CN103379055B - Method and apparatus for interference rejection combining - Google Patents

Method and apparatus for interference rejection combining Download PDF

Info

Publication number
CN103379055B
CN103379055B CN 201210132127 CN201210132127A CN103379055B CN 103379055 B CN103379055 B CN 103379055B CN 201210132127 CN201210132127 CN 201210132127 CN 201210132127 A CN201210132127 A CN 201210132127A CN 103379055 B CN103379055 B CN 103379055B
Authority
CN
Grant status
Grant
Patent type
Prior art keywords
interpolation
factor
matrix
combined
received data
Prior art date
Application number
CN 201210132127
Other languages
Chinese (zh)
Other versions
CN103379055A (en )
Inventor
王鹏
Original Assignee
中兴通讯股份有限公司
深圳市中兴微电子技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Abstract

本发明公开了一种干扰抑制合并方法和装置,其中,该方法包括:根据导频符号的信道估计矩阵和噪声干扰矩阵,得到对应于导频符号的预计算因子,其中,预计算因子是对与导频符号对应的接收数据进行联合化的插值和均衡运算时所使用的因子;根据预计算因子对与导频符号对应的接收数据进行插值和均衡运算。 The present invention discloses an interference rejection combining method and apparatus, wherein the method comprises: estimating a matrix and a noise matrix based on pilot symbols channel, to give corresponding pilot symbol precalculation factor, wherein precomputed factor is when receiving data and pilot symbols corresponding to the joint operation of the equalizer and the interpolation factor used; factor calculation on the received data and pilot symbols corresponding to the interpolating calculation based equalization and expected. 本发明解决了现有技术中先进行信道估计插值,再构造合并权值矩阵进行均衡而造成的运算复杂度增加,系统的数据吞吐率下降和实时性降低的技术问题,达到了降低运算复杂度、提高系统吞吐量和数据处理的实时性的技术效果。 The present invention solves the prior art channel estimation interpolation first, and then the weight matrix constructed combined equalized and increased computational complexity caused by the decreased data throughput and real-time system with reduced technical problems and to achieve a reduction in computational complexity , improve system throughput and data processing in real-time technical effect.

Description

干扰抑制合并方法和装置 Method and apparatus for interference rejection combining

技术领域 FIELD

[0001] 本发明涉及通信领域,具体而言,涉及一种干扰抑制合并方法和装置。 [0001] The present invention relates to communication field, particularly, to a method and apparatus for interference suppression combined.

背景技术 Background technique

[0002] 对于蜂窝移动通信系统来说,小区中心位置的数据速率和小区边缘位置的数据速率存在着很大的差异,这不仅限制了整个系统的容量,而且使用户在不同的位置得到的服务质量有很大的差别。 [0002] For cellular mobile communication systems, the data rate of the data rate of the cell center position and the edge positions of the cell there are significant differences, which not only limits the capacity of the entire system, but also the service user obtained at different positions quality varies considerably. 目前,正在研发的新一代宽带无线通信系统,例如长期演进(Long Term Evolution,简称为LTE)、全球微波互联接入(Worldwide Interoperability for Microwave Access,简称为Wimax)等,都将提高小区边缘性能作为系统性能的主要的指标之一。 Currently, is developing a new generation of broadband wireless communication systems such as Long Term Evolution (Long Term Evolution, referred to as LTE), worldwide interoperability for microwave access (Worldwide Interoperability for Microwave Access, referred to as Wimax), etc., will improve cell-edge performance as one of the main indicators of system performance.

[0003] 而且,为了提高频谱利用率以及保证不同通信制式小区的共存,LTE系统将面临的同频干扰会更加严重。 [0003] Further, in order to improve spectral efficiency and to ensure coexistence of different communications standard cell, LTE system will face co-channel interference is more severe. 为了满足LTE边缘用户的数据速率的要求,在特定场景下,上行接收系统中需要采用干扰抑制合并技术,从而抑制小区间干扰,使小区边缘数据的吞吐量最大化。 To meet the data rate of the LTE-edge users, under certain scenarios, need to use an uplink reception system interference rejection combining techniques to suppress inter-cell interference, a cell edge data throughput is maximized. 这是一种能将干扰(将该干扰认为是有色噪声)和噪声的相关矩阵估计算出来对接收信号进行处理,从而对干扰起到一种抑制作用的方法。 This is a can the interference (the interference that is colored noise) and noise estimate calculated correlation matrix of the received signal processing method whereby interference play one kind of inhibition.

[0004] 已有的干扰抑制合并(Interference Rejection Combining,简称为IRC)算法至少可以遵循两种准则进行设计。 [0004] the existing interference rejection combining (Interference Rejection Combining, referred to as IRC) algorithm can be designed to follow the guidelines of at least two. 一种是基于最大信噪比(Signal to Noise Ratio,简称为SNR)准则,一种是基于最小均方误差(Minimum Mean Square Error,简称为匪SE)准则。 One is based on the maximum SNR (Signal to Noise Ratio, referred to as SNR) criterion, one is based on a minimum mean square error (Minimum Mean Square Error, abbreviated as bandit SE) guidelines. 基于最大SNR准则的IRC方法运算量较小,但性能较差。 IRC method based on a smaller amount of calculation a maximum SNR criterion, but poor performance. 如专利号为CN200910244004.3,名为《一种干扰抑制合并方法及系统》的专利就是以最大SNR准则为基础设计的一种干扰抑制合并系统。 Patent No. CN200910244004.3, titled "An interference rejection combining Method and System" patent is a maximum SNR criterion as a basic design of the interference rejection combining system. MMSE准则在实际应用中的性能好,但是其计算量比较大。 MMSE criterion of good performance in practical applications, but is computationally intensive.

[0005] 假设将整个LTE合并系统称为多输入多输出(Multiple-Input Multiple-Output, 简称为Μπω)系统,目前通信领域的合并系统通常包括两个独立的装置:信道估计装置和均衡装置,进行干扰抑制合并的处理步骤主要包括: [0005] LTE is assumed that the entire combined system is called a MIMO (Multiple-Input Multiple-Output, abbreviated as Μπω) system, merging the current field of communications systems typically include two separate devices: a channel estimation apparatus and the equalizing apparatus, interference rejection combining processing steps include:

[0006] si:由信道估计装置计算出导频符号上每个载波的信道响应,然后根据该信道响应通过特定方法估计出其他符号每个载波上的信道响应。 [0006] si: means for calculating the channel of each carrier in response to the pilot symbols, the channel response estimate and the other symbols on each carrier based on the response by a specific method of channel estimation by the channel. 一种具有2个导频的应用线性插值的信道估计方法的信号处理模型如下: The signal processing method of estimating a channel model having 2 pilot application of linear interpolation as follows:

[0007] hi = aiH〇+(1_αι) Hi [0007] hi = aiH〇 + (1_αι) Hi

[0008] 其中,1为符号索引,Ct1代表第1个符号的线性插值因子,^、出分别代表2个导频符号的信道响应矩阵。 [0008] wherein the symbol index 1, represents a linear interpolation factor Ct1 is the first symbol, ^, representing the two pilot symbols of the signaling channel response matrix.

[0009] S2:由均衡装置进行均衡。 [0009] S2: equalized by the equalizing means.

[0010] 具体的,以基于最大SNR准则为例,则合并均衡装置的信号处理模型如下: [0010] Specifically, based on a maximum SNR criterion as an example, the model processing the combined signal equalizing device is as follows:

[0011] HhRiT1Y [0011] HhRiT1Y

[0012] 其中,Rn为噪声和干扰矩阵,Y代表接收到的信号矩阵。 [0012] wherein, Rn is the received noise and interference matrix, Y matrix representative signal.

[0013] 以基于MMSE准则为例,则均衡装置数据处理则会更加复杂,其信号处理模型如下: [0013] In an example based on the MMSE criterion, then the equalization will be more complex data processing means, which signal processing model is as follows:

[0014] [0014]

Figure CN103379055BD00041

,其中,I为单位矩阵。 Which, I identity matrix.

[0015] 由于LTE系统是一个多载波多天线的系统,因此应用IRC算法的时候将涉及维数较高的矩阵运算,计算量会显著增加,导致合并装置时延显著增加。 [0015] Since the LTE system is a multi-carrier multi-antenna system, when applied IRC algorithm will involve a higher dimension matrix operations, computation will increase significantly, leading to a significant increase in combined delay means.

[0016] 无论是采用SNR准则还是MMSE准则,IRC都需要对信道特性进行估计。 [0016] Whether using MMSE criterion or SNR criterion, IRC needs to estimate the channel characteristics. 针对LTE系统这种具有导频符号的数据结构,目前的处理方法一般都是先进行信道估计插值,再构造合并权值矩阵进行均衡。 This data structure for an LTE system with pilot symbols, the current treatment methods are generally the first interpolation for channel estimation, then the weight matrix constructed combined equalized. 这种分立的处理方法也会显著增加运算的复杂度,从而导致合并装置的数据吞吐率和实时性难以达到系统要求。 This approach also significantly increases discrete computational complexity, resulting in data throughput and real-time merge device is difficult to achieve system requirements.

[0017] 针对上述的问题,目前尚未提出有效的解决方案。 [0017] In response to these problems, we have not yet come up with effective solutions.

发明内容 SUMMARY

[0018] 本发明提供了一种干扰抑制合并方法和装置,以至少解决现有技术中先进行信道估计插值再构造合并权值矩阵进行均衡而造成的运算复杂度增加、系统的数据吞吐量下降实时性降低的技术问题。 [0018] The present invention provides a method and apparatus for interference rejection combining, at least to solve the prior art channel estimation interpolation reconfigurable equalized combined weight matrix increases computational complexity caused by the data throughput of the system drops real-time to reduce technical problems.

[0019] 根据本发明的一个方面,提供了一种干扰抑制合并方法,包括:根据导频符号的信道估计矩阵和噪声干扰矩阵,得到对应于导频符号的预计算因子,其中,预计算因子是对与导频符号对应的接收数据进行插值和均衡运算时所使用的因子;根据预计算因子对上述接收数据进行联合化的插值和均衡运算。 [0019] In accordance with one aspect of the present invention, there is provided a combined method of interference suppression, comprising: estimating a matrix and a noise matrix according to a channel pilot symbols, to obtain corresponding pilot symbol precalculation factor, wherein precomputed factor when data is received corresponding to the pilot symbols are interpolated and used for the calculation factors balanced; precalculation factor according to the received data of the joint equalization and interpolation calculation.

[0020] 优选地,预计算因子是对与导频符号对应的接收数据进行联合化的插值和均衡运算时用到至少两次的因子。 [0020] Preferably, the factor is used precomputed at least two factors when the received data and pilot symbols corresponding to the joint operation of interpolation and equalization.

Figure CN103379055BD00051

[0021] 优选地,预计算因子是对信道估计矩阵和噪声干扰矩阵进行线性运算后得到的因子。 [0021] Preferably, the factor is a pre-computed channel estimate matrix and the noise factor of the matrix obtained by linear operations.

[0022] 优选地,预计算因子为其中,Ho为时隙0上的信道估计矩阵, Hi为时隙1上的信道估计矩阵,Rn为噪声干扰矩阵。 [0022] Preferably, wherein precomputed factor, Ho is a channel estimation matrix on the time slot 0, Hi is the channel estimation matrix on the time slot 1, Rn is the noise matrix.

[0023] 优选地,根据预计算因子对接收数据进行联合化的插值和均衡运算,包括:根据预计算因子得到插值合并因子,其中,插值合并因子包括:第一类插值合并因子和第二类插值合并因子,其中,第一类插值合并因子是预计算因子与信道估计矩阵的线性乘积,第二类插值合并因子是预计算因子与接收数据的线性乘积;根据插值合并因子对导频符号对应的接收数据进行联合化的插值和均衡运算。 [0023] Preferably, the precomputed factor of the received data combined interpolation and equalization operation, comprising: obtaining an interpolation factor calculated based on the expected combined factor, wherein the interpolation factors combined comprising: a first type and second type of interpolation mergeFactor the combined interpolation factor, wherein the first type combined interpolation factor precomputed channel estimation linear factor of the product matrix, the second interpolation factor is combined with the received data precalculated factor linear product; the combined interpolation factor corresponding to the pilot symbols It received data of the joint equalization and interpolation calculation.

[0024] 优选地,第二类插值合并因子为 [0024] Preferably, the second type of interpolation mergeFactor

Figure CN103379055BD00052

和/或 and / or

Figure CN103379055BD00053

,其中,Ho为时隙0上的信道估计矩阵,H1为时隙1上的信道估计矩阵,Rn为噪声干扰矩阵,其中,Y是与导频符号对应的接收数据矩阵。 Where, Ho is the channel estimation matrix on the time slot 0, the channel Hl 1 on the time slot estimate matrix, Rn is the noise matrix, wherein, Y is the received pilot symbols corresponding to pilot data matrix.

[0025] 优选地,第一类插值合并因子为以下至少之一: [0025] Preferably, the first type combined interpolation factor is at least one of:

Figure CN103379055BD00054

with

Figure CN103379055BD00055

,其中,Ho为时隙0上的信道估计矩阵,H1为时隙1上的信道估计矩阵,Rn为噪声干扰矩阵。 Where, Ho is the channel estimation matrix on the time slot 0, the channel Hl 1 on the time slot estimate matrix, Rn is the noise matrix.

[0026] 优选地,根据预计算因子对接收数据进行联合化的插值和均衡运算,包括:根据插值公式、第一类插值合并因子和第二类插值合并因子对接收数据进行联合化的插值和均衡运算。 [0026] Preferably, the precomputed factor of the received data combined interpolation and equalization operation, comprising: interpolation formula according to the first type and second type of interpolation factors combined interpolation factor combined received data interpolation and unionized balanced operation.

[0027] 优选地,根据插值公式、第一类插值合并因子和第二类插值合并因子对接收数据进行联合化的插值和均衡运算,包括:根据公式 [0027] Preferably, according to interpolation formula, the first type and second type interpolation factor combined combined interpolation factor of the received data combined interpolation and equalization operation, comprising: according to the formula

Figure CN103379055BD00056

对接收数据进行联合化的插值和均衡运算,其中, The received data of the combined equalization and interpolation operation, wherein,

Figure CN103379055BD00061

[0029] [0029]

Figure CN103379055BD00062

'其中,插值公式Iu = Q1Ho+(I-Q1)Hhl表示时域的符号索引,Ci1为接收数据第1个符号上的插值系数,其中,Ho为时隙0上的信道估计矩阵,H1 为时隙1上的信道估计矩阵,Rn为噪声干扰矩阵,I为单位矩阵。 'Wherein interpolation formula Iu = Q1Ho + (I-Q1) Hhl represents the symbol index in the time domain, Ci1 to receive data interpolation coefficients on the symbols of the first, where, Ho is the channel on the time slot 0 estimation matrix, Hl too 1 slot on channel estimation matrix, Rn is the noise matrix, I is a unit matrix.

[0030] 优选地,取 [0030] Preferably, taken

Figure CN103379055BD00063

的共辄转置得到 Co Noir transposed

Figure CN103379055BD00064

[0031] 优选地,根据所述预计算因子对所述接收数据进行插值和均衡运算,包括:根据插值公式和所述第二类插值因子对所述接收数据进行联合化的插值和均衡运算。 [0031] Preferably, according to the precalculated factor to interpolate the received data and equalization operation, comprising: a joint of interpolation and equalization operation on the received data according to the interpolation equation and a second interpolation factor type.

[0032] 优选地,根据插值公式和所述第二类插值因子对所述接收数据进行联合化的插值和均衡运算,包括:根据公式 [0032] Preferably, the joint operation of interpolation and equalization of the received data according to the interpolation equation and a second interpolation factor type, comprising: according to the formula

Figure CN103379055BD00065

对接收数据进行联合化的插值和均衡运算,其中,Iu = Ct1Ho+(I-Ct1) H1,1表示时域的符号索引,Ct1为接收数据第1个符号上的插值系数,其中,Ho为时隙0上的信道估计矩阵,H1为时隙1上的信道估计矩阵,Rn为噪声干扰矩阵。 The received data of the combined equalization and interpolation operation, where, Iu = Ct1Ho + (I-Ct1) H1,1 denotes the symbol index in the time domain, the interpolation coefficient Ct1 is received on a first data symbol, wherein, Ho too channel estimation matrix on slot 0, H1 is the channel estimation matrix on the time slot 1, Rn is the noise matrix.

[0033] 根据本发明的另一方面,提供了一种干扰抑制合并装置,包括:处理单元,用于根据导频符号的信道估计矩阵和噪声干扰矩阵,得到对应于导频符号的预计算因子,其中,预计算因子是对与导频符号对应的接收数据进行插值和均衡运算时所使用的因子;运算单元,用于根据预计算因子对接收数据进行联合化的插值和均衡运算。 [0033] According to another aspect of the present invention, there is provided a combined interference suppression apparatus comprising: a processing unit for estimating noise and interference matrix matrix based on the pilot channel symbols, the pilot symbol to obtain a corresponding precalculation factor , wherein precomputed factor is to receive data corresponding to pilot symbols are interpolated and used for the calculation of the equalizer factors; an arithmetic unit for joint equalization and operation of the interpolation factor calculated based on the expected received data.

[0034] 优选地,运算单元包括:第一运算模块,用于根据预计算因子得到插值合并因子, 其中,插值合并因子包括:第一类插值合并因子和第二类插值合并因子,其中,第一类插值合并因子是预计算因子与信道估计矩阵的线性乘积,第二类插值合并因子是预计算因子与接收数据的线性乘积;第二运算模块,用于根据插值合并因子对导频符号对应的接收数据进行联合化的插值和均衡运算。 [0034] Preferably, the operation unit comprises: a first arithmetic means for obtaining an interpolation factor calculated based on the expected combined factor, wherein the interpolation factors combined comprising: a first type and second type of interpolation factors combined interpolation factor were combined, wherein the first a interpolation factor precomputed factor combined with the product of the linear channel estimate matrix, the second interpolation factor precomputed factor combined with linear product receiving data; and a second computing module, according to combined interpolation factor corresponding to the pilot symbols It received data of the joint equalization and interpolation calculation.

[0035] 优选地,运算单元包括:第三运算模块和/或第四运算模块,其中,第三运算模块, 用于根据插值公式、第一类插值合并因子和第二类插值合并因子对接收数据进行联合化的插值和均衡运算;第四运算模块,用于根据插值公式和第二类插值因子对接收数据进行联合化的插值和均衡运算。 [0035] Preferably, the arithmetic unit comprising: a third calculating module and / or the fourth operational module, wherein, the third arithmetic module, according to interpolation formula for the first type and second type of interpolation factors combined interpolation factor combined received data of the joint equalization and interpolation operation; a fourth calculating means for joint operation of interpolation and equalization of the received data according to the interpolation equation and a second interpolation factor category.

[0036] 在本发明中,优先计算出对导频符号进行插值和均衡运算时所使用的因子,然后, 根据计算得到的预计算因子对导频符号对应的接收数据进行插值和均衡运算。 [0036] In the present invention, when the priority factor is calculated by interpolating the pilot symbols and the equalizer used for the calculation, then, in accordance with the calculated factor precomputed data received pilot symbols and the corresponding interpolated equalization operation. 通过上述方式,将原本分开进行处理的插值和均衡运算合并在一起进行联合化的处理,从而减少了对信号进行干扰抑制合并的运算量,解决了现有技术中先进行信道估计插值,再构造合并权值矩阵进行均衡而造成的运算复杂度增加,系统的数据吞吐率下降实时性降低的技术问题,达到了降低运算复杂度、提高系统吞吐量和数据处理的实时性的技术效果。 The original and interpolated equalization processing operation by merging the above-described embodiment of the joint together in a separate process, thus reducing the signal interference rejection combining calculation amount, to solve the prior art channel estimation interpolation reconfigurable the combined weight of the computational complexity caused by the equalization matrix increases, the system data throughput decreases drop real technical problems, to achieve a reduction in computational complexity and improve the system throughput technical effect of real-time data processing.

附图说明 BRIEF DESCRIPTION

[0037] 此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。 [0037] The drawings described herein are provided for further understanding of the present invention, constitute a part of this application, exemplary embodiments of the present invention are used to explain the present invention without unduly limiting the present invention. 在附图中: In the drawings:

[0038] 图1是根据本发明实施例的干扰抑制合并方法的一种优选流程图; [0038] FIG. 1 is a combined flowchart illustrating a preferred method of interference suppression according to an embodiment of the present invention;

[0039] 图2是根据本发明实施例的干扰抑制合并方法的另一种优选流程图; [0039] FIG. 2 is a disturbance another preferred embodiment of a flowchart of a method of suppressing combined according to the present invention;

[0040] 图3是根据本发明实施例的干扰抑制合并装置的一种优选结构框图; [0040] FIG. 3 is a block diagram showing a preferred combined interference suppression device according to an embodiment of the present invention;

[0041] 图4是根据本发明实施例的干扰抑制合并装置的另一种优选结构框图; [0041] FIG. 4 is a block diagram showing another structure of preferred combined interference suppression device according to an embodiment of the present invention;

[0042] 图5是根据本发明实施例的导干扰抑制合并装置的又一种优选结构框图; [0042] FIG. 5 is a block diagram a further preferred combined suppressing interference device according to an embodiment of the guide of the present invention;

[0043] 图6是根据本发明实施例的LTE系统的一种上行子帧时频结构示意图; [0043] FIG. 6 is a schematic view according to the time-frequency LTE Uplink sub-system of an embodiment of the present invention, a frame;

[0044] 图7是根据本发明实施例的以MMSE准则进行IRC均衡的方法的一种优选流程图; [0044] FIG. 7 is a flowchart illustrating a preferred method according to the MMSE criterion IRC equalization embodiment of the present invention;

[0045] 图8是根据本发明实施例的IRC均衡方法对应的实现装置的一种优选结构框图; [0045] FIG. 8 is a block diagram showing a preferred implementation of apparatus in accordance with a corresponding IRC equalization method of the present embodiment of the invention;

[0046] 图9是根据本发明实施例的IRC均衡方法的一种优选流程图; [0046] FIG. 9 is a flowchart of a preferred embodiment of the IRC equalization method of the present invention;

[0047] 图10是根据本发明实施例的以SNR准则进行IRC均衡的方法的一种优选流程图; [0047] FIG. 10 is a flowchart of a preferred method according to IRC equalized SNR criterion embodiment of the present invention;

[0048] 图11是根据本发明实施例的以SNR准则进行IRC均衡的方法的另一种优选流程图。 [0048] FIG. 11 is a flowchart of another preferred method according to IRC equalization SNR criterion embodiment of the present invention.

具体实施方式 detailed description

[0049] 下文中将参考附图并结合实施例来详细说明本发明。 [0049] Hereinafter with reference to the accompanying drawings and embodiments of the present invention will be described in detail. 需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。 Incidentally, in the case of no conflict, embodiments and features of the embodiments of the present application can be combined with each other.

[0050] 本实施例提供了一种干扰抑制合并方法,如图1所示,该方法包括如下步骤: [0050] The present embodiment provides a combined interference suppression method, shown in Figure 1, the method comprising the steps of:

[0051] 步骤S102:根据导频符号的信道估计矩阵和噪声干扰矩阵,得到对应于导频符号的预计算因子,其中,预计算因子是对与导频符号对应的接收数据进行插值和均衡运算时所使用的因子; [0051] the step S102: estimation matrix and a noise matrix according to a channel pilot symbols, to obtain corresponding pilot symbol precalculation factor, wherein precomputed factor received data and pilot symbols corresponding to interpolate and equalization operation used when factor;

[0052] 步骤S104:根据预计算因子对上述接收数据进行联合化的插值和均衡运算。 [0052] Step S104: The precomputed factor on the received data of the joint equalization and interpolation calculation.

[0053] 在本实施方式中,优先计算出对导频符号进行插值和均衡运算时所使用的因子, 然后,根据计算得到的预计算因子对与导频符号对应的接收数据进行联合化的插值和均衡运算。 [0053] In the present embodiment, the priority is calculated factor when pilot symbols are interpolated and the equalization operation is used, then, in accordance with the calculated pre-computation factor of the received data and pilot symbols corresponding to the joint of the interpolation and balanced operations. 通过上述方式,将原本分开进行处理的插值和均衡运算合并在一起进行联合化的处理,从而减少了对信号进行干扰抑制合并的运算量,解决了现有技术中先进行信道估计插值,再构造合并权值矩阵进行均衡而造成的运算复杂度增加,系统的数据吞吐率下降实时性降低的技术问题,达到了降低运算复杂度、提高系统吞吐量和数据处理的实时性的技术效果。 The original and interpolated equalization processing operation by merging the above-described embodiment of the joint together in a separate process, thus reducing the signal interference rejection combining calculation amount, to solve the prior art channel estimation interpolation reconfigurable the combined weight of the computational complexity caused by the equalization matrix increases, the system data throughput decreases drop real technical problems, to achieve a reduction in computational complexity and improve the system throughput technical effect of real-time data processing.

[0054] 在一个优选实施方式中,预计算因子是对与该导频符号对应的接收数据进行联合化的插值和均衡运算时用到至少两次的因子。 [0054] In a preferred embodiment, the factor is precomputed used at least twice a factor when the reception data corresponding to pilot symbols of the joint equalization and interpolation calculation. 通过先计算出在进行插值和均衡运算时至少用到两次的因子可以极大地提高运算的效率,降低运算的复杂度。 It can greatly increase the efficiency of the calculation by the first calculating at least used during the interpolation factor and equalization operation twice, to reduce computational complexity.

[0055] 对于上述的预计算因子可以是根据对信道估计矩阵和噪声干扰矩阵进行线性运算后得到的因子。 [0055] For the above-described factor may be pre-computed estimation matrix and the noise factor of the linear operation matrix obtained by the channel. 优选的,上述的预计算因子为://:' ife'1和Hf βτΓ1,其中,Ho为时隙0上的信道估计矩阵,Hi为时隙1上的信道估计矩阵,Rn为噪声干扰矩阵。 Preferably, said precomputed factor: //: 'ife'1 and Hf βτΓ1, where, Ho is the channel estimation matrix on the time slot 0, Hi is the channel estimation matrix on slot 1, Rn is the noise matrix .

[0056] 在得到预计算因子后,可以先计算出插值合并因子在进行联合化的插值和均衡运算,在一个优选实施方式中,根据预计算因子对与导频符号对应的接收数据进行联合化的插值和均衡运算的方法,如图2所示,该方法包括: [0056] In the calculation factor is expected to obtain, can be combined to calculate interpolation factor of the interpolation and performing joint equalization operation, in a preferred embodiment, the precomputed factor according to the received data and pilot symbols corresponding to the joint of the method of interpolation and calculation of equalization, 2, the method comprising:

[0057] 步骤S202:根据预计算因子得到插值合并因子,其中,插值合并因子包括:第一类插值合并因子和第二类插值合并因子,其中,第一类插值合并因子是预计算因子与信道估计矩阵的线性乘积,第二类插值合并因子是预计算因子与接收数据的线性乘积; [0057] Step S202: The combined precalculated factor interpolation factor obtained, wherein the combined interpolation factor comprises: a first type and second type of interpolation factors combined interpolation factor were combined, wherein the first type combined interpolation factor precomputed channel factor linear product estimation matrix, the second interpolation factor precomputed combined linear multiplication factor of the received data;

[0058] 步骤S204:根据插值合并因子对导频符号对应的接收数据进行联合化的插值和均衡运算。 [0058] Step S204: joint operation of interpolation and equalization of the received data corresponding to pilot symbols by interpolation factor merge.

[0059] 在一个优选实施方式中,上述的第二类插值合并因子为 [0059] In a preferred embodiment, the above-described second class of interpolation factor is merged

Figure CN103379055BD00081

和/或 and / or

Figure CN103379055BD00082

,其中,Ho为时隙0上的信道估计矩阵,H1为时隙1上的信道估计矩阵,Rn为噪声干扰矩阵,Y是与导频符号对应的接收数据矩阵。 Where, Ho is the channel estimation matrix on the time slot 0, the channel Hl 1 on the time slot estimate matrix, Rn is the noise matrix, Y is a matrix of received data symbols corresponding to pilot.

[0060] 上述的第一类插值合并因子为以下至少之一: [0060] The first type of combined interpolation factor is at least one of:

Figure CN103379055BD00083

with

Figure CN103379055BD00084

,其中,Ho为时隙0上的信道估计矩阵,H1为时隙1上的信道估计矩阵,Rn为噪声干扰矩阵。 Where, Ho is the channel estimation matrix on the time slot 0, the channel Hl 1 on the time slot estimate matrix, Rn is the noise matrix.

[0061] 基于上述的插值合并因子对天线接收到的数据进行联合化的插值和均衡运算可以采用以下两种方式: [0061] The joint of the equalization operation based on interpolation and interpolation data of the combined factor received by the antenna can be used in two ways:

[0062] 1)方式一:根据插值公式、第一类插值合并因子和第二类插值合并因子对接收数据进行联合化的插值和均衡运算。 [0062] 1) Method 1: The interpolation formula, the first type and second type interpolation factor combined combined interpolation factor of the received data combined interpolation and equalization operation.

[0063] 具体地:根据公式 [0063] In particular: The formula

Figure CN103379055BD00085

对接收数据进行联合化的插值和均衡运算,其中, The received data of the combined equalization and interpolation operation, wherein,

Figure CN103379055BD00086

[0065] [0065]

Figure CN103379055BD00087

,其中,插值公式hi = aiH〇+ (l-αι) Hi,1表不时域的符号索引,Ci1为接收数据第1个符号上的插值系数,其中,Ho为时隙0上的信道估计矩阵,H1 为时隙1上的信道估计矩阵,Rn为噪声干扰矩阵,I为单位矩阵。 Wherein the interpolation formula hi = aiH〇 + (l-αι) Hi, symbol index table 1 from time to time domain, Ci1 reception data of a symbol on the interpolation coefficients, where, Ho is the channel estimation matrix on the time slot 0 , H1 is the channel estimation matrix on slot 1, Rn is the noise matrix, I is a unit matrix.

[0066] 在一个优选实施方式中,可以采用取 [0066] In a preferred embodiment, may be employed to take

Figure CN103379055BD00088

的共辄转置的方式得到 Co Noir transpose manner to give

Figure CN103379055BD00089

从而减少了计算 Thereby reducing the calculation

Figure CN103379055BD000810

时进行乘加运算的计算量。 When calculating the amount of multiply-add operations.

[0067] 通过方式一实现了基于MMSE准则的IRC均衡,采用上述方式实现的MMSE准则的IRC 均衡大大降低了计算的复杂度,提高了运算的效率, [0067] By way of a balanced IRC implemented based on the MMSE criterion, the MMSE criterion using the above-described manner is greatly reduced IRC balanced computational complexity, improve the efficiency of operation,

[0068] 2)方式二:根据插值公式和第二类插值因子对接收数据进行联合化的插值和均衡运算。 [0068] 2) Second way: joint equalization operation of interpolation and interpolation formula according to the received data and the second type interpolation factor.

[0069] 具体地:根据公式 [0069] In particular: The formula

Figure CN103379055BD000811

'对接收数据进行插值和均衡运算,其中,111 =灿〇+(1-<11)!11,1表示时域的符号索引,(11为接收数据第1个符号上的插值系数,其中,Ho为时隙0上的信道估计矩阵,H1为时隙1上的信道估计矩阵,Rn为噪声干扰矩阵。 'Reception data interpolation and equalization operation, wherein, Chan billion + = 111 (1- <11)! 11,1 symbol index represents the time domain (11 interpolation coefficients on the first symbol in the received data, wherein, Ho is a channel estimation matrix on the time slot 0, H1 is the channel estimation matrix on slot 1, Rn is the noise matrix.

[0070] 通过方式二实现了基于SNR准则的IRC均衡,采用上述方式实现的SNR准则的IRC均衡大大降低了计算的复杂度,提高了运算的效率, [0070] implemented based on IRC equalization SNR criterion, using the above-described manner SNR criterion of balanced IRC greatly reduces the computational complexity, improve the efficiency of operation by way of two,

[0071] 在本实施例中还提供了一种干扰抑制合并装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。 [0071] In the present embodiment also provides an interference rejection combining means for realizing the above-described embodiments and preferred embodiment has been described will not be repeated. 如以下所使用的,术语“模块” “单元”可以实现预定功能的软件和/或硬件的组合。 Combination of software and / or hardware as used hereinafter, the term "module", "unit" may implement a predetermined function. 尽管以下实施例所描述的装置较佳的以硬件实现,但是软件,或者软件和硬件的组合的实现也是可能并被构想的。 Although the device described in the preferred embodiment of the following embodiments in hardware to implement, but a combination of software, or software and hardware are also possible and contemplated. 图3是导频符号的插值均衡装置的一种优选结构框图,如图3所示,包括:处理单元302和运算单元304,下面对该结构进行说明。 FIG 3 is a block diagram showing a preferred equalization apparatus interpolation pilot symbol, shown in Figure 3, comprising: a processing unit 302 and operation unit 304, the configuration will be described below.

[0072] 处理单元302,用于根据导频符号的信道估计矩阵和噪声干扰矩阵,得到对应于导频符号的预计算因子,其中,预计算因子是对与导频符号对应的接收数据进行插值和均衡运算时所使用的因子; [0072] The processing unit 302 for estimating the matrix and the noise matrix according to a channel pilot symbols, to obtain corresponding pilot symbol precalculation factor, wherein precomputed factor received data and pilot symbols corresponding to interpolate when used for the operation and the equalization factor;

[0073] 运算单元304,用于根据预计算因子对上述接收数据进行联合化的插值和均衡运算。 [0073] The operation unit 304, for joint operation of interpolation and calculation factors for equalizing the received data in accordance with expected.

[0074] 在一个优选实施方式中,如图4所示,运算单元304包括:第一运算模块402,用于根据预计算因子得到插值合并因子,其中,插值合并因子包括:第一类插值合并因子和第二类插值合并因子,其中,第一类插值合并因子是预计算因子与信道估计矩阵的线性乘积,第二类插值合并因子是预计算因子与接收数据的线性乘积;第二运算模块404,用于根据插值合并因子对导频符号对应的接收数据进行联合化的插值和均衡运算。 [0074] In a preferred embodiment, the arithmetic unit 304 in FIG. 4 comprising,: a first computing module 402, configured to obtain an interpolation factor combined precalculated factor, wherein the interpolation factors combined comprising: a first interpolation type merger the combined interpolation factor and a second factor type, wherein the first type combined interpolation factor precomputed channel estimation linear factor of the product matrix, the second interpolation factor precomputed factor combined with linear product receiving data; and a second computing module 404, for joint operation of interpolation and equalization of the received data corresponding to pilot symbols by interpolation factor merge.

[0075] 在一个优选实施方式中,如图5所示,运算单元304包括:第三运算模块502和/或第四运算模块504,其中,第三运算模块502,用于根据插值公式、第一类插值合并因子和第二类插值合并因子对接收数据进行联合化的插值和均衡运算;第四运算模块504,用于根据插值公式和第二类插值因子对接收数据进行联合化的插值和均衡运算。 [0075] In a preferred embodiment, shown in Figure 5, the arithmetic unit 304 includes: a third calculation module 502 and / or the fourth calculation module 504, wherein the third computing module 502, according to interpolation formula for the first a interpolation factor and the second type of merger combined interpolation factor of the received data combined interpolation and equalization operation; fourth calculation module 504, a joint interpolation of the received data according to the interpolation equation and a second interpolation factor and type balanced operation.

[0076] 具体地:第三运算模块502根据公式 [0076] In particular: a third calculation module 502 according to the formula

Figure CN103379055BD00091

对接收数据进行联合化的插值和均衡运算,其中, The received data of the combined equalization and interpolation operation, wherein,

Figure CN103379055BD00092

[0078] [0078]

Figure CN103379055BD00093

其中,插值公式hi = Q1Ho+ (I-Q1) H1,1表示时域的符号索引,Ci1为接收数据第1个符号上的插值系数,其中,Ho为时隙0上的信道估计矩阵,H1 为时隙1上的信道估计矩阵,Rn为噪声干扰矩阵,I为单位矩阵。 Wherein the interpolation formula hi = Q1Ho + (I-Q1) H1,1 denotes the symbol index in the time domain, the interpolation coefficients Ci1 on receiving data of one symbol, where, Ho is the channel estimation matrix on the time slot 0, H1 is channel 1 on the time slot estimate matrix, Rn is the noise matrix, I is a unit matrix.

[0079] 在一个优选实施方式中,可以采用取 [0079] In a preferred embodiment, may be employed to take

Figure CN103379055BD00094

的共辄转置的方式得到 Co Noir transpose manner to give

Figure CN103379055BD00095

, 从而减少了计算 , Thereby reducing the calculation

Figure CN103379055BD00096

时进行乘加运算的计算量。 When calculating the amount of multiply-add operations.

[0080] 具体地:第四运算模块504根据公式 [0080] In particular: a fourth calculation module 504 according to the formula

Figure CN103379055BD00097

对接收数据进行联合化的插值和均衡运算,其中,111 = <1曲+(卜(11)!11,1表示时域的符号索引,(11为接收数据第1个符号上的插值系数,其中,Ho为时隙0上的信道估计矩阵,H1为时隙1上的信道估计矩阵,Rn为噪声干扰矩阵。 The received data of the combined equalization and interpolation operation, where 111 = <1 + (BU (11)! 11,1 symbol index represents the time domain (11 interpolation coefficients on the first symbol in the received data, where, Ho is the channel estimation matrix on the time slot 0, H1 is the channel estimation matrix on the time slot 1, Rn is the noise matrix.

[0081] 本发明提供了一种优选的实施例来进一步对本发明进行解释,但是值得注意的是,该优选实施例只是为了更好的描述本发明,并不构成对本发明不当的限定。 [0081] The present invention provides a further preferred embodiment of the present invention will be explained, but it is worth noting that only the preferred embodiment in order to better describe the present invention, the present invention is not intended to limit inappropriate.

[0082] 下面结合附图和几个具体的实施例对上述的方法和装置作进一步的说明。 [0082] The following drawings and several specific embodiments will be further described in conjunction with the above-described method and apparatus.

[0083] 实施例1 [0083] Example 1

[0084] 在本优选实施例中以MMSE为例进行说明: [0084] In the embodiment example MMSE described in the preferred embodiment:

[0085] 如图6所示是LTE系统的一种上行子帧时频结构示意图。 [0085] Figure 6 is an LTE uplink sub-frame structure diagram when the system frequency. 其中,一个子帧包括两个时隙。 Wherein, one subframe includes two slots. 在时域上,一个时隙包括7个SC-FDMA (单载波频分多址)符号(1 = 0···6)。 In the time domain, a slot includes 7 SC-FDMA (Single-Carrier Frequency Division Multiple Access) symbols (= 0 ··· 1 6). 在频域上,每个符号占用1200个有用信息子载波(k = 0…1999)。 In the frequency domain, each symbol occupies 1200 useful information subcarrier (k = 0 ... 1999). 在时隙0的第4个符号和时隙1的第4个符号上存在导频符号,用来传输UE (用户设备)的参考信号。 In the presence of a pilot symbol time slots and the fourth symbol slot 0 of 4 symbols 1, the reference signal transmission to UE (User Equipment).

[0086] 依据图6所示的时频结构示意图,以MMSE准则进行IRC均衡方法的方法,如图7所示,包括以下步骤: [0086] The method according to the time-frequency structure diagram shown in FIG. 6, to perform the MMSE criterion IRC equalization method, shown in Figure 7, comprising the steps of:

[0087] 步骤S702:获取导频符号上的信道估计值。 [0087] Step S702: obtaining channel estimation values ​​on the pilot symbols.

[0088] 其中,上述步骤S702包括: [0088] wherein the above-described step S702 comprises:

[0089] 获取2个导频符号上每个子载波上的粗信道估计值扯(iSLQT,lDMARS,k,kaRX)和细信道估计值Hr (isLQT, lDMARS,k,kaRx),其中isL〇T = 0,1为时隙索引,1dmars = 3,10为导频时域符号的索引,1^ = 0,1···1199为频域子载波索引,kaRx = 0,1···7为接收天线索引。 [0089] obtaining raw channel on each sub-carrier estimation value 2 pilot symbols pull (iSLQT, lDMARS, k, kaRX) and fine channel estimation value Hr (isLQT, lDMARS, k, kaRx), wherein isL〇T = 0,1 time slot index, the index of the pilot symbols in the time domain 1dmars = 3,10, for ^ = 0, 1 ··· 1199 is a subcarrier index in the frequency domain, kaRx = 0,1 ··· 7 to receive antenna index.

[0090] 导频0上的细信道估计矩阵Ho和导频1上的细信道估计矩阵H1按照如下方式表示: [0090] Fine pilot channel 0 on the fine channel estimation matrix on pilot estimates 1 Ho and H1 represents a matrix as follows:

Figure CN103379055BD00101

Figure CN103379055BD00102

维数为KaRx X 1, 维数为KaRx X 1。 Dimension is KaRx X 1, dimension is KaRx X 1. 1 1

[0092] 步骤S704:获取干扰和噪声协方差值。 [0092] Step S704: acquiring the difference between the noise and interference covariance.

[0093] 其中,上述步骤S704,包括: [0093] wherein the above-described step S704, comprising:

[0094] SI:根据步骤S702中得到的信道估计值,计算出2个时域导频符号上每个子载波上的干扰和噪声值(即,上文的噪声干扰矩阵)NI (isLQT, lDMARS,k,kaRX), [0094] SI: according to a channel in step S702 to obtain the estimated value, calculated interference and noise value (i.e., noise interference matrix above) NI (isLQT, lDMARS on each subcarrier 2 time-domain pilot symbol, k, kaRX),

[0095] 优选的,NI (isL〇T,1d_s,k,kai«) =Hc (isL〇T,1d_s,k,kai«) -Hr (isL〇T,1d_s,k,kai«) [0095] preferably, NI (isL〇T, 1d_s, k, kai «) = Hc (isL〇T, 1d_s, k, kai«) -Hr (isL〇T, 1d_s, k, kai «)

Figure CN103379055BD00103

[0098] S卩,在第iSLQT时隙上,第d个RB上的噪声和干扰矩阵Rn的第p行,第q列上的元素为: [0098] S Jie, iSLQT in the first slot, the d-th row p matrix Rn of interference and noise on the RB, the elements of the first column q:

[0096] S2:将干扰和噪声值NI按照载波数分成组,进行组内数据平滑。 [0096] S2: NI interference noise value and the number of carriers are divided into groups according to, for smoothing the set of data. 组的索引为d,每组占L个子载波。 Indexed group is d, each accounting for L subcarriers. 本实施例以L = 12为例进行说明,与LTE系统中的1个RB (资源块)包含的子载波数保持一致。 In this embodiment, L = 12 as an example, the number of subcarriers in the LTE system one RB (resource block) included consistent. 计算出每个导频符号上每个RB上的干扰和噪声矩阵(即上述的噪声干扰矩阵): Calculates the interference and noise matrix (i.e., the above-described interference noise matrix) of each pilot symbol on each RB:

[0097] [0097]

[0099] [0099]

Figure CN103379055BD00104

其维数为KaRx X KaRx。 Its dimension is KaRx X KaRx.

[0100] 值得注意的是上述获取信道估计矩阵和噪声干扰矩阵的方式仅是作为一种优选的实施方式,还可以采用其他方式生成信道估计矩阵和噪声干扰矩阵,本发明对此不做限定。 [0100] It is noted that the acquired channel estimate matrix and the noise matrix are merely used as a preferred embodiment, may also be other ways to generate channel estimates and noise matrices using the matrix, the present invention is not limited to this.

[0101] 步骤S706:计算插值合并因子。 [0101] Step S706: calculating the interpolation factor merge.

[0102] 其中,上述步骤S706,包括: [0102] wherein the above-described step S706, the comprising:

[0103] SI:计算2个导频的预计算因子,即计算出第1个导频的预计算因子 [0103] SI: Calcd precomputed pilot factor, i.e., calculates a first pilot precomputation factor

Figure CN103379055BD00105

和第2 个导频的预计算因子 And a second pilot precomputation factor

Figure CN103379055BD00106

,两个矩阵的维数都为I XKaRX。 The dimension of two matrices are XKaRX as I.

[0104] S2:计算3个第一类插值合并因子 [0104] S2: The first three interpolation calculation mergeFactor

Figure CN103379055BD00107

I 3个矩阵的维数都为1X1。 I 3 peacekeeping number of matrices are 1X1.

[0105] S3:随着时域上的Y数据符号索引变化,分别计算出2个第二类插值合并因子 [0105] S3: With the change of the index data symbol Y in the time domain, calculates a second type of two combined interpolation factor

Figure CN103379055BD00111

,维数为1X1。 , Dimension is 1X1.

[0106] 其中,Y是与导频符号对应的接收数据矩阵(即,基站接收到的多天线数据)。 [0106] wherein, Y is the received pilot symbols corresponding to the data matrix (i.e., a multi-antenna base station receives the data) frequency.

[0107] 优选地,Y = [Y (1,1)…Y (KaRx,I) ] H,维数为KaRX X 1。 [0107] Preferably, Y = [Y (1,1) ... Y (KaRx, I)] H, the dimension of KaRX X 1.

[0108] 步骤S708:根据插值因子进行合并计算。 [0108] Step S708: merging calculated interpolation factor.

[0109] 优选地,根据线性插值公式Iu = Ct1Ho+(I-CI1)Hdi多个插值因子进行组合计算,其中,1表示时域的符号索引,αΐ是第1个符号上的插值系数,具体的上述步骤S708包括: [0109] Preferably, the linear interpolation formula Iu = Ct1Ho + (I-CI1) Hdi plurality interpolation factor a combination of computing, where 1 denotes the symbol index in the time domain, αΐ is the interpolation coefficients on the first symbol, the specific the above-described step S708 comprises:

[0110] SI:根据上述的所得到的第一类插值合并因子计算每个时域符号上的如下值: [0110] SI: computing each time domain symbol according to the first type of combined interpolation factor above the value obtained as follows:

Figure CN103379055BD00112

[0112] 在上述步骤SI中,由于RrT1为hermitian (厄米)矩阵,故可以将 [0112] In the step SI, since RrT1 is Hermitian (Hermitian) matrix, it can be

Figure CN103379055BD00113

取共辄转置便可以直接得到 Were taken Noir obtained can be directly transposed

Figure CN103379055BD00114

从而避免了复数乘法和加法操作。 Thus avoiding complex multiplication and addition operations.

[0113] S2:根据上述的所得到的第二类插值合并因子计算每个时域符号上的如下值: [0113] S2: computing each time domain symbol interpolation according to the second type described above pooling factor values ​​obtained are as follows:

Figure CN103379055BD00115

[0114] 计算结果的维数为1X1。 The dimension of [0114] the calculation result is 1X1. » >>

[0115] S3:计算出维数为1X1的合并系数 [0115] S3: calculated dimension is the combined coefficient 1X1

Figure CN103379055BD00116

并最终计算出每个时域符号上的如下值: And finally calculated as values ​​on each time domain symbol:

[0116] [0116]

Figure CN103379055BD00117

[0117] 所得的 [0117] The resulting

Figure CN103379055BD00118

即为多天线IRC均衡后的终端数据。 Terminal is the multi-antenna data after equalization IRC.

[0118] 上述实施方式是以LTE系统的时域数据符号数为12,接收天线数为8时为例进行的说明,根据上面的描述,采用本实施例所述方法的复数乘法运算次数仅为现有方法的0.2, 复数加法运算次数仅为现有方法的0.36。 Number of multiplications complex time-domain data symbols [0118] the above embodiment is an LTE system is 12, the number of reception antennas is described in example 8, in accordance with the above description, the present embodiment of the method is only 0.2, the complex number of summations is only 0.36 existing methods of conventional methods. 可见本发明实施例的方法显著降低了运算量。 Visible Example of the present invention significantly reduces the amount of computation.

[0119] 根据图7所示的IRC均衡方法本实施例还提供了一种优选的实现装置,如图8所示, 包括以下5个模块: [0119] The IRC equalization method shown in FIG. 7 embodiment also provides a preferred implementation means 8, includes the following five modules:

[0120] 共享存储及控制单元802,用于负责所有模块的读写控制、输入及输出,中间结果数据的存储,主要包括RAM存储阵列,控制电路及时域符号索引计数器。 [0120] shared memory 802 and a control unit, for reading and writing control module is responsible for all input and output data store intermediate results, including RAM memory array, the control circuit time-domain symbol index counter. 其中,RAM存储电路与OFDM解调存储单元是复用的,用来存储Ka个天线N个符号的天线数据,并复用存储Ka个天线的信道估计数据。 Wherein, the RAM memory of the OFDM demodulation circuit memory cells are multiplexed to store the antenna data Ka antennas of N symbols, channel multiplexing and storing estimates Ka antennas.

[0121] 信道估计值计算单元804 (即上文的处理单元的一部分),用于进行信道估计的计算。 [0121] channel estimation value calculation unit 804 (i.e., a portion of the above processing unit), for calculating the channel estimation.

[0122] 干扰和噪声协方差值计算单元806 (即上文的处理单元中的一部分),用于进行干扰和噪声协方差矩阵的计算和存储。 [0122] interference and noise covariance variance value calculation unit 806 (i.e., part of the processing unit in the above), for calculating and storing the interference and noise covariance matrix.

[0123] 插值合并因子计算单元808 (即上文的第一运算模块402),用于进行插值合并因子的计算和存储,主要包括输入数据交叉选择电路,阵列乘/加电路以及存储阵列。 [0123] The combined interpolation factor calculation unit 808 (i.e., the first arithmetic module 402 above), for calculating and storing interpolation factors combined, the input data including the cross-selection circuit array multiply / accumulate circuit and a memory array. 存储阵列包括预计算因子存储阵列,第一类插值合并因子存储阵列和第二类插值合并因子存储阵列。 Factor precomputed memory array comprises a storage array, a first class of interpolation factors combined memory array and the second type of interpolation factors combined memory array.

[0124] 插值合并单元810 (第二运算模块404、第三运算模块502和/或第四运算模块504), 用于根据当前数据的符号索引完成插值合并因子的组合计算,主要包括除法器,乘法器以及加法器电路。 [0124] The combined interpolation unit 810 (second calculation module 404, the third arithmetic module 502 and / or the fourth calculation block 504), for calculating the complete composition interpolation factor combined data according to the current symbol index, including a divider, multiplier and adder circuit.

[0125] 基于上述的IRC均衡实现装置进行IRC均衡的步骤如图9所示,包括: [0125] FIG achieve the above-described equalization IRC IRC equalization apparatus based on the step 9, comprising:

[0126] 步骤S902:共享存储及控制单元802将接收机接收到的各个天线数据串行存储到其内部的多个存储空间中;待共享存储及控制单元802存储满1个子帧的数据后,信道估计值计算单元804将2个导频符号的天线数据取出进行信道估计计算。 [0126] Step S902: The control unit 802 and the shared memory of the receiver antennas each received serial data stored in the plurality of storage space in the inside thereof; and a control unit to be shared storage 802 stores a full data subframe after channel estimation value calculating unit 804 two antenna data extracting pilot symbols for channel estimation calculation. 计算好的信道估计值一路原址存储回共享存储及控制单元802存储空间中,一路输入到干扰和噪声协方差值计算单元806; The calculated channel estimation value storage site all the way back to the control unit 802 and the shared memory in the storage space, one input to interference and noise covariance variance calculating unit 806;

[0127] 步骤S904:干扰和噪声协方差值计算单元806根据信道估计值进行干扰和噪声矩阵的计算;干扰和噪声协方差值计算单元806输出数据的同时,从共享存储及控制单元802 的相应存储空间中并行读取出两个导频符号的信道估计值,通过干扰和噪声协方差值计算单元806内部的数据交叉选择电路对阵列乘加单元的2个输入操作数进行切换选择,首先计算出预计算因子存储在预计算因子存储阵列里;然后再从共享存储及控制单元802存储单元中并行读取出2个导频符号的信道估计值,并联合计算因子存储阵列的数据反馈,计算出第1类插值合并因子存储在第1类插值合并因子存储存储阵列; [0127] Step S904: interference and noise covariance value calculation unit 806 calculates the interference and noise matrix according to the channel estimation value; unit 806 while the output data interference and noise covariance variance calculation, from the control unit 802 and the shared memory a respective storage space parallel read channel estimation values ​​of two pilot symbols, by calculating the difference between the interference and noise covariance data inside the cross section 806 of the selection circuit array 2 input operand multiplication and addition unit is switched to select first calculate the precomputed factor stored precomputed factor storage array in; and then read in parallel from the shared memory and the control unit 802 storage unit, the channel estimation values ​​of the two pilot symbols and data factor storage array federated computing feedback, class 1 calculated interpolation factors stored in the combined category a combined interpolation factors stored in the storage array;

[0128] 步骤S906:在共享存储及控制单元802内部的读地址计数器的控制下,顺序读取出每个符号的天线数据,输出到插值合并因子计算单元808,通过控制数据交叉选择电路对阵列乘加单元的2个输入操作数进行切换选择计算出第2类插值合并因子并存储; [0128] Step S906: under control of the read address counter in the control unit and the internal shared memory 802, sequentially reads out the data of each antenna symbols, merge to the interpolation factor calculation unit 808, by controlling the data selection circuit array crossing two input operand multiplication and addition unit is switched to select the second category is calculated and stored in the interpolation factor were combined;

[0129] 步骤S908:插值合并单元810根据共享存储及控制单元802输出的时域符号索引信息计算插值系数,根以及插值合并因子计算单元808计算出的第1类插值合并因子和第1类插值合并因子进行相关的乘加运算,得到IRC均衡后的单路输出数据。 [0129] Step S908: interpolating combining unit 810 calculates an interpolation coefficient based on shared memory and the time-domain symbol index control unit 802 outputs information, the root and the interpolation combination factor calculating unit 808 calculates the category 1 interpolation combination factor and category 1 Interpolation the combined factors associated multiply-add operations to obtain a single output data after equalization IRC.

[0130] 通过上述对信道估计矩阵的插值和均衡联合运算实现IRC均衡的方法,显著降低了基于匪SE准则的IRC均衡的运算量,将有效降低了运算复杂度和时延。 [0130] Joint operation through said channel estimation and equalization matrix interpolation IRC equalization implemented method significantly reduces the amount of computation based on IRC balanced bandit SE criteria, will effectively reduce the computational complexity and time delay. 以完成N载波L符号M天线的LTE系统为评估模型,采用背景技术中的现有技术方案,即先利用导频进行信道估计插值,再构造合并权值矩阵进行IRC均衡的方法,计算量如表1所示: To complete the N carriers L symbol M antennas of the LTE system to assess the model, using the prior art solutions of the background art, that is, first using a pilot channel estimation interpolation, then construct combined weight matrix IRC equalization method, calculates the amount of such table 1:

[0131] 表1 [0131] TABLE 1

[0132] [0132]

Figure CN103379055BD00121

[0133] [0133]

Figure CN103379055BD00131

[0134] 采用本发明所述方法,计算量(没有列举与已有技术方案相同计算步骤的运算量) 如表2所示: [0134] The method of the present invention, the calculation amount (calculation amount does not include the prior art solutions the same calculation step) As shown in Table 2:

[0135] 表2 [0135] TABLE 2

[0136] [0136]

Figure CN103379055BD00132

[0137] 可见,采用本发明时候的方式进行均衡所采用的复数乘法运算次数为原来的(N* L* (2M+3/4) +N*M* (2M+3)) /N*L*M* (2*M+5/2),复数加法次数为原来的(N*L* (2M-1) +N* (Μ-ΐ) * (2M+3)) /N*L* 。 [0137] visible, employed when the present invention is the way a complex number of multiplications equalization used original (N * L * (2M + 3/4) + N * M * (2M + 3)) / N * L * M * (2 * M + 5/2), the complex number of additions to the original (N * L * (2M-1) + N * (Μ-ΐ) * (2M + 3)) / N * L *. 当系统的时域符号数L 越多时,接收天线数M 越多,节省的运算量将更加明显。 When the long time domain symbol number L system, the more the number of reception antennas M, computation savings will become apparent.

[0138] 实施例2 [0138] Example 2

[0139] 在本优选实施例中以SNR方法的IRC合并为例进行说明: IRC SNR embodiment to be described an example method of merging [0139] In the present preferred embodiment:

[0140] 在本实施例中仍然以如图6所示是LTE系统的一种上行子帧时频结构示意图为了进行说明。 [0140] In the present embodiment shown in FIG. 6 still is a schematic structural diagram for explanation frequency for uplink sub-frame when the LTE system.

[0141] 依据图6所示的时频结构示意图,以SNR方法进行IRC均衡的方法,如图10所示,包括以下步骤: [0141] The method according to the time-frequency structure diagram shown in FIG. 6, IRC SNR equalization method, shown in Figure 10, comprising the steps of:

[0142] 步骤S1002:获取导频符号上的信道估计值。 [0142] Step S1002: obtaining channel estimation values ​​of pilot symbols.

[0143] 其中,上述步骤S1002包括: [0143] wherein the above-described step S1002 comprising:

[0144] 获取2个导频符号上每个子载波上的粗信道估计值扯(iSLQT,lDMARS,k,kaRX)和细信道估计值Hr (isLQT, lDMARS,k,kaRx),其中isL〇T = 0,1为时隙索引,1dmars = 3,10为导频时域符号的索引,1^ = 0,1···1199为频域子载波索引,kaRx = 0,1···7为接收天线索引。 [0144] obtaining raw channel on each sub-carrier estimation value 2 pilot symbols pull (iSLQT, lDMARS, k, kaRX) and fine channel estimation value Hr (isLQT, lDMARS, k, kaRx), wherein isL〇T = 0,1 time slot index, the index of the pilot symbols in the time domain 1dmars = 3,10, for ^ = 0, 1 ··· 1199 is a subcarrier index in the frequency domain, kaRx = 0,1 ··· 7 to receive antenna index.

[0145] 导频0上的细信道估计矩阵Ho和导频1上的细信道估计矩阵H1按照如下方式表示: [0145] Fine pilot channel 0 on the fine channel estimation matrix on pilot estimates 1 Ho and H1 represents a matrix as follows:

Figure CN103379055BD00141

Figure CN103379055BD00142

[0146] 维数为KaRx X 1, 维数为KaRx X 1。 [0146] dimension is KaRx X 1, of dimension KaRx X 1. » 5 >> 5

[0147] 步骤S1004:获取干扰和噪声协方差值 [0147] Step S1004: acquiring the difference between the noise and interference covariance

[0148] 其中,上述步骤S1004,包括: [0148] wherein the step S1004, the comprising:

[0149] SI:根据步骤S702中得到的信道估计值,计算出2个时域导频符号上每个子载波上的干扰和噪声值(即,上文的噪声干扰矩阵)NI (isLQT, lDMARS,k,kaRX), [0149] SI: according to a channel in step S702 to obtain the estimated value, calculated interference and noise value (i.e., noise interference matrix above) NI (isLQT, lDMARS on each subcarrier 2 time-domain pilot symbol, k, kaRX),

[0150] 优选的,NI (isLQT,lD_s,k,kaRx) =Hc (isLQT,lD_s,k,kaRx) -Hr (isLQT,lD_s,k,kaRx) [0150] preferably, NI (isLQT, lD_s, k, kaRx) = Hc (isLQT, lD_s, k, kaRx) -Hr (isLQT, lD_s, k, kaRx)

[0151] S2:将干扰和噪声值NI按照载波数分成组,进行组内数据平滑。 [0151] S2: NI interference noise value and the number of carriers are divided into groups according to, for smoothing the set of data. 组的索引为d,每组占L个子载波。 Indexed group is d, each accounting for L subcarriers. 本实施例以L = 12为例进行说明,与LTE系统中的1个RB (资源块)包含的子载波数保持一致。 In this embodiment, L = 12 as an example, the number of subcarriers in the LTE system one RB (resource block) included consistent. 计算出每个导频符号上每个RB上的干扰和噪声矩阵(即上述的噪声干扰矩阵): Calculates the interference and noise matrix (i.e., the above-described interference noise matrix) of each pilot symbol on each RB:

[0152] [0152]

Figure CN103379055BD00143

[0153] S卩,在第iSLQT时隙上,第d个RB上的噪声和干扰矩阵Rn的第p行,第q列上的元素为: [0153] S Jie, iSLQT in the first slot, the d-th row p matrix Rn of interference and noise on the RB, the elements of the first column q:

[0154] [0154]

Figure CN103379055BD00144

其维数为Kata X KaRx。 Its dimension is Kata X KaRx.

[0155] 值得注意的是上述获取信道估计矩阵和噪声干扰矩阵的方式仅是作为一种优选的实施方式,还可以采用其他方式生成信道估计矩阵和噪声干扰矩阵,本发明对此不做限定。 [0155] It is noted that the acquired channel estimate matrix and the noise matrix are merely used as a preferred embodiment, may also be other ways to generate channel estimates and noise matrices using the matrix, the present invention is not limited to this.

[0156] 步骤S1006:计算插值合并因子。 [0156] Step S1006: calculating an interpolation factor merge.

[0157] 其中,上述步骤S1006,包括: [0157] wherein the step S1006, the comprising:

[0158] SI:计算2个导频的预计算因子,即计算出第1个导频的预计算因子 [0158] SI: Calcd precomputed pilot factor, i.e., calculates a first pilot precomputation factor

Figure CN103379055BD00145

和第2 个导频的预计算因子 And a second pilot precomputation factor

Figure CN103379055BD00146

,两个矩阵的维数都为I XKaRX。 The dimension of two matrices are XKaRX as I.

[0159] S2:随着时域上的Y数据符号索引变化,分别计算出2个第二类插值合并因子 [0159] S2: Y data symbols with index variation in the time domain, calculates a second type of two combined interpolation factor

Figure CN103379055BD00151

,维数为1 XI。 , Dimension is 1 XI.

[0160] 其中,Y是与导频符号对应的接收数据矩阵(S卩,基站接收到的多天线数据), [0160] wherein, Y is the pilot symbol corresponding to the received data matrix (S Jie, a multi-antenna base station receives the data),

[0161] 优选地,Y = [Y (1,1)…Y (KaRx,1) ] η,维数为KaRx X 1。 [0161] Preferably, Y = [Y (1,1) ... Y (KaRx, 1)] η, of dimension KaRx X 1.

[0162] 步骤S1008:根据插值因子进行合并计算。 [0162] Step S1008: merging calculated interpolation factor.

Figure CN103379055BD00152

[0163] 优选地,根据上述的所得到的第二类插值合并因子计算每个时域符号上的如下值: [0163] Preferably, the following value is calculated each time domain symbol on the second type of interpolation according to the above factors combined obtained:

[0164] 计算结果的维数为IX 1,其中,1表示时> 域的符号索引W1是第1个符号上的插值系数。 [0164] Dimension IX is a calculation result, wherein represents 1> is the symbol index field interpolation coefficient W1 on the first symbol.

Figure CN103379055BD00153

即为SNR方法的多天线IRC均衡后的终端数据。 IRC method for multi-antenna terminal data is the SNR after equalization.

[0165] 基于图8的装置以SNR方法进行IRC均衡的方法,如图11所示,包括以下步骤: [0165] Based on the apparatus of FIG. 8 in a method of equalizing SNR IRC method shown in Figure 11, comprising the steps of:

[0166] 步骤S1102:共享存储及控制单元802将接收机接收到的各个天线数据串行存储到其内部的多个存储空间中;待共享存储及控制单元802存储满1个子帧的数据后,信道估计值计算单元804将2个导频符号的天线数据取出进行信道估计计算。 [0166] Step S1102: the control unit 802 and the shared memory of the receiver antennas each received serial data stored in the plurality of storage space in the inside thereof; and a control unit to be shared storage 802 stores a full data subframe after channel estimation value calculating unit 804 two antenna data extracting pilot symbols for channel estimation calculation. 将计算好的信道估计值一路原址存储回共享存储及控制单元802存储空间中,一路输入到干扰和噪声协方差值计算单元806; The computed channel estimate value stored all the way back to the site of the control unit 802 and the shared memory in the storage space, one input to interference and noise covariance variance calculating unit 806;

[0167] 步骤Sl 104:干扰和噪声协方差值计算单元806根据信道估计值进行干扰和噪声矩阵的计算;待干扰和噪声协方差值计算单元806输出数据的同时,从共享存储及控制单元802相应存储空间中并行读取出两个导频符号的信道估计值,通过干扰和噪声协方差值计算单元806内部的数据交叉选择电路对阵列乘加单元的2个输入操作数进行切换选择,首先计算出预计算因子存储在预计算因子存储阵列里,在进行IRC均衡的方法的时候无需进行第1类插值合并因子的计算。 [0167] Step Sl 104: interference and noise covariance value calculation unit 806 calculates the interference and noise matrix according to the channel estimation value; be interference and noise covariance variance calculating unit 806, while the output data from the shared memory and control corresponding memory space unit 802 reads the parallel channel estimation values ​​of two pilot symbols, by calculating the difference between the interference and noise covariance data inside the cross section 806 of the selection circuit array 2 input operand multiplication and addition unit is switched Alternatively, to calculate the first factor is stored in a precomputed factor precomputed memory array, the method of performing equalization of IRC when combined interpolation factor calculated without category 1.

[0168] 步骤S1106:在共享存储及控制单元802内部的读地址计数器的控制下,顺序读取出每个符号的天线数据,输出到插值合并因子计算单元808,通过控制数据交叉选择电路对阵列乘加单元的2个输入操作数进行切换选择计算出第2类插值合并因子并存储; [0168] Step S1106: under control of the read address counter in the control unit and the internal shared memory 802, sequentially reads out the data of each antenna symbols, merge to the interpolation factor calculation unit 808, by controlling the data selection circuit array crossing two input operand multiplication and addition unit is switched to select the second category is calculated and stored in the interpolation factor were combined;

[0169] 步骤S1108:插值合并单元810根据输出的时域符号索引信息计算插值系数,以及插值合并因子计算单元808计算出的第2类插值合并因子仅进行简单的累加操作,无需计算合并系数即直接得到IRC均衡后的单路输出数据。 [0169] Step S1108: interpolation coefficients, and interpolation combination factor calculating unit 808 calculates the category 2 interpolation combined factor simply accumulate operation interpolation combining unit 810 calculates time-domain symbol index information output, without calculating combined coefficient i.e. single directly IRC equalized output data.

[0170] 通过上述融合信道估计插值和均衡两个模块而达到了共享部分硬件计算资源的目的,减少了硬件消耗。 [0170] interpolation estimation and equalization module via the two channels to achieve fusion of part of the hardware object sharing computing resources, reducing the hardware cost.

[0171] 在另外一个实施例中,还提供了一种软件,该软件用于执行上述实施例及优选实施方式中描述的技术方案。 [0171] In a further embodiment, there is also provided a software, the technical solution for performing the above-described embodiments and preferred embodiments described herein.

[0172] 在另外一个实施例中,还提供了一种存储介质,该存储介质中存储有上述软件,该存储介质包括但不限于:光盘、软盘、硬盘、可擦写存储器等。 [0172] In a further embodiment, there is also provided a storage medium, the storage medium stores the above-described software, the storage media include, but are not limited to: an optical disc, a flexible disk, hard disk, a flash memory or the like.

[0173] 从以上的描述中,可以看出,本发明实现了如下技术效果:优先计算出对导频符号进行插值和均衡运算时所使用的因子,然后,根据计算的到的预计算因子对导频符号进行插值和均衡运算。 [0173] From the above description, it can be seen, the present invention achieves the following technical effects: when the priority factor is calculated by interpolating the pilot symbols and the equalizer used for the calculation, then, according to the calculated pre-computation factor on interpolating the pilot symbols and the equalizer operation. 通过上述方式,将原本分开进行处理的插值和均衡运算合并在一起进行联合化的处理,从而减少了对信号进行干扰抑制合并的运算量,解决了现有技术中先进行信道估计插值,再构造合并权值矩阵进行均衡而造成的运算复杂度增加,系统的数据吞吐率下降实时性降低的技术问题,达到了降低运算复杂度、提高系统吞吐量和数据处理的实时性的技术效果。 The original and interpolated equalization processing operation by merging the above-described embodiment of the joint together in a separate process, thus reducing the signal interference rejection combining calculation amount, to solve the prior art channel estimation interpolation reconfigurable the combined weight of the computational complexity caused by the equalization matrix increases, the system data throughput decreases drop real technical problems, to achieve a reduction in computational complexity and improve the system throughput technical effect of real-time data processing.

[0174] 显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。 [0174] Obviously, those skilled in the art should understand that the modules or steps of the present invention described above can be used general-purpose computing device, they can be integrated in a single computing device or distributed across multiple computing devices available on the Internet, optionally, they can be implemented with program codes executable by a computing device, so that, to be performed by a computing device stored in a storage means, and in some cases, may be different from this at step sequence shown or described, or they are made into integrated circuit modules, or by making them of a plurality of modules or steps in a single integrated circuit module. 这样,本发明不限制于任何特定的硬件和软件结合。 Thus, the present invention is not limited to any particular hardware and software combination.

[0175] 以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。 [0175] The foregoing is only preferred embodiments of the present invention, it is not intended to limit the invention to those skilled in the art, the present invention may have various changes and variations. 凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。 Any modification within the spirit and principle of the present invention, made, equivalent substitutions, improvements, etc., should be included within the scope of the present invention.

Claims (11)

  1. 1. 一种干扰抑制合并方法,其特征在于,包括: 根据导频符号的信道估计矩阵和噪声干扰矩阵,得到对应于所述导频符号的预计算因子,其中,所述预计算因子是对与所述导频符号对应的接收数据进行插值和均衡运算时所使用的因子; 根据所述预计算因子对所述接收数据进行联合化的插值和均衡运算; 根据所述预计算因子对所述接收数据进行联合化的插值和均衡运算,包括: 根据公式1 A combined method of interference suppression, characterized by comprising: estimating a pilot symbol according to the channel matrix and the noise matrix to obtain the pilot symbols corresponding to precalculation factor, wherein the factor is precomputed factor said pilot symbols corresponding to the received data and the interpolated equalization operation used; pre-computed according to the interpolation factor and equalization of joint operation on the received data; precalculation according to the factor of the receiving combined data of the interpolation and equalization operation, comprising: according to formula 1
    Figure CN103379055BC00021
    1对所述接收数据进行联合化的插值和均衡运算, 其中 1 of the joint equalization and interpolation operation on the received data, wherein
    Figure CN103379055BC00022
    Figure CN103379055BC00023
    '其中,插值公式hi = aiH〇+ (l-αι) Hi,1表不时域的符号索引W1为所述接收数据第1个符号上的插值系数,其中,Ho为时隙O上的信道估计矩阵,H1 为时隙1上的信道估计矩阵,Rn为噪声干扰矩阵,I为单位矩阵; 以及,根据公式 'Wherein interpolation formula hi = aiH〇 + (l-αι) Hi, 1 table from time to time domain symbol index W1 of the received data on the interpolation coefficients a first symbol, where, Ho is the channel estimation on the time slot O matrix, Hl 1 on the channel slot estimate matrix, Rn is the noise matrix, I is a unit matrix; and, according to the formula
    Figure CN103379055BC00024
    对所述接收数据进行联合化的插值和均衡运算, 其中,hmHo+ (I-Ct1) H1,1表示时域的符号索弓丨,αι为所述接收数据第1个符号上的插值系数,其中,Ho为时隙O上的信道估计矩阵,H1为时隙1上的信道估计矩阵,Rn为噪声干扰矩阵。 Joint of interpolation and equalization operation on the received data, wherein, hmHo + (I-Ct1) H1,1 denotes a symbol index in the time domain bow Shu, αι interpolation coefficients for the received data on said first symbol, wherein , Ho slot on the channel estimation matrix O, H1 is the channel estimation matrix on the time slot 1, Rn is the noise matrix.
  2. 2. 根据权利要求1所述的方法,其特征在于,所述预计算因子是对与所述导频符号对应的接收数据进行插值和均衡运算时用到至少两次的因子。 2. The method according to claim 1, wherein said factor is pre-computed at least twice factor used when receiving data corresponding to the pilot symbol interpolating and equalization operation.
  3. 3. 根据权利要求1或2所述的方法,其特征在于,所述预计算因子是对所述信道估计矩阵和噪声干扰矩阵进行线性运算后得到的因子。 3. The method of claim 1 or claim 2, wherein said factor is pre-computed estimation of the channel matrix and the noise factor of the matrix obtained by linear operations.
  4. 4. 根据权利要求3所述的方法,其特征在于,所述预计算因子为: 4. The method according to claim 3, wherein said factor is pre-computed:
    Figure CN103379055BC00025
    其中,Ho为时隙0上的信道估计矩阵,H1为时隙1上的信道估计矩阵,Rn为噪声干扰矩阵。 Where, Ho is the channel estimation matrix on the time slot 0, H1 is the channel estimation matrix on the time slot 1, Rn is the noise matrix.
  5. 5. 根据权利要求1、2、4中任一项所述的方法,其特征在于,根据所述预计算因子对所述接收数据进行联合化的插值和均衡运算,包括: 根据所述预计算因子得到插值合并因子,其中,所述插值合并因子包括:第一类插值合并因子和第二类插值合并因子,其中,所述第一类插值合并因子是所述预计算因子与信道估计矩阵的线性乘积,所述第二类插值合并因子是所述预计算因子与所述接收数据的线性乘积; 根据所述插值合并因子对所述导频符号对应的接收数据进行联合化的插值和均衡运算。 5. The method according to any one of 1,2,4 claims, characterized in that, according to the combined factors precomputation of equalization and interpolation operation on the received data, comprising: based on the precalculation factor were combined to obtain an interpolation factor, wherein the factor comprises interpolating combined: a first type and second type of interpolation factors combined interpolation factor were combined, wherein the first type is the interpolation factor combined precalculated factor of the channel estimate matrix linear product of the second type is the interpolation factor combined precomputed linear multiplication factor of the received data; joint operation of interpolation and equalization of reception data corresponding to the pilot symbols based on the combined interpolation factor .
  6. 6. 根据权利要求5所述的方法,其特征在于,所述第二类插值合并因子为 6. The method according to claim 5, characterized in that the second type of interpolation factor is merged
    Figure CN103379055BC00026
    和/或 and / or
    Figure CN103379055BC00027
    其中,Ho为时隙0上的信道估计矩阵,H1为时隙1上的信道估计矩阵,Rn为噪声干扰矩阵, Y是与所述导频符号对应的所述接收数据矩阵。 Where, Ho is the channel estimation matrix on the time slot 0, H1 is the channel estimation matrix on the time slot 1, Rn is the noise matrix, Y is the pilot with the received data corresponding to the matrix symbol.
  7. 7. 根据权利要求5所述的方法,其特征在于,所述第一类插值合并因子为以下至少之 7. The method according to claim 5, wherein the first type combined interpolation factor of at least the following
    Figure CN103379055BC00031
    其中,Ho为时隙O上的信道估计矩阵,H1为时隙1上的信道估计矩阵,Rn为噪声干扰矩阵。 Wherein, Ho slot on the channel estimation matrix O, H1 is the channel estimation matrix on the time slot 1, Rn is the noise matrix.
  8. 8. 根据权利要求1所述的方法,其特征在于,取所述〃的共辄转置得到所述U Rn1HijO 8. The method according to claim 1, characterized in that, taking the co 〃 Noir transposed the U Rn1HijO
  9. 9. 一种干扰抑制合并装置,其特征在于,包括: 处理单元,用于根据导频符号的信道估计矩阵和噪声干扰矩阵,得到对应于所述导频符号的预计算因子,其中,所述预计算因子是对与所述导频符号对应的接收数据进行插值和均衡运算时所使用的因子; 运算单元,用于根据所述预计算因子对所述接收数据进行联合化的插值和均衡运算; 根据所述预计算因子对所述接收数据进行联合化的插值和均衡运算,包括: 根据公式\ . An interference rejection combining apparatus comprising: a processing unit for estimating noise and interference matrix matrix based on the pilot channel symbols to obtain pilot symbols corresponding to the pre-calculated factor, wherein said factor is pre-computed for the received data symbols corresponding to pilot interpolated and used for the calculation of the equalizer factors; an arithmetic unit, according to the precalculated factor for the received data and joint equalization calculation of interpolation ; pre-computed according to the interpolation factor and equalization of joint operation on the received data, comprising: according to the formula \.
    Figure CN103379055BC00032
    . 对所述接收数据进行联合化的插值和均衡运算, 其中 . Joint of interpolation and equalization operation on the received data, wherein
    Figure CN103379055BC00033
    Figure CN103379055BC00034
    '其中,插值公式hi = aiH〇+ (l-αι) Hi,1表不时域的符号索引W1为所述接收数据第1个符号上的插值系数,其中,Ho为时隙0上的信道估计矩阵,H1 为时隙1上的信道估计矩阵,Rn为噪声干扰矩阵,I为单位矩阵; 以及,根据公另 'Wherein interpolation formula hi = aiH〇 + (l-αι) Hi, 1 table from time to time domain symbol index W1 of the received data on the interpolation coefficients a first symbol, where, Ho is the channel estimation on the time slot 0 matrix, Hl 1 on the channel slot estimate matrix, Rn is the noise matrix, I is a unit matrix; and, according to another known
    Figure CN103379055BC00035
    1 寸所述接收数据进行联合化的插值和均衡运算, 其中,hmHo+ (I-Ct1) H1,1表示时域的符号索弓丨,αι为所述接收数据第1个符号上的插值系数,其中,Ho为时隙0上的信道估计矩阵,H1为时隙1上的信道估计矩阵,Rn为噪声干扰矩阵。 The joint 1 inch received data and equalization of interpolation calculation, wherein, hmHo + (I-Ct1) H1,1 denotes a symbol index in the time domain bow Shu, αι interpolation coefficients on the received data symbols to the first one, where, Ho is the channel estimation matrix on the time slot 0, H1 is the channel estimation matrix on the time slot 1, Rn is the noise matrix.
  10. 10. 根据权利要求9所述的装置,其特征在于,所述运算单元包括: 第一运算模块,用于根据所述预计算因子得到插值合并因子,其中,所述插值合并因子包括:第一类插值合并因子和第二类插值合并因子,其中,所述第一类插值合并因子是所述预计算因子与信道估计矩阵的线性乘积,所述第二类插值合并因子是所述预计算因子与所述接收数据的线性乘积; 第二运算模块,用于根据所述插值合并因子对所述导频符号对应的接收数据进行联合化的插值和均衡运算。 10. The apparatus according to claim 9, characterized in that the arithmetic unit comprises: a first calculation module, according to the pre-computed for obtaining an interpolation factor combined factor, wherein the combined factor interpolation comprises: a first the combined interpolation factor type I and II were combined interpolation factor, wherein the first type is the interpolation factor combined precalculated factor linear product channel estimation matrix, the second category is the combination factor interpolation factor precomputed linear product of said received data; a second calculating module, configured to receive data corresponding to pilot symbols based on the combined interpolation factor of the interpolation and the joint equalization operation.
  11. 11. 根据权利要求10所述的装置,其特征在于,所述运算单元包括:第三运算模块和/或第四运算模块,其中, 所述第三运算模块,用于根据插值公式、所述第一类插值合并因子和所述第二类插值合并因子对所述接收数据进行联合化的插值和均衡运算; 所述第四运算模块,用于根据插值公式和所述第二类插值因子对所述接收数据进行联合化的插值和均衡运算。 11. The apparatus according to claim 10, characterized in that the arithmetic unit comprises: a third calculating module and / or the fourth calculation module, wherein said third calculation module, according to interpolation formula, the the first interpolation factor and the second type of combined interpolation factor of the received data combined joint operation of interpolation and equalization; said fourth calculation module, according to interpolation formula and the interpolation factor of the second type the received data of the joint equalization and interpolation calculation.
CN 201210132127 2012-04-28 2012-04-28 Method and apparatus for interference rejection combining CN103379055B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201210132127 CN103379055B (en) 2012-04-28 2012-04-28 Method and apparatus for interference rejection combining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201210132127 CN103379055B (en) 2012-04-28 2012-04-28 Method and apparatus for interference rejection combining

Publications (2)

Publication Number Publication Date
CN103379055A true CN103379055A (en) 2013-10-30
CN103379055B true CN103379055B (en) 2018-05-15

Family

ID=49463626

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201210132127 CN103379055B (en) 2012-04-28 2012-04-28 Method and apparatus for interference rejection combining

Country Status (1)

Country Link
CN (1) CN103379055B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103916229B (en) * 2014-04-29 2017-12-08 电信科学技术研究院 A method of inhibiting interference method and apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5319770B2 (en) * 2008-07-14 2013-10-16 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Interference rejection combining for multiuser mimo communication system
CN102104562B (en) * 2009-12-17 2013-08-21 中兴通讯股份有限公司 Multi-antenna interference rejection combining method and device
CN101753176B (en) * 2009-12-24 2012-12-19 北京北方烽火科技有限公司 Interference rejection combining method and system

Also Published As

Publication number Publication date Type
CN103379055A (en) 2013-10-30 application

Similar Documents

Publication Publication Date Title
US20100040162A1 (en) Transmission method, transmission device, receiving method, and receiving device
US20070153922A1 (en) Receiver and method for channel estimation for multicarrier communication systems
Vollmer et al. Comparative study of joint-detection techniques for TD-CDMA based mobile radio systems
Chang et al. Model-based channel estimation for OFDM signals in Rayleigh fading
US20080317141A1 (en) Method for Calculating Functions of the Channel Matrices in Linear Mimo-Ofdm Data Transmission
US20060133529A1 (en) Apparatus and method for performing time domain channel estimation in a communication system
WO2004073276A1 (en) Two-dimensional channel estimation for multicarrier multiple input outpout communication systems
Leus et al. Orthogonal multiple access over time-and frequency-selective channels
JP2006222872A (en) Space multiplex signal detection circuit
EP1821445A1 (en) Method to improve the channel estimate in broadband simo/mimo cellular radio networks during abrupt interference variations
CN101753176A (en) Interference rejection combining method and system
US20040228392A1 (en) Fourier-transform based linear equalization for MIMO CDMA downlink
Thoen et al. Constrained least squares detector for OFDM/SDMA-based wireless networks
Bartolome et al. MMSE techniques for space diversity receivers in OFDM-based wireless LANs
Rabiei et al. A non-iterative technique for phase noise ICI mitigation in packet-based OFDM systems
US20120027140A1 (en) System and method for channel estimation
US8009727B2 (en) Equalizer for single carrier FDMA receiver
US20130114451A1 (en) Intra-cell and inter-cell interference mitigation methods for orthogonal frequency-division multiple access cellular networks
Wan et al. Semi-blind most significant tap detection for sparse channel estimation of OFDM systems
CN101841375A (en) Testing method and device for multi-input multi-output single carrier block transmission system
JP2009081535A (en) Communication device, and calculating method of desired wave transmission channel characteristics
US7502312B2 (en) Fourier-transform based linear equalization for CDMA downlink
US20120027048A1 (en) Method and Arrangement of Delay Spread Compensation
WO2007136056A1 (en) Receiver and receiving method
US20080025200A1 (en) Interference cancellation unit and interference cancellation method

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C41 Transfer of patent application or patent right or utility model
GR01