电疗(diathermy)程序、消融程序、电治疗程序、磁性治疗程序等。另外,本发明中所描述的医用电导线还可减少在医疗和非医疗环境中,诸如在具有RFID读取设备的环境中包括使用用RFID标签的仪器、毛巾等的手术),所遭遇到的高频信号的影响。
图2是进一步详细示出图1的植入性医疗系统13的概念示图。医疗系统13包括IMD14和导线15a,b。IMD14可以是感测患者12的心脏的电活动和/或向患者12的心脏系统电刺激治疗的植入性心脏设备。例如,IMD14可以是植入性起搏器、植入性心律转变去纤颤器(ICD)、心脏再同步治疗去纤颤器(CRT-D)、心律转变器设备、或上述组合。可选地,IMD14可以是非心脏的植入性医疗设备,诸如植入性神经刺激器或提供电刺激治疗的其他设备。
IMD14包括其中容纳了IMD14的组件的外壳22。外壳22可由导电材料、非导电材料或其组合形成。IMD14包括封围在外壳22内的电源25和印刷电路板(PCB)26。电源25可包括电池,如可充电或不可充电电池,或其他电源。PCB26包括IMD14的一个或多个电组件(图2中未示出),诸如一个或多个处理器、存储器、发送器、接收器、传感器、感测电路、治疗电路和其他合适的组件。PCB26可在电源25和IMD14的电组件之间提供电连接,从而电源25向PCB26的各电组件提供电源。在一些示例中,PCB26可包括一层或多层导电轨迹和导电通孔,在电源25和电组件之间提供电连接以及在各电组件之间提供电连接。PCB26可不限于一般的PCB结构,而是可代表IMD14内的被用于机械地支承且电连接IMD14的电组件和电源25的任何结构。另外,尽管IMD14的电组件被描述为位于单个PCB上,可设想到的是,此处描述的电组件可被包括在IMD14内的任何地方,如,位于IMD14的其他支承结构上,诸如附加PCB(未示出)。
导线15a,b包括位于导线15a,b的远端的代表性电极组件32a,b。在图2所示的示例中,电极组件32a,b各自包括代表性尖端电极36a,b和环状电极38a,b。然而,在其他示例中,电极组件32a,b可包括更多或更少的电极。如此处将更详细描述地,电极组件32a,b中的一个或两者包括从远处电耦合至电极36a、36b、38a、或38b的RF滤波器(图2中未示出)。在一个示例中,该RF滤波器可包括一导体,该导体被缠绕以提供电感和电容,该电感和电容向该RF滤波器提供共振频率,在一些情况下,提供多个共振频率。在共振频率附近的频率处,RF滤波器呈现较高阻抗,藉此阻碍信号向电极传播或至少衰减了向电极传播的信号。在远离该共振频率的频率处,该RF滤波器呈现较低阻抗。通过将RF滤波器设计为具有在MRI设备16的频率附近的共振频率,由MRI设备16生成的能量场11感生出的在导线15a,b上的能量可被显著减少,同时允许与治疗相关联的能量几乎不受到影响。以此方式,该RF滤波器用作陷波器或展平滤波器。在其他示例中,该RF滤波器可由缠绕的导体和一个或多个其他元件(如,电容器或电感器组件)形成。
导线15a,b还可包括固定机构来相对于患者12内的所选组织、机构、神经、或其他位置来固定尖端电极36a,b和/或环状电极38a,b或固定在所选组织、机构、神经、或其他位置中。该固定机构可在尖端电极36a,b附近或定义为尖端电极36a,b的一部分。在图2所示的示例中,形成尖端电极36a,b来定义该固定机构。尖端电极36a,b形式为可延伸螺旋形电极来帮助将电极组件32a,b的远端固定至患者12。在其他情况下,固定机构可以是与尖端电极36a,b分离的结构。固定机构可以是任何合适的类型,包括抓紧机构、螺旋或螺纹机构、药物涂层(drug-coated)连接机构,其中药物(多个)用于减少组织的感染和/或肿胀,或者其他附连机构。此外,如此处所述,导线15a,b可定义主动或被动导线。
导线15a,b经由连接块27连接至IMD14。连接块27可包括与位于导线15a,b的远端的一个或多个连接器端子互连的一个或多个端口。导线15a,b通过连接线28(可在连接块27内延伸)最终电连接至PCB26上的一个或多个电组件。例如,连接线28可在一端连接至导线15a,b,在另一端连接至PCB26上的PCB连接点30。
一个或多个导体(图2中未示出)可从连接块27开始在导线15a,b的本体内延伸来分别接合环状电极38a,b和尖端电极36a,b。导线15a,b的本体可由非导电材料形成,包括硅树脂、聚亚安酯、含氟聚合物、上述混合物,以及其他合适材料制成,形状被形成为一个或多个导体在其中延伸的内腔。以此方式,尖端电极36a,b和环状电极38a,b中的每一个在其相关联的导线本体内电耦合至各导体。例如,第一电导体可沿导体15a的本体长度从连接块27延伸并电耦合至尖端电极36a且第二电导体可沿导体15a的本体长度从连接块27延伸并电耦合至尖端电极38a。各导体可经由连接块27中的连接、连接线28和PCB连接点30,耦合至电路(诸如IMD14的治疗模块或感测模块)。电导体从IMD14中的治疗模块传递治疗至电极中的一个或两者,并将从电极中的一个或两者所感测到的电信号传递至IMD14中的感测模块。
图1和2中示出的植入性治疗系统13的配置仅为一个示例。在其他示例中,植入性医疗系统13可包括从IMS14延伸出来的更多或更少的导线。例如,IMD14可耦合至三个导线,如,被植入患者12的心脏的左心室中的第三导线。在另一个示例中,IMD14可被耦合至被植入在患者12的心脏的心房或心室中的单个导线。因此,IMD14可被用于单腔室或多腔室的心律管理治疗。
除了更多或更少的导线外,每一个导线可包括更多或更少的电极。在其中IMD14被用于除起搏之外的治疗(如,去纤颤或复律)的情况下,这些导线可包括细长电极,在一些情况下,这些电极可采取线圈的形式。IMD14可经由细长电极和外壳电极的任意组合来向心脏传递去纤颤或复律冲击。作为另一个示例,医疗系统13可包括具有多个环状电极(如,被用在一些植入性神经刺激器中)而没有尖端电极的导线。
图3是示出导线15的远端(包括电极组件32)的纵向截面示图的示意性示图。电极组件32可对应于图2的导线15a的电极组件32a和导线15b的电极组件32b。电极组件32包括尖端电极36和环状电极38。然而,电极组件32可包括多于两个电极或仅单个电极。另外,尖端电极36被图示为被用于固定的螺旋状尖端电极。然而,尖端电极36可不被用于固定。
尖端电极36电耦合至IMD14的一个或多个电组件,以使得从导线的近端到尖端电极36存在电路径。在图3所示的示例中,电路径从IMD14开始,通过尖端导体52、RF滤波器40、导电电极轴50而到达尖端电极36。尖端导体52、RF滤波器40、导电电极轴50和尖端电极36,全都至少部分地由导电材料形成,被机械地耦合来形成电路径。可根据此处描述的技术之一来形成RF滤波器40。
RF滤波器40包括导体绕组来形成RF滤波器40。在一些情况下,该导体可被缠绕在线轴上,该线轴可包括圆柱轴62和至少两个电转接(transition)或连接。在图3和4的示例中,电转接形式为端部盖帽61a、b。在这个情况下,端部盖帽61a、b可由导电材料制成,从而端部盖帽61a、b从RF滤波器40向导电轴50(或直接向电极36)和/或向尖端导体52提供电连接或迁移。RF滤波器40可具有与端部盖帽61a、b分离的电转接或连接。例如,端部盖帽61a、b可由非导电材料制成且一个或多个电连接可与电端部盖帽61a、b结合或附连来使得RF滤波器40的电连接与至电极36的电路径串联。在又一个示例中,RF滤波器40可完全不包括端部盖帽61a、b,而是具有不同的电转接、连接、或互连机构。
在图3的示例中,RF滤波器40的端部盖帽61b机械地耦合至尖端导体52。RF滤波器40的端部盖帽61a机械地耦合至导电电极轴50。端部盖帽61a还经由绕组导体69电耦合至端部盖帽61b(在图4中更详细地示出)。例如,端部盖帽61a可在绕组的最外行(如,在图5的连接点67a处)机械地耦合至导体69,且端部盖帽61b可在绕组的最外行(如,在图5的连接点67b处)机械地耦合至导体69。在另一个示例中,端部盖帽61b可,例如,在绕组的最外行机械地耦合至导体69且端部盖帽61a可在绕组的最内行机械地耦合至导体69。相比端部盖帽61a,尖端电极36机械地耦合至电极轴50的相对端。在其他情况下,RF滤波器40可直接耦合至电极而不是耦合至电极轴50,这可对应于采取其他类型的远端电极(可采取环状电极、半球状电极或其他类型的电极的形式)的情况。机械耦合和经由焊接、压褶、软焊、或其他合适的机制。
尖端导体52、RF滤波器40、导电电机轴50和尖端电极36的机械耦合还提供从尖端电极36到尖端导体52的电路径,以使电信号通过RF滤波器从尖端电极36传导至尖端导体52。尖端导体52、RF滤波器40、导电电机轴50和尖端电极36的机械耦合还提供了机械关系,在一些情况下,该机械关系可允许对尖端电极36的机械控制,从而其可被从电极组件32的远端被延伸出,或被收回进电极组件32的远端内。在植入过程中,用户可与导线15交互来旋转尖端导体52,这使得RF滤波器40和电极轴50旋转并使得尖端电极36从电极组件32的远端开始延伸。以此方式,尖端电极36可被旋入患者12体内的目标组织位置。在其他实例中,可形成RF滤波器40或电极轴50来接收管心针以允许用户延伸和/或收回尖端电极36。例如,可形成RF滤波器40来提供管心针、导丝(guidewire)、导体、和/或流体可通过的内腔。
导线15还包括位于导线15本体内且沿导线15的长度延伸从而电耦合至环状电极38的环状导体56。环状导体56可包括分别由各绝缘套围绕的一个或多个导电线(conductive wire)。环状电极38的近端可被形成为接收环状导体56的一部分。环状导体56和环状电极38被机械地耦合(如,经由焊接、软焊、压接、或其他机制)。这提供了从IMD14的一个或多个电组件到环状电极38的电路径。环状电极38在图3中被图示为具有圆柱形状,但是还可使用其他形状的电极代替环状电极。环状导体56在图3中被图示为具有比尖端导体52更大的直径。在其他实例中,尖端导体52可比环状电极56具有更大的直径或可具有相同直径,且长度为与环状导体56相互缠绕的导线本体34的长度。
在导线的近端,尖端导体52和环状导体56,经由连接块27,电耦合至IMD14的一个或多个电组件,诸如电刺激模块或感测模块。电刺激可由IMD14传递至尖端电极36和/或环状电极38且所感测到的电信号经由它们各自的导体从尖端电极36和/或尖端电极38被传递。
可形成导线15a,b来抵消或交互各环境因素。例如,导线15a,b可包括阻碍由MRI设备16的能量场11在导线15a,b上感生出的能量的一部分或至少衰减导线15a,b上被引起的能量。如上所述,感生电流可由于信号而被创建,该信号诸如为作用在导线15a,b的导体52,56上的高频RF信号。
如上所述,具有被植入的医疗系统13的患者12可接收特定治疗或诊断技术,诸如MRI程序,其将导线15a,b暴露于高频RF脉冲和强磁场来创建于患者12有关的图像数据。该RF脉冲可在IMD14的导线15a,b中感生出电流。在导线15a,b中感生的电流可引起特定效果,包括加热各导线组件和或靠近导线的组织。根据各实施例,诸如此处讨论的那些,可提供组件或机制来减少或消除在尖端电极36处的电流量。
根据本发明的技术,RF滤波器40被放置为与从尖端电极36到IMD14的电组件的电路径串联。RF滤波器40减少了由外部能量源11(诸如在MRI程序过程中生成的高频RF场)引起的不期望的效果。在一个示例中,RF滤波器40,在RF滤波器40的谐振频率附近的频率处,呈现出高阻抗。RF滤波器40的谐振频率可被设计为在MRI设备16生成的RF信号的频率附近,诸如对于1.5T或3.0T设备分别在64MHz或128MHz附近。然而,RF滤波器可被设计为具有在其他频率处的谐振频率。因此,RF滤波器40阻碍谐振频率附近的高频信号传播到尖端电极36或至少衰减在谐振频率附近的高频信号,以此减少对于尖端电极36的影响。在远离谐振频率的频率处,RF滤波器40呈现出低阻抗,藉此允许低频信号,诸如与电治疗相关的那些低频信号,基本不受影响地通过。以此方式,RF滤波器40用作与MRI设备16相关的RF频率的陷波或展平。在其他示例中,除了缠绕导体69外,RF滤波器40可包括一个或多个其他组件(诸如电容器或电感器组件(多个))。其他组件,如电容器或电感器,可提供缠绕导体69的自身电容和电感所不能实现的附加电容或电感。
电极组件32还包括电极组件本体42,其围绕尖端电极36的全部或至少一部分(取决于尖端电极是否被收回)、电极轴50的全部或一部分、密封46、环44、和RF滤波器40的至少一部分。电极组件本体42可以是基本圆柱形状。电极组件本体42可由不导电材料制成且因此是不导电的。被用于形成电极组件本体42的示例性材料可包括聚对二甲苯基、聚酰胺、聚酰亚胺、金属氧化物、尿烷、硅烷、四氟乙烯(ETFE)、聚四氟乙烯(PTFE)、陶瓷、或其他非导电材料。
电极组件32还包括密封46。密封46与电极组件本体42和电极轴50接触来形成密封,防止流体进入由导线本体定义的内腔、防止流体围绕(housing)尖端导体52、环状导体40等。密封46可基本是环状(如,o-型环)或盘状的,但是还可采用其他合适的形状。在一个实施例中,密封46可以是密封垫圈。密封46可由非导电或导电材料或两者制成。
电极组件32还可包括可将密封46保持到位和/或用作标记来帮助将导线的远端引导至期望的植入位置的一个或多个环44。在一些实例中,电极组件本体42和/或电极轴50也可与环44接触。在一个示例中,环44可形如C形环来接收密封46。然而,可使用其他形状的环。环44可包括非导电材料或导电材料或两者。
图3的电极组件32是根据本发明的电极组件的一个示例。在本发明的范围内,可做出修改。例如,替代螺旋尖端电极,尖端电极36可采用环状电极、半球电极、或其他电极的形式。例如,在另一个实施例中,RF滤波器(类似于RF滤波器40)可被放置为与环状电极38串联来衰减由外部信号11在通向环状电极38的导电路径上引起的能量。
图4是RF过滤器40的纵向截面视图。在图4所示的示例中,RF滤波器40包括导体,诸如相对于图5更详细说明与描述的导体69,被缠绕来形成RF滤波器40。在一些实例中,导体69可围绕线轴结构被缠绕,该线轴结构可包括圆柱形轴62和至少两个电转接或连接,图示为图4中的端盖61a,b。在一些实例中,RF滤波器40可具有与端盖61a,b分离的电转接或连接,且在一些实例中可完全不具有端盖61a,b。
在一些实例中,圆柱形轴62可由各种非导电材料形成,诸如聚醚醚酮(PEEK)、聚砜、陶瓷、增强型聚合物,诸如聚亚安酯,或其他材料。在一些实例中,圆柱形轴62可提供刚性的非导电芯。在其他实例中,圆柱形轴62可以是中空的,从而圆柱形轴62形成管心针、导丝、导体、和/或流体可通过的内腔。在一些实例中,圆柱形轴62可以是中空的(如,形成内腔)且刚性导电材料可延伸通过该内腔的至少一部分来提供更多的结构刚度。在又一些实例中,圆柱形轴62可更多地用作在其上缠绕导体69的心轴。在这个情况下,圆柱形轴62是可移动地,从而RF滤波器40具有空心。
端盖61a,b可由各种导电材料中的任意形成,诸如钽、铂、银、钛、或任何其他导电材料,或者导电材料的组合,包括合金(诸如镍-钴-铬-钼合金)。当端盖61a,b由导电材料形成时,端盖61a,b提供电转接,经由该转接,RF滤波器40与通向尖端电极36的电路径串联地电耦合。在其他实施例中,端盖61a,b可由非导电材料形成或线轴结构可不具有端盖61a,b。取而代之,可使用其他类型的电输或连接将RF滤波器40与通向尖端电极36的电路径串联地电连接。
RF滤波器40可包括多行绕组。在图4所示的示例中,RF滤波器40包括具有基本相同绕组数且在相邻绕组间具有基本相同间距的三行绕组。然而,RF滤波器40可包括更多或更少行的绕组,如,取决于绕组的数量、线尺寸、绝缘厚度、绕组直径、绕组/行之间材料的介电常数、或其他因素。在一些实例中,RF滤波器40可仅包括单行绕组。此外,绕组的数量可逐行不同。例如,最里面的行可相比最外面的行具有更多绕组。在另一个示例中,最外面的行可相比最里面的行具有更多绕组。在又一些示例中,相邻绕组之间的间距可逐行不同或一行内也不同。
期望的是RF滤波器40在干燥环境和湿润环境中均可一致地操作。当被暴露于体液时,液体可进入RF滤波器40的相邻绕组和/或行之间的间距内。这可引起绕组和/或行之间的材料的介电常数的变化,导致RF滤波器40的谐振的变化和效能的损失。本发明的技术,通过改进RF滤波器40的绕组和/或行之间的间距(如果有的话)的湿润或干燥的介电常数的一致性,来帮助减轻这个潜在问题。
如相对图5将详细描述地那样,形成RF滤波器40的导体69可包括导电芯64、第一绝缘层66、和第二绝缘层68。第二绝缘层68可具有相比第一绝缘层66的热性质、在更低的温度发生的热性质(如,用ASTM D648标准测得的熔点、玻璃转变温度、热变形温度)。例如,第二绝缘层68可具有低于第一绝缘层66的相应熔点或热变形温度的熔点或热变形温度,如,使用相同测试标准测得的。在另一个示例中,第二绝缘层68可具有比第一绝缘层66的热变形温度更低的熔点。
在一些实例中,第二绝缘层68可由比第一绝缘层66更柔软(如,更低模量或硬度)的材料形成。例如,第一绝缘层66可具有的挠曲模量是由ASTMD790或ISO178测试方法测得的第二绝缘层68的挠曲模量的至少100倍、且在一些实例中至少1000倍。此外,被用于第二绝缘层68的材料可具有在湿润和干燥环境中均随时间稳定的介电常数。例如,在长期暴露于潮湿(诸如体液或盐水)时,第二绝缘层68的介电常数可具有最多±20%的介电变化/稳定性。可影响介电稳定性的因素包括第一绝缘层66和第二绝缘层68的水蒸气传输率和/或吸水率。在一个实施例中,用ASTM D570-81测试标准测得的,第二绝缘层68的水蒸气传输率可较之第一绝缘层66的水蒸气传输率小数个数量级,如,至少三个数量级且在一些实例中达至少小五个数量级。在另一个实施例中,如用ASTM E96测试标准测得的,第二绝缘层68的吸水率可比第一绝缘材料66的吸水率至少小一个数量级,且在一些情况下,至少小两个数量级。
RF滤波器40或RF滤波器40的一部分可被加热至将导体69的相邻绕组的第二绝缘层68与RF滤波器40的该部分结合在一起。该加热可,将RF滤波器40的该部分的温度加热至第二绝缘层68变得更顺应于与相邻绝缘层68结合的温度。例如,RF滤波器40的该部分可被加热至至少达到或高于热变形温度,且在一些实例中,接近于第二绝缘层68的熔点或甚至高于该熔点。在这样的温度下,第二绝缘层68融化、软化(如,变得像橡胶)或以其他方式改变状态来使得其更顺应于与相邻层68结合。然而,RF滤波器40的该部分,维持在低于第一绝缘层66的熔点和/或热变形温度的温度处,以使得第一绝缘层66不改变状态。以此方式,经由温度的升高,或经由温度的升高结合所施加的压力和/或时间,相邻线圈的第二绝缘层68被彼此回流(reflow)和/或结合,同时,第一绝缘层66保持基本不变。
在图4所示的示例中,导体69的相邻绕组的第二绝缘层68可遍布整个RF滤波器40地结合。回流第二绝缘层68可减少相邻绕组之间和或绕组的行之间的间距量,因此减少了RF滤波器40的整体尺寸。在一些实例中,可消除一些相邻绕组或行之间的间距。当被植入患者12的体液中时,这改进了RF滤波器40的顺应力。此外,经回流的绝缘层68嵌入绕组中,以使绕组,特别是在RF滤波器40的端部处连接至RF滤波器40的导电部分61a,b的绕组,维持RF滤波器40的几何形状且不会回弹或松开。
在其他实例中,导体69的相邻绕组的第二绝缘层68可仅遍布RF滤波器40的一部分地结合,诸如仅在RF滤波器40的最外部分或仅在导体连接至端盖61a,b的端部处。尽管第二绝缘层68没有遍布整个RF滤波器40地回流,第二绝缘层68仍可提供一些优势。例如,第二绝缘层68减少了在缠绕操作过程中,相邻匝数的第一绝缘层66的直接接触。以此方式,第二绝缘层68保护第一绝缘层66免于在导体69的缠绕过程中可发生的损害。此外,第二绝缘层68保护第一绝缘层66免于相邻绕组之间的高接触压力,这可因变于导体69被绕回到其自身上而发生。换言之,第二绝缘层68在相邻绕组和绕组的相邻行之间提供保护。
图3的RF滤波器40是根据本发明的RF滤波器的一个示例。在本发明的范围内,可做出修改。如上所示,取决于实现,RF滤波器40可包括绕组的不同数量的行、不同数量的绕组、不同的线大小、不同的绝缘厚度、绕组的不同直径、或绕组/行之间的材料的不同介电常数。例如,绕组的数量可逐行不同和/或相邻绕组之间的间距可逐行不同在一行内不同。
图5是示出可被用于形成RF过滤器40的示例性导体69的截面示图的示意性示图。导体69包括导电芯64、围绕导电芯64的第一绝缘层66、和围绕第一绝缘层66的第二绝缘层68。如上所述,第二绝缘层68可具有相比第一绝缘层66的热性质、在更低的温度发生的热性质(如,熔点、热变形温度、玻璃转变温度)。在一些实例中,与第二绝缘层68的一个或多个热性质相关联的温度可至少五十摄氏度,且在一些实例中,此温度与第一绝缘层66的如,用相同测试标准测得的相应热性质相关联的温度相比,至少低一百摄氏度。在一些实例中,第二绝缘层68可由比第一绝缘层66更柔软的材料形成(如,由ASTM D790标准测得的更低的挠曲模量或由ASTM D2240标准的等级之一测得的硬度)。此外,被用于第二绝缘层68的材料可具有在湿润和干燥环境中均随时间稳定的介电常数。例如,在长期暴露于潮湿(诸如体液或盐水)时,第二绝缘层68的介电常数可具有最多±20%的介电变化/稳定性。
导电芯64可包括一个或多个导电丝。在图5所示的示例中,导电芯64是固态芯导体。然而,在其他示例中,导电芯可包括一起形成导电芯64的多个导电丝。导电芯64或形成导电芯64的导电丝可由各种导电材料中的任意形成,诸如钽、铂、银、或任何其他导电材料,或者导电材料的组合,包括合金(诸如镍-钴-铬-钼合金)。
围绕导电芯64的第一绝缘层66可由数个非导电材料中的任意制成,诸如可溶性酰亚胺(SI)、聚对二甲苯基、五氧化二钽、PTFE、PEEK、液晶聚合物(LCP)、或其他非导电材料或非导电材料的组合。第一绝缘层66的厚度可取决于多个因素,包括所使用的材料的类型、期望的柔性、期望的刚性、期望的可靠性、期望的介电强度或其他因素。当第一绝缘层66由SI制成时,例如,第一绝缘层66可具有约.0002-.0006英寸的厚度。然而,第一绝缘层66的厚度可更大或更小。
第二绝缘层68可由一些非导电材料中的任意制成,诸如ETFE、PTFE、全氟烷氧(PFA)、氟化乙烯丙烯(FEP)、尿烷、或其他非导电材料或非导电材料的组合。被选择作为第二绝缘层68的材料可,部分地,取决于为第一绝缘层66所选择的材料,因为第二绝缘层68的熔点,比之使用相同测试标准测得的第一绝缘层66的熔点,应该更低。第二绝缘层68的厚度可取决于多个因素,包括所使用的材料的类型、期望的柔性、期望的刚性、期望的可靠性或其他因素。当第二绝缘层68由ETFE制成时,例如,第二绝缘层68可具有约0.0004-.0008英寸的厚度。然而,第二绝缘层68的厚度可更大或更小。
图6是制造诸如图3和4的RF过滤器40的示例性方法的流程图。获得电导体69,包括导电芯64、围绕导电芯64的第一绝缘层66、和围绕第一绝缘层66的第二绝缘层68(框70)。在一些实例中,第二绝缘层68可具有相比第一绝缘层66的热性质、在更低的温度发生的热性质(如,熔点、玻璃转变温度、热变形温度)。在其他实例中,第二绝缘层68可由比第一绝缘层66更柔软(如,更低模量或硬度)的材料形成。此外,被用于第二绝缘层68的材料可具有在湿润和干燥环境中随时间稳定的介电常数。
缠绕电导体69来形成RF滤波器40(框72)。如此处所述,电导体69可被围绕线轴结构来缠绕从而形成RF滤波器40的绕组的一个或多个行。每行的匝数数量和行的数量可确定导体69的大小、绝缘层66、68的厚度、绕组的直径、绝缘层66、68的材料的介电常数等。此外,绕组的数量可逐行不同和/或相邻绕组之间的间距可逐行不同或在一行内不同。
对于RF滤波器40的至少一部分施加热来加热RF滤波器40的该部分的导体69达到或高于第二绝缘层68的至少一个热性质(如,熔点、热变形温度、或玻璃转变温度)的温度、但是低于第一绝缘层66的至少一个热性质(如,熔点、热变形温度、或玻璃转变温度)的温度(框74)。例如,RF滤波器40的至少一部分可被加热至达到或高于第二绝缘层68的熔点或热变形温度,从而第二绝缘层68融化、柔软(如,变成像橡胶)或以其他方式改变状态来使得其更顺应于与相邻层68结合。然而,RF滤波器40的该部分维持在低于第一绝缘层66的热性质的温度,从而第一绝缘层66不熔化或变成橡胶状。以此方式,经由温度的增加,在基本不影响第一绝缘层66的情况下,相邻线圈的第二绝缘层68被彼此回流和/或结合。在一些实例中,还可施加压力来帮助相邻线圈的第二绝缘层68的结合。可使用热气枪、回流炉、通过使得电流通过导体69来进行电阻加热、直接接触加热或其他技术来施加热。在一个实施例中,由于导体69的相邻绕组的第二绝缘层68回流以彼此组合,获得结合。
在一些实例中,热可引起第二绝缘层68遍布RF滤波器40的基本所有行地回流并结合。例如,热可足够地高温,或施加地足够久,以加热RF滤波器40的所有行的绕组的第二绝缘层68来回流并彼此结合。在另一个示例中,热可同时施加在导体69的绕组上,从而第二绝缘层68遍布RF滤波器40的几乎所有行地回流并结合。在这个示例中,缠绕和回流同时发生。在又一个示例中,热可在缠绕每一层后施加到导体69,这可使得第二绝缘层68遍布几乎整个RF滤波器40地回流。
在其他实例中,第二绝缘层68可仅遍布RF滤波器40的一部分地回流。例如,可在缠绕RF滤波器40的所有行后施加热,来仅使得RF滤波器40的最外行的第二绝缘层加热达到这些绕组的第二绝缘层68回流并彼此结合的温度。在另一个示例中,可在导体69机械地耦合至端盖61a,b的端部附近施加热来回流并结合第二绝缘层60。尽管第二绝缘层68没有遍布整个RF滤波器40地回流,第二绝缘层68可提供附加优势。例如,第二绝缘层68减少了在缠绕操作过程中,第一绝缘层66的直接接触。以此方式,第二绝缘层68保护第一绝缘层66免于在导体69的缠绕过程中可发生的损害。此外,第二绝缘层68保护第一绝缘层66免于相邻绕组之间的高接触压力,这可因变于导体69被绕回到其本身上而发生。换言之,第二保护层68在相邻绕组和绕组的相邻行之间提供保护。
导体69耦合至线轴结构的电连接,诸如图4的RF滤波器40的端盖61a,b(75)。为此目的,在与线轴结构的导电端部61a,b相邻的位置处可移除第一绝缘层66和第二绝缘层68,来暴露出导电芯64。导体69的导电芯64可机械地且电地连接至各导电端部61a,b来提供通过RF滤波器40的导电路径。第一绝缘层66和第二绝缘层68可经由多个技术中的任意被移除,包括热激光切除、化学和/或研磨移除或其他技术。可在缠绕前、缠绕过程中、或缠绕后,在可选位置移除第一绝缘层66和第二绝缘层68。
RF滤波器40可被连接在医用导线15的电极36和导体52之间,如图3中所示(框76)。导电端部61a可机械地耦合至电极轴50且导电端部61b可机械地耦合至导体52来将RF滤波器40放置为与通向尖端电极36的电路径串联。
图7是制造诸如图3和4的RF过滤器40的另一个示例性方法的流程图。获得包括导电芯64、围绕导电芯64的第一绝缘层66、和围绕第一绝缘层66的第二绝缘层68(框80)的电导体69。在一些实例中,第二绝缘层68可具有相比第一绝缘层66的热性质、在更低的温度发生的热性质(如,熔点、玻璃转变温度、热变形温度)。在其他实例中,第二绝缘层68可由比第一绝缘层66更柔软(如,更低模量或硬度)的材料形成。此外,被用于第二绝缘层68的材料可具有在湿润和干燥环境中均随时间稳定的介电常数。
缠绕电导体69来形成第一行绕组(框82)。如此处所述,电导体69可从线轴结构的端盖61b开始缠绕线轴结构的圆柱轴62至线轴结构的端盖61a。对于第一行绕组施加热来加热导体69达到或高于第二绝缘层68的至少一个热性质(如,熔点、热变形温度、或玻璃转变温度)的温度、但是低于第一绝缘层66的至少一个热性质(如,熔点、热变形温度、或玻璃转变温度)的温度(框84)。例如,RF滤波器40的至少一部分可被加热达到或高于第二绝缘层68的熔点或热变形温度,从而第二绝缘层68融化、变成橡胶状、或改变状态来使得其更顺应于与相邻层68结合。然而,RF滤波器40的该部分维持在低于第一绝缘层66的热性质的温度,从而第一绝缘层66不熔化或变成橡胶状。以此方式,经由温度的增加,在基本不影响第一绝缘层66的情况下,相邻线圈的第二绝缘层68被彼此回流和/或结合。在一些实例中,还可施加压力来帮助相邻线圈的第二绝缘层68的结合。热可导致第一行绕组的第二绝缘层68遍布第一行的至少一部分地回流并结合,在一些实例中,遍布整个第一行地回流并结合。
缠绕电导体69来形成第二行绕组(框86)。在缠绕第二行绕组前,去除热。第二行绕组,可从线轴结构的端盖61a开始至线轴结构的端盖61a,被缠绕在第一行绕组上。对于第二行绕组施加热来加热导体69达到或高于第二绝缘层68的至少一个热性质(如,熔点、热变形温度、或玻璃转变温度)的温度、但是低于第一绝缘层66的至少一个热性质(如,熔点、热变形温度、或玻璃转变温度)的温度(框88)。例如,RF滤波器40的至少一部分可被加热达到或高于第二绝缘层68的熔点或热变形温度,从而第二绝缘层68融化、变成橡胶状、或改变状态来使得其更顺应于与相邻层68结合。然而,RF滤波器40的该部分维持在低于第一绝缘层66的热性质的温度,从而第一绝缘层66不熔化或变成橡胶状。以此方式,经由温度的增加,在基本不影响第一绝缘层66的情况下,相邻线圈的第二绝缘层68被彼此回流和/或结合。在一些实例中,还可施加压力来帮助相邻线圈的第二绝缘层68的结合。热可导致第二行绕组的第二绝缘层68遍布第二行绕组的至少一部分地,在一些实例中,遍布整个第二行绕组地,回流并与相邻绕组结合。热还可引起第二行绕组的第二绝缘层68与第一行绕组的第二绝缘层68结合。
缠绕电导体69来形成第三行绕组(框90)。在缠绕第三行绕组前,去除热。第三行绕组,可从线轴结构的端盖61b开始至线轴结构的端盖61a,被缠绕在第二行绕组上。对于第三行绕组施加热来加热导体69达到或高于第二绝缘层68的至少一个热性质(如,熔点、热变形温度、或玻璃转变温度)的温度、但是低于第一绝缘层66的至少一个热性质(如,熔点、热变形温度、或玻璃转变温度)的温度(框92)。例如,RF滤波器40的至少一部分可被加热达到或高于第二绝缘层68的熔点或热变形温度,从而第二绝缘层68融化、变成橡胶状、或改变状态来使得其更顺应于与相邻层68结合。然而,RF滤波器40的该部分维持在低于第一绝缘层66的热性质的温度,从而第一绝缘层66不熔化或变成橡胶状。以此方式,经由温度的增加,在基本不影响第一绝缘层66的情况下,相邻线圈的第二绝缘层68被彼此回流和/或结合。在一些实例中,还可施加压力来帮助相邻线圈的第二绝缘层68的结合。热可导致第三行绕组的第二绝缘层68遍布第三行绕组的至少一部分地,在一些实例中,遍布整个第三行绕组地,回流并与相邻绕组结合。热还可引起第三行绕组的第二绝缘层68与第二行绕组的第二绝缘层68组合。
导体69耦合至线轴结构的电连接,诸如图4的RF滤波器40的端盖61a,b(框93)。为此目的,在与线轴结构的导电端部61a,b相邻的位置处可移除第一绝缘层66和第二绝缘层68,来暴露导电芯64。导体69的导电芯64可机械地连接至各导电端部61a,b来提供由所缠绕的导体形成的通过RF滤波器40的导电路径。第一绝缘层66和第二绝缘层68可经由多个技术中的任意被移除,包括热激光切除、化学和/或研磨移除或其他技术。可在缠绕前、缠绕过程中、或缠绕后,在可选位置移除第一绝缘层66和第二绝缘层68。
RF滤波器40可被连接在医用导线15的电极36和导体52之间,如图3中所示(框94)。导电端部61a可机械地耦合至电极轴50且导电端部61b可机械地耦合至导体52来将RF滤波器40放置为与通向尖端电极36的电路径串联。
图8是制造诸如图3和4的RF过滤器40的另一个示例性方法的流程图。获得包括导电芯64、围绕导电芯64的第一绝缘层66、和围绕第一绝缘层66的第二绝缘层68(框100)的电导体69。在一些实例中,第二绝缘层68可具有相比第一绝缘层66的热性质、在更低的温度发生的热性质(如,熔点、热变形温度、热变形温度)。在其他实例中,第二绝缘层68可由比第一绝缘层66更柔软(如,更低模数或硬度)的材料形成。此外,被用于第二绝缘层68的材料可具有在湿润和干燥环境中均随时间稳定的介电常数。
缠绕电导体69来形成第一行绕组,同时施加热来加热导体69达到或高于第二绝缘层68的至少一个热性质(如,熔点、热变形温度、或玻璃转变温度)的温度、但是低于第一绝缘层66的至少一个热性质(如,熔点、热变形温度、或玻璃转变温度)的温度(框102)。换言之,缠绕同时施加热。热,导致第一层的绕组的第二绝缘层68,例如通过回流,遍布第一行绕组的至少一部分地结合,且在一些实例中,遍布整个第一行绕组地结合。缠绕电导体69来形成第一层绕组,同时施加热来加热导体69达到或高于第二绝缘层68的至少一个热性质(如,熔点、热变形温度、或玻璃转变温度)的温度、但是低于第一绝缘层66的至少一个热性质(如,熔点、热变形温度、或玻璃转变温度)的温度(框104)。热,导致第二层的绕组的第二绝缘层68,例如通过回流,遍布第二行绕组的至少一部分地结合,且在一些实例中,与第一行绕组的第二绝缘层68结合。缠绕电导体69来形成第三层绕组,同时施加热来加热导体69达到或高于第二绝缘层68的至少一个热性质(如,熔点、热变形温度、或玻璃转变温度)的温度、但是低于第一绝缘层66的至少一个热性质(如,熔点、热变形温度、或玻璃转变温度)的温度(框106)。热,导致第三行的绕组的第二绝缘层68,例如通过回流,遍布第三行绕组的至少一部分地结合,且在一些实例中,与第二行绕组的第二绝缘层68结合。
导体69耦合至线轴结构的电连接,诸如图4的RF滤波器40的端盖61a,b(框107)。为此目的,在与线轴结构的导电端部61a,b相邻的位置处可移除第一绝缘层66和第二绝缘层68,来暴露导电芯64。导体69的导电芯64可机械地连接至各导电端部61a,b来提供由所缠绕的导体形成的通过RF滤波器40的导电路径。第一绝缘层66和第二绝缘层68可经由多个技术中的任意被移除,包括热激光切除、化学和/或研磨移除或其他技术。可在缠绕前、缠绕过程中、或缠绕后,在可选位置移除第一绝缘层66和第二绝缘层68。
RF滤波器40可被连接在医用导线15的电极36和导体52之间,如图3中所示(框108)。导电端部61a可机械地耦合至电极轴50且导电端部61b可机械地耦合至导体52来将RF滤波器40放置为与通向尖端电极36的电路径串联。
图6-8描述了示例性制造过程。本领域技术人员了解,可在不背离本发明范围的情况下修改这些制造方法。例如,在具有三行绕组的RF滤波器的上下文环境中描述了图6-8的每一个方法。然而,RF滤波器可具有更多或更少行的绕组,如5或7。另外,可使用组合了来自上述不同方法的各方面的方法来制造RF滤波器。例如,可缠绕导体来形成第一和第二行,而不施加任何热,然后可在缠绕第三行的同时施加热。其他变动也落在本发明的范围内。
图9是另一个示例性RF过滤器110的纵向截面视图。图9的RF滤波器110基本与图4的RF滤波器40相符合,但是第二绝缘层68不遍布整个RF滤波器110地被回流或结合。在图9所示示例中,第一(最内行)和中间行的第二绝缘层没有被回流或结合。然而,它们仍彼此接触。然而,在最外层,最外行的第二绝缘层68遍布该行的至少一部分地被回流并彼此结合。在其他实施例中,中间行和最外行可被回流或结合,同时最内行却不。
已描述了本公开的各个实施例。可理解的是本发明并不限于用在起搏器、心律转变器、去纤颤器中。此处描述的这些导线的其他用处可包括用在患者监测设备中、或集成有监测和刺激功能的设备中。此外,本领域技术人员了解,可对于此处描述的机械和电元件使用其他配置和/或尺寸。还可期待的是,尽管相对于双极导线而描述,但是此处的技术也可被应用于单极或多极导线。这些以及其他实施例落在以下权利要求书的范围内。

Claims (16)

1.一种方法,包括:
获得电导体,所述电导体具有导电芯、围绕所述导电芯的第一绝缘层、和围绕所述第一绝缘层的第二绝缘层,其中所述第二绝缘层具有相比所述第一绝缘层的相同热性质在更低温度处发生的热性质;
缠绕所述电导体来形成RF滤波器;和
加热所述RF过滤器的至少一部分至等于或高于所述第二绝缘层的所述热性质且低于所述第一绝缘层的所述热性质的温度,以使所述电导体的相邻绕组的所述第二绝缘层遍布所述RF过滤器的所述至少一部分地结合。
2.如权利要求1所述的方法,其特征在于,加热所述RF过滤器的至少一部分包括:加热几乎整个所述RF滤波器至等于或高于所述第二绝缘层的所述热性质且低于所述第一绝缘层的所述热性质的温度,以使所述电导体的相邻绕组的所述第二绝缘层遍布几乎整个所述RF过滤器地结合。
3.如权利要求1和2中任一项所述的方法,其特征在于,
缠绕所述电导体包括缠绕所述电导体来形成具有多行绕组的RF滤波器;和
加热所述多行绕组中的每一个至等于或高于所述第二绝缘层的所述热性质且低于所述第一绝缘层的所述热性质的温度,以使相邻绕组的所述第二绝缘层遍布几乎整个所述RF过滤器地结合。
4.如权利要求1所述的方法,其特征在于,
缠绕所述电导体包括缠绕所述电导体来形成具有多行绕组的RF滤波器;和
施加热包括施加热至绕组的最外行,从而所述最外行的至少一部分的相邻绕组的所述第二绝缘层结合。
5.如权利要求1到4中任一项所述的方法,其特征在于,获得所述电导体包括获得其中所述第二绝缘层的模量比所述第一绝缘层的模量更低的电导体。
6.如权利要求1到5中任一项所述的方法,其特征在于,获得所述导体包括获得一导体,所述导体具有由下述中一个或多个制成的第二绝缘层:四氟乙烯(ETFE)、聚四氟乙烯(PTFE)、全氟烷氧(PFA)、氟化乙烯丙烯(FEP)、尿烷,且具有由下述中一个或多个制成的第一绝缘层:可溶性酰亚胺(SI)、聚对二甲苯基、五氧化二钽、聚四氟乙烯(PTFE)、聚醚醚酮(PEEK)、液晶聚合物(LCP)。
7.如权利要求1到6中任一项所述的方法,其特征在于,还包括将所述RF滤波器连接在导线的电极和所述导线的导体之间,以使所述RF滤波器与通向所述电极的电路径串联。
8.如权利要求1到7中任一项所述的方法,其特征在于,所述热性质包括熔点、玻璃转变温度、和热变形温度中的至少一个。
9.如权利要求1到10中任一项所述的方法,其特征在于,加热所述RF滤波器的至少一部分包括如下之一:加热所述RF滤波器的至少一部分至一温度,该温度足够高以使得所述第二绝缘层改变状态的温度来使得所述第二绝缘层更顺应于与相邻绕组的第二绝缘层结合,且该温度足够低以致不会引起所述第一绝缘层改变状态,和加热所述RF滤波器的至少一部分至足够高以使得所述第二绝缘层变化至液态或橡胶状的状态的温度。
10.如权利要求1到9中任一项所述的方法,其特征在于,缠绕所述电导体和加热所述电导体包括:同时加热并缠绕所述电导体。
11.如权利要求1到10中任一项所述的方法,其特征在于,当第二绝缘层被长时间地暴露于体液时,第二绝缘层具有变化最多百分之二十的介电常数。
12.一种射频(RF)滤波器,包括:
第一电连接;
第二电连接;和
导体,所述导体具有芯、围绕所述芯的第一绝缘层、和围绕所述第一绝缘层的第二绝缘层,其中所述第二绝缘层具有相比所述第一绝缘层的相同热性质在更低温度处发生的热性质;
其中所述导体被缠绕来形成多行绕组,且所述导体的相邻绕组的至少一部分的所述第二绝缘层被回流在一起。
13.如权利要求12所述的RF滤波器,其特征在于,所述导体的所述第二绝缘层具有的模量比所述第一绝缘层的模量更低。
14.如权利要求12和13中任一项所述的RF滤波器,其特征在于,所述热性质包括熔点、玻璃转变温度、和热变形温度中的至少一个。
15.如权利要求12到14中任一项所述的RF滤波器,其特征在于,当所述第二绝缘层被长时间地暴露于体液时,第二绝缘层具有变化最多百分之二十的介电常数。
16.一种植入性医用导线,包括:
至少一个电极;
将电信号导向所述电极或从所述电极导出电信号的至少一个导体;和
串联在所述电极和所述导体之间的如权利要求12-15中任一个所述的RF滤波器。
CN201280008402.5A 2011-02-10 2012-01-04 兼容磁共振成像的医用电导线以及制造其的方法 Expired - Fee Related CN103384547B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201161441537P 2011-02-10 2011-02-10
US61/441,537 2011-02-10
US13/324,406 US8612021B2 (en) 2011-02-10 2011-12-13 Magnetic resonance imaging compatible medical electrical lead and method of making the same
US13/324,406 2011-12-13
PCT/US2012/020159 WO2012108964A1 (en) 2011-02-10 2012-01-04 Magnetic resonance imaging compatible medical electrical lead and method of making the same

Publications (2)

Publication Number Publication Date
CN103384547A true CN103384547A (zh) 2013-11-06
CN103384547B CN103384547B (zh) 2016-01-13

Family

ID=46637498

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280008402.5A Expired - Fee Related CN103384547B (zh) 2011-02-10 2012-01-04 兼容磁共振成像的医用电导线以及制造其的方法

Country Status (4)

Country Link
US (1) US8612021B2 (zh)
EP (1) EP2673044A1 (zh)
CN (1) CN103384547B (zh)
WO (1) WO2012108964A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106851941A (zh) * 2017-03-02 2017-06-13 深圳市明宇达智能设备有限公司 一种带有自我保护功能的智能照明系统及其控制方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2882488A2 (en) * 2012-08-09 2015-06-17 Cardiac Pacemakers, Inc. Reinforced coil created from polymer coated wire for improved torque transfer
US9211406B2 (en) * 2013-03-14 2015-12-15 Pacesetter, Inc. MRI compatible implantable lead
US20150143690A1 (en) * 2013-11-22 2015-05-28 Texas Instruments Incorporated Forming integrated inductors and transformers with embedded magnetic cores
US9993638B2 (en) * 2013-12-14 2018-06-12 Medtronic, Inc. Devices, systems and methods to reduce coupling of a shield and a conductor within an implantable medical lead
WO2017197084A2 (en) * 2016-05-11 2017-11-16 Inspire Medical Systems, Inc. Attenuation arrangement for implantable medical device
JP2021153951A (ja) * 2020-03-27 2021-10-07 日本光電工業株式会社 バイタルセンサ
US20220386870A1 (en) * 2021-05-18 2022-12-08 Ticona Llc Connected Medical Device Containing a Liquid Crystalline Polymer Composition having a High Dielectric Constant
US20220389195A1 (en) * 2021-05-18 2022-12-08 Ticona Llc Connected Medical Device Containing a Liquid Crystalline Polymer Composition having a Low Dielectric Constant

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5015800A (en) * 1989-12-20 1991-05-14 Supercomputer Systems Limited Partnership Miniature controlled-impedance transmission line cable and method of manufacture
US5283390A (en) * 1992-07-07 1994-02-01 W. L. Gore & Associates, Inc. Twisted pair data bus cable
EP1545159A1 (en) * 2002-08-15 2005-06-22 Matsushita Electric Industrial Co., Ltd. Induction heating coil
US20090076579A1 (en) * 2007-09-13 2009-03-19 Medtronic, Inc. Medical electrical lead
CN201378454Y (zh) * 2009-04-13 2010-01-06 浙江长城电工科技有限公司 一种聚酯/聚酰胺复合漆包铜圆线

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5197468A (en) 1990-02-13 1993-03-30 Proctor Paul W Device for protecting an electronic prosthesis from adverse effects of RF and/or electrostatic energy
US8244370B2 (en) 2001-04-13 2012-08-14 Greatbatch Ltd. Band stop filter employing a capacitor and an inductor tank circuit to enhance MRI compatibility of active medical devices
US7844319B2 (en) 1998-11-04 2010-11-30 Susil Robert C Systems and methods for magnetic-resonance-guided interventional procedures
US20070168006A1 (en) 2001-02-20 2007-07-19 Biophan Technologies, Inc. Medical device with an electrically conductive anti-antenna member
AU2002257344B2 (en) * 2001-05-30 2006-05-25 Foster-Miller, Inc. Implantable devices having a liquid crystal polymer substrate
US20030144720A1 (en) 2002-01-29 2003-07-31 Villaseca Eduardo H. Electromagnetic trap for a lead
AU2003213646A1 (en) 2002-02-28 2003-09-09 Greatbatch-Sierra, Inc. Emi feedthrough filter terminal assembly for human implant applications utilizing oxide resistant biostable conductive pads for reliable electrical attachments
US7213766B2 (en) 2003-11-17 2007-05-08 Dpd Patent Trust Ltd Multi-interface compact personal token apparatus and methods of use
US8620406B2 (en) 2004-01-23 2013-12-31 Boston Scientific Scimed, Inc. Medical devices visible by magnetic resonance imaging
WO2006015040A1 (en) 2004-07-27 2006-02-09 The Cleveland Clinic Foundation Integrated system and method for mri-safe implantable devices
CN101829400B (zh) 2004-08-09 2011-12-14 约翰斯·霍普金斯大学 可植入mri兼容刺激导线和天线以及相关系统和方法
CA2606824C (en) 2005-05-04 2015-11-24 Surgi-Vision, Inc. Improved electrical lead for an electronic device such as an implantable device
US7304277B2 (en) 2005-08-23 2007-12-04 Boston Scientific Scimed, Inc Resonator with adjustable capacitor for medical device
US7411722B2 (en) 2005-08-24 2008-08-12 Eastman Kodak Company Display system incorporating bilinear electromechanical grating device
CA2623453C (en) 2005-10-21 2016-02-09 Surgi-Vision, Inc. Mri-safe high impedance lead systems and related methods
US7423496B2 (en) 2005-11-09 2008-09-09 Boston Scientific Scimed, Inc. Resonator with adjustable capacitance for medical device
US7702387B2 (en) 2006-06-08 2010-04-20 Greatbatch Ltd. Tank filters adaptable for placement with a guide wire, in series with the lead wires or circuits of active medical devices to enhance MRI compatibility
US20080154348A1 (en) 2006-12-18 2008-06-26 Ergin Atalar Mri compatible implantable devices
JP5568316B2 (ja) 2007-03-19 2014-08-06 ボストン サイエンティフィック ニューロモデュレイション コーポレイション Mri/rf適合リード線、および関連のリード線を操作、作製する方法
AU2008227102C1 (en) 2007-03-19 2013-09-12 Boston Scientific Neuromodulation Corporation Methods and apparatus for fabricating leads with conductors and related flexible lead configurations
EP2195079A2 (en) 2007-09-20 2010-06-16 Medtronic, INC. Medical electrical leads and conductor assemblies thereof
JP5073829B2 (ja) 2007-12-06 2012-11-14 カーディアック ペースメイカーズ, インコーポレイテッド 可変コイル導体ピッチを有する移植可能リード線
US20090179716A1 (en) 2008-01-09 2009-07-16 Anaren, Inc. RF Filter Device
US8255055B2 (en) 2008-02-11 2012-08-28 Cardiac Pacemakers, Inc. MRI shielding in electrodes using AC pacing
US8055353B2 (en) 2008-02-12 2011-11-08 Proteus Biomedical, Inc. Medical carriers comprising a low-impedance conductor, and methods of making and using the same
WO2009117599A2 (en) 2008-03-20 2009-09-24 Greatbatch Ltd. Shielded three-terminal flat-through emi/energy dissipating filter
US20090281592A1 (en) 2008-05-08 2009-11-12 Pacesetter, Inc. Shaft-mounted rf filtering elements for implantable medical device lead to reduce lead heating during mri
US20100138192A1 (en) 2008-12-01 2010-06-03 Pacesetter, Inc. Systems and Methods for Selecting Components for Use in RF Filters Within Implantable Medical Device Leads Based on Inductance, Parasitic Capacitance and Parasitic Resistance
US20100331942A1 (en) 2009-06-29 2010-12-30 Pacesetter, Inc. Mri compatible implantable medical lead and method of making same
US8099171B2 (en) 2009-06-30 2012-01-17 Pacesetter, Inc. Implantable medical lead configured for improved MRI safety and heating reduction performance

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5015800A (en) * 1989-12-20 1991-05-14 Supercomputer Systems Limited Partnership Miniature controlled-impedance transmission line cable and method of manufacture
US5283390A (en) * 1992-07-07 1994-02-01 W. L. Gore & Associates, Inc. Twisted pair data bus cable
EP1545159A1 (en) * 2002-08-15 2005-06-22 Matsushita Electric Industrial Co., Ltd. Induction heating coil
CN1675962A (zh) * 2002-08-15 2005-09-28 松下电器产业株式会社 感应加热线圈
US20090076579A1 (en) * 2007-09-13 2009-03-19 Medtronic, Inc. Medical electrical lead
CN201378454Y (zh) * 2009-04-13 2010-01-06 浙江长城电工科技有限公司 一种聚酯/聚酰胺复合漆包铜圆线

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106851941A (zh) * 2017-03-02 2017-06-13 深圳市明宇达智能设备有限公司 一种带有自我保护功能的智能照明系统及其控制方法

Also Published As

Publication number Publication date
EP2673044A1 (en) 2013-12-18
US8612021B2 (en) 2013-12-17
US20120209365A1 (en) 2012-08-16
CN103384547B (zh) 2016-01-13
WO2012108964A1 (en) 2012-08-16

Similar Documents

Publication Publication Date Title
CN103384547B (zh) 兼容磁共振成像的医用电导线以及制造其的方法
US11065455B2 (en) Resonance tuning module for implantable devices and leads
US6985775B2 (en) Method and apparatus for shunting induced currents in an electrical lead
CN103549952B (zh) 构造mri兼容电极电路的方法
US8239040B2 (en) Electrode catheter for intervention purposes
US10183162B2 (en) Coiled, closed-loop RF current attenuator configured to be placed about an implantable lead conductor
CN101553165B (zh) 用于诸如可植入装置之类的电子装置的改良型电导线
US20110288403A1 (en) Multilayer helical wave filter for mri applications
US8239041B2 (en) Multilayer helical wave filter for medical therapeutic or diagnostic applications
JP2011504405A (ja) 可変コイル導体ピッチを有する移植可能リード線
CN104736196B (zh) 用于在植入式医疗装置引线中提供核磁共振成像兼容性的感应元件
CN102858403A (zh) 具有能量消散结构的医疗电引线
US7734354B1 (en) Stimulation lead, stimulation system, and method for limiting MRI induced current in a stimulation lead
US8099171B2 (en) Implantable medical lead configured for improved MRI safety and heating reduction performance
US8554338B2 (en) MRI-compatible implantable lead having a heat spreader and method of using same
US8805540B2 (en) MRI compatible cable
US20110152990A1 (en) Mri compatible lead employing multiple miniature inductors
CN105050655B (zh) Mri兼容电极电路
US20050283214A1 (en) Medical device with an electrically conductive anti-antenna member
US20120130460A1 (en) Hybrid implantable lead assembly
WO2008112747A1 (en) Medical device with an electrically conductive anti-antenna member

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160113

Termination date: 20170104