CN103366072A - Digital simulation method for blood backflow caused by mitral valve insufficiency - Google Patents
Digital simulation method for blood backflow caused by mitral valve insufficiency Download PDFInfo
- Publication number
- CN103366072A CN103366072A CN201310338575XA CN201310338575A CN103366072A CN 103366072 A CN103366072 A CN 103366072A CN 201310338575X A CN201310338575X A CN 201310338575XA CN 201310338575 A CN201310338575 A CN 201310338575A CN 103366072 A CN103366072 A CN 103366072A
- Authority
- CN
- China
- Prior art keywords
- node
- resistance
- mitral valve
- circuit
- expression
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Prostheses (AREA)
Abstract
一种二尖瓣关闭不全血液返流的数字仿真方法,涉及心血管系统。一、根据血液动力学参数和电路参数之间的等效关系,建立与肺循环系统、体循环系统、左心循环系统、右心循环系统等效的四腔室集总参数心血管动态电路模型;二、根据步骤一建立的电路模型,用状态变量分析法分析建立的动态电路,对电路中相关节点建立相应的状态方程;三、根据仿真的需求,设置步骤一、步骤二中的相应参数,并根据步骤一设置的电路模型以及步骤二设置的状态方程,进行求解状态方程得到电路中个结点时间曲线图;四、对步骤三得到的QM进行计算,得到二尖瓣关闭不全时血液返流量VRM、二尖瓣前向输出量VFM以及二尖瓣容积VM。
A method for digital simulation of blood regurgitation in mitral regurgitation involving the cardiovascular system. 1. According to the equivalent relationship between hemodynamic parameters and circuit parameters, establish a four-chamber lumped-parameter cardiovascular dynamic circuit model equivalent to the pulmonary circulatory system, systemic circulatory system, left cardiac circulatory system, and right cardiac circulatory system; 2. 1. According to the circuit model established in step 1, use the state variable analysis method to analyze the dynamic circuit established, and establish corresponding state equations for relevant nodes in the circuit; 3. According to the needs of simulation, set the corresponding parameters in step 1 and step 2, and According to the circuit model set in step 1 and the state equation set in step 2, solve the state equation to obtain the time curve of each node in the circuit; 4. Calculate the QM obtained in step 3 to obtain the blood return when mitral valve insufficiency flow V RM , mitral valve forward output V FM and mitral valve volume V M .
Description
技术领域technical field
本发明涉及心血管系统,尤其是涉及一种二尖瓣关闭不全血液返流的数字仿真方法。The invention relates to a cardiovascular system, in particular to a digital simulation method for mitral regurgitation insufficiency blood backflow.
背景技术Background technique
二尖瓣关闭不全是心血管疾病中常见的病理现象之一,其成因是二尖瓣在心脏收缩期不能正常关闭,血液从左心室流向主动脉的同时有一部分从左心室返流回左心房。二尖瓣关闭不全会产生血液返流,从而引起左心室扩张以及左心室功能障碍,严重时甚至会引发心力衰竭以致死亡。研究二尖瓣关闭不全时的血液返流情况,尤其是不同程度的关闭不全对血液返流的影响,对于二尖瓣临床修复和瓣膜置换手术有着重要的指导意义。Mitral valve insufficiency is one of the common pathological phenomena in cardiovascular diseases. It is caused by the failure of the mitral valve to close normally during systole, and blood flows from the left ventricle to the aorta while part of the blood flows back from the left ventricle to the left atrium. . Mitral valve insufficiency can produce blood regurgitation, which can cause dilation of the left ventricle and dysfunction of the left ventricle, and even lead to heart failure and even death in severe cases. The study of blood regurgitation during mitral valve insufficiency, especially the impact of different degrees of insufficiency on blood regurgitation, has important guiding significance for mitral valve clinical repair and valve replacement surgery.
目前对人体二尖瓣返流情况的分析大都是利用彩色多普勒超声心动图来评估二尖瓣关闭不全的程度,这种方法过多地依赖于医生和操作者的经验,具有一定的主观性(邱峻蔚,孙锟.二尖瓣反流程度影像学评估方法研究进展[J].中国介入影像与治疗学,2010,7(2):203-206),而且该方法仅能测量某个体的实际情况,由于伦理道德的约束,很多实验不能直接在人体身上进行,无法实现不同程度的病变情况,因此无法进一步研究其内在规律。也有采用动物实验方法进行研究,但是由于动物和人存在差异,动物模型实验方法不能完全反映出人体的特征(孙静,二尖瓣反流连续多普勒频谱评估左室松弛时间常数的动物实验研究[D].中国人民解放军军医进修学院,硕士学位论文,2012)。也有学者通过物理仿真的方法,采用机械装置、传感器等建立物理实物模型模拟人体心脏活动状态(闫翾宇,心脏动态建模仿真与模拟装置研究,上海交通大学,硕士学位论文,2011),但建立这种实物模型费时、费力,模型的参数不易调整,建立的模型与实际人体生理特征也存在差异。随着计算机技术的发展,有学者采用数字仿真的方式,即根据血液动力学参数和电路参数之间的等效关系,建立等效的电路模型、数学模型,在计算机上模拟人体心血管系统的运行状态。采用数字仿真方法具有省时、省力、费用低、模型参数便于调整,可以实现极端情况下的实验等优点,便于研究其内在规律。但目前这些方法大都是对人体心血管系统正常情况进行模拟仿真,也有学者对二尖瓣关闭不全情况进行模拟仿真(邓敏,二尖瓣反流的超声成像模拟[D],四川大学,硕士学位论文,2006;张建,二尖瓣偏心反流定量计算的超声模拟研究[D],四川大学,硕士学位论文,2007)。但在这些针对二尖瓣关闭不全的仿真方法中,存在以下不足之处:At present, most of the analysis of human mitral regurgitation is to use color Doppler echocardiography to evaluate the degree of mitral regurgitation. This method relies too much on the experience of doctors and operators, and has a certain degree of subjectivity. (Qiu Junwei, Sun Kun. Research progress in imaging assessment methods for the degree of mitral regurgitation [J]. Chinese Interventional Imaging and Therapeutics, 2010, 7(2):203-206), and this method can only measure a certain individual Due to the constraints of ethics and morality, many experiments cannot be carried out directly on the human body, and different degrees of lesions cannot be achieved, so it is impossible to further study its internal laws. There are also animal experiments for research, but due to differences between animals and humans, animal model experiments cannot fully reflect the characteristics of the human body (Sun Jing, Animal experiments on left ventricular relaxation time constant assessed by continuous Doppler spectrum of mitral valve regurgitation Research [D]. Chinese People's Liberation Army Military Medical Training College, Master's Thesis, 2012). There are also scholars who use mechanical devices, sensors, etc. to establish a physical model to simulate the state of human heart activity through physical simulation (Yan Hongyu, Heart Dynamic Modeling Simulation and Simulation Device Research, Shanghai Jiaotong University, Master's Thesis, 2011), but the establishment of this This kind of physical model is time-consuming and laborious, and the parameters of the model are not easy to adjust. There are also differences between the established model and the actual physiological characteristics of the human body. With the development of computer technology, some scholars adopt digital simulation, that is, according to the equivalent relationship between hemodynamic parameters and circuit parameters, establish equivalent circuit models and mathematical models, and simulate the human cardiovascular system on the computer. Operating status. The digital simulation method has the advantages of saving time, labor, low cost, easy to adjust model parameters, and can realize experiments under extreme conditions, which is convenient for studying its internal laws. However, most of these methods currently simulate the normal conditions of the human cardiovascular system, and some scholars also simulate the conditions of mitral valve insufficiency (Deng Min, Ultrasonic Imaging Simulation of Mitral Regurgitation [D], Sichuan University, Master Dissertation, 2006; Jian Zhang, Ultrasound Simulation Research on Quantitative Calculation of Eccentric Mitral Regurgitation [D], Sichuan University, Master Dissertation, 2007). However, in these simulation methods for mitral regurgitation, there are the following shortcomings:
1)目前的二尖瓣关闭不全仿真方法并没有将肺循环系统、体循环系统和心脏循环系统三个循环系统耦合起来。由于肺循环、体循环、心脏循环系统对二尖瓣返流都会产生影响,因此分析二尖瓣返流时需考虑这三个循环系统的影响。若仅考虑心脏循环系统,对二尖瓣返流的仿真计算将会产生较大误差。1) The current mitral regurgitation simulation method does not couple the three circulatory systems of the pulmonary circulatory system, the systemic circulatory system and the cardiac circulatory system. Since the pulmonary circulation, systemic circulation, and cardiac circulatory system all affect mitral valve regurgitation, the influence of these three circulatory systems should be considered when analyzing mitral valve regurgitation. If only the cardiac circulatory system is considered, the simulation calculation of mitral regurgitation will produce large errors.
2)目前的二尖瓣关闭不全仿真方法不能定量的仿真不同程度二尖瓣关闭不全情况,仅仅能仿真“存在”或者“不存在”二尖瓣关闭不全现象。由于临床上存在不同程度的二尖瓣关闭不全现象,因此对不同程度的二尖瓣关闭不全需要用一个可以连续变化、可以定量表示的方法来进行仿真,才能更加接近实际现象。2) The current mitral regurgitation simulation method cannot quantitatively simulate different degrees of mitral regurgitation, and can only simulate the "existence" or "absence" of mitral regurgitation. Because there are different degrees of mitral valve insufficiency clinically, it is necessary to simulate different degrees of mitral valve insufficiency with a method that can be continuously changed and quantitatively expressed, so as to be closer to the actual phenomenon.
3)目前的二尖瓣关闭不全仿真方法仅仿真了血液返流情况,而不能测量左心室压、左心室容积、左心房压、左心房容积、肺静脉压、二尖瓣流量、二尖瓣容积等相关生理参数的变化。这些生理参数对二尖瓣关闭不全的研究也具有重要意义。3) The current mitral regurgitation simulation method only simulates the blood regurgitation, but cannot measure left ventricular pressure, left ventricular volume, left atrial pressure, left atrial volume, pulmonary venous pressure, mitral valve flow, and mitral valve volume Changes in relevant physiological parameters. These physiological parameters are also of great significance to the study of mitral regurgitation.
发明内容Contents of the invention
本发明的目的在于针对现有二尖瓣关闭不全仿真方法的不足,提供可考虑肺循环系统、体循环系统和心脏循环系统对二尖瓣返流的影响,定量的仿真不同程度二尖瓣关闭不全情况,精确计算血液返流以及其他相关生理参数情况,从而为二尖瓣关闭不全的研究提供帮助的一种二尖瓣关闭不全血液返流的数字仿真方法。The purpose of the present invention is to address the deficiencies of the existing mitral valve insufficiency simulation method, to provide a quantitative simulation of different degrees of mitral regurgitation that can consider the impact of the pulmonary circulatory system, systemic circulatory system and cardiac circulatory system on mitral valve regurgitation , a digital simulation method of blood regurgitation in mitral valve insufficiency by accurately calculating blood regurgitation and other relevant physiological parameters, thereby providing assistance for the study of mitral valve insufficiency.
本发明包括以下步骤:The present invention comprises the following steps:
一、根据血液动力学参数和电路参数之间的等效关系,建立与肺循环系统、体循环系统、左心循环系统、右心循环系统等效的四腔室集总参数心血管动态电路模型;1. According to the equivalent relationship between hemodynamic parameters and circuit parameters, establish a four-chamber lumped parameter cardiovascular dynamic circuit model equivalent to the pulmonary circulation system, systemic circulation system, left cardiac circulation system, and right cardiac circulation system;
在步骤一中,In step one,
所述与左心循环系统等效的电路模块MLH由以下方式构成:电阻RM一端接于PLA节点,电阻RM另一端与二极管DM正极串联,二极管DM负极接于PLV节点;PLA节点、PLV节点分别通过时变倒电容ELA(t)与ELV(t)接地;The circuit module M LH equivalent to the left heart circulatory system is composed of the following method: one end of the resistance R M is connected to the P LA node, the other end of the resistance R M is connected in series with the anode of the diode D M , and the cathode of the diode D M is connected to the P LV node ; The P LA node and the P LV node are respectively grounded through the time-varying inverted capacitance E LA (t) and E LV (t);
所述与体循环系统等效的电路模块MT由以下方式构成:电阻RAP的一端接于PAP节点,电阻RAP的另一端与电感LAP串联,电感LAP的另一端与电阻RAD连接于PAD节点,电阻RAD的另一端连接于PVC节点;电路中PAP节点、PAD节点、PPV节点这三点分别通过电容CAP、CAD、CPVC接地;The circuit module MT equivalent to the body circulatory system is formed in the following manner: one end of the resistance R AP is connected to the P AP node, the other end of the resistance R AP is connected in series with the inductor L AP , the other end of the inductor L AP is connected to the resistance R AD Connected to the P AD node, the other end of the resistor R AD is connected to the P VC node; the P AP node, P AD node, and P PV node in the circuit are grounded through the capacitors C AP , C AD , and C PVC respectively;
所述与肺循环系统等效的电路模块MF由以下方式构成:电阻RPA的一端接于PPA节点,电阻RPA的另一端与电感LPA串联,电感LPA的另一端与电阻RPP连接于PPP节点,电阻RPP的另一端连接于PPV节点;电路中PPA节点、PPP节点、PPV节点这三点分别通过电容CPA、CPP、CPV接地;The circuit module M F equivalent to the pulmonary circulation system is composed of the following method: one end of the resistance R PA is connected to the P PA node, the other end of the resistance R PA is connected in series with the inductance L PA , and the other end of the inductance L PA is connected to the resistance R PP Connected to the P PP node, the other end of the resistor R PP is connected to the PP PV node; the three points of the P PA node, P PP node, and PP PV node in the circuit are grounded through the capacitors C PA , C PP , and C PV respectively;
所述与右心循环系统等效的电路模块MRH由以下方式构成:电阻RT一端接于PRA节点,电阻RT另一端与二极管DT正极串联,二极管DT负极接于PRV节点;PRA节点、PRV节点分别通过时变倒电容ERA(t)与ERV(t)接地;The circuit module M RH equivalent to the right heart circulatory system is composed of the following method: one end of the resistor RT is connected to the P RA node, the other end of the resistor RT is connected in series with the anode of the diode DT , and the cathode of the diode DT is connected to the P RV node ; The P RA node and the P RV node are respectively grounded through the time-varying reverse capacitance E RA (t) and E RV (t);
所述电路模块MLH接电阻RA一端,电阻RA另一端与二极管DA正极串联,二极管DA负极和电路模块MT相连;电阻RVC一端接于电路模块MT,电阻RVC另一端接于电路模块MRH;电路模块MRH接电阻RPT一端,电阻RPT另一端与二极管DPT正极串联,二极管DPT负极和电路模块MF相连;电路模块MF接电阻RPV一端,电阻RPV另一端接电路模块MLH;The circuit module MLH is connected to one end of the resistor RA , the other end of the resistor RA is connected in series with the anode of the diode DA , and the cathode of the diode DA is connected to the circuit module MT ; one end of the resistor R VC is connected to the circuit module MT, and the other end of the resistor R VC is connected to the circuit module MT . One end is connected to the circuit module M RH ; the circuit module M RH is connected to one end of the resistor R PT , the other end of the resistor R PT is connected in series with the anode of the diode D PT , and the cathode of the diode D PT is connected to the circuit module M F ; the circuit module M F is connected to one end of the resistor R PV , the other end of the resistor R PV is connected to the circuit module M LH ;
电路中各个元器件的含义以及表示的仿真生理意义如表1所示;The meaning of each component in the circuit and the simulated physiological significance of the representation are shown in Table 1;
表1Table 1
电路中的ERV(t)、ERA(t)、ELV(t)、ELA(t)时变倒电容分别用以下时变弹性函数表示:The E RV (t), E RA (t), E LV (t), E LA (t) time-varying reciprocal capacitances in the circuit are represented by the following time-varying elastic functions:
(1)ELA(t)处的时变弹性函数为:(1) The time-varying elastic function at E LA (t) is:
ELA(t)=EminLA+(EmaxLA-EminLA)×En(t)E LA (t)=E minLA +(E maxLA -E minLA )×En(t)
其中:in:
EmaxLA表示左心房时变弹性函数最大取值,E maxLA represents the maximum value of the time-varying elastic function of the left atrium,
EminLA表示左心房时变弹性函数最小取值,E minLA represents the minimum value of the time-varying elastic function of the left atrium,
En(t)用如下公式表示:En(t) is expressed by the following formula:
其中:t表示时间变量,T表示心动周期,Tac表示心房收缩开始时间、Tacp表示心房收缩持续时间,Tar表示心房舒张开始时间、Tarp表示心房主动舒张持续时间;Where: t represents the time variable, T represents the cardiac cycle, T ac represents the start time of atrial contraction, T acp represents the duration of atrial contraction, T ar represents the start time of atrial diastole, and T arp represents the duration of atrial active relaxation;
(2)ERA(t)处的时变弹性函数为:(2) The time-varying elastic function at E RA (t) is:
ERA(t)=EminRA+(EmaxRA-EminRA)×En(t)E RA (t)=E minRA +(E maxRA -E minRA )×En(t)
其中:in:
EmaxRA表示右心房时变弹性函数最大取值,E maxRA represents the maximum value of the time-varying elastic function of the right atrium,
EminRA表示右心房时变弹性函数最小取值,E minRA represents the minimum value of the time-varying elastic function of the right atrium,
En(t)的表示方法同上所示,即用式(1)表示;The expression method of En(t) is the same as that shown above, that is, expressed by formula (1);
(3)ERV(t)处的时变弹性函数为:(3) The time-varying elastic function at E RV (t) is:
ERV(t)=EminRV+(EmaxRV-EminRV)×En(t)E RV (t)=E minRV +(E maxRV -E minRV )×En(t)
其中:in:
EmaxRV表示右心室时变弹性函数最大取值,E maxRV represents the maximum value of the time-varying elastic function of the right ventricle,
EminRV表示右心室时变弹性函数最小取值,E minRV represents the minimum value of the time-varying elastic function of the right ventricle,
En(t)用如下公式表示:En(t) is expressed by the following formula:
其中:in:
t表示时间变量,T表示心动周期,Td表示心室收缩时间; t represents the time variable, T represents the cardiac cycle, and T d represents the ventricular systole time;
(4)ELV(t)处的时变弹性函数为:(4) The time-varying elastic function at E LV (t) is:
ELV(t)=EminLV+(EmaxLV-EminLV)×En(t)E LV (t)=E minLV +(E maxLV -E minLV )×En(t)
其中:in:
EmaxLV表示左心室时变弹性函数最大取值,E maxLV represents the maximum value of the time-varying elastic function of the left ventricle,
EminLV表示左心室时变弹性函数最小取值,E minLV represents the minimum value of the time-varying elastic function of the left ventricle,
En(t)的表示方法同上所示,即用式(2)表示;The expression method of En(t) is the same as that shown above, that is, expressed by formula (2);
(5)电路中DM的取值为:(5) The value of D M in the circuit is:
ΔP表示为PLA与PLV处的电压差,ΔP is expressed as the voltage difference between P LA and PL LV ,
当ΔP<0时,0≤DM<1,DM表示二尖瓣关闭不全程度,是一个可以连续变化、可以定量表示参数,当DM等于0时表示不存在二尖瓣关闭不全病变的正常生理状态,DM的值越大表示二尖瓣关闭不全程度越严重。When ΔP<0, 0≤D M <1, D M represents the degree of mitral regurgitation, which is a parameter that can be continuously changed and can be expressed quantitatively. When D M is equal to 0, it means that there is no mitral regurgitation. In normal physiological state, the larger the value of D M is, the more serious the degree of mitral valve insufficiency is.
二、根据步骤一建立的电路模型,用状态变量分析法分析建立的动态电路,对电路中相关节点按照以下公式建立相应的状态方程;2. According to the circuit model established in step 1, analyze the dynamic circuit established by the state variable analysis method, and establish corresponding state equations for relevant nodes in the circuit according to the following formula;
三、根据仿真的需求,设置步骤一、步骤二中的相应参数,并根据步骤一设置的电路模型以及步骤二设置的状态方程,进行求解状态方程得到电路中个结点时间曲线图;所需设置的参数及其表示的含义如表2所示,电路中个结点的时间曲线图表示含义如表3所示。3. According to the needs of the simulation, set the corresponding parameters in step 1 and step 2, and solve the state equation according to the circuit model set in step 1 and the state equation set in step 2 to obtain the time curve of each node in the circuit; The set parameters and their meanings are shown in Table 2, and the meanings of the time curves of each node in the circuit are shown in Table 3.
表2Table 2
表3table 3
四、对步骤三得到的QM按照如下公式进行计算,得到二尖瓣关闭不全时血液返流量VRM、二尖瓣前向输出量VFM以及二尖瓣容积VM,4. Calculate the Q M obtained in step 3 according to the following formula to obtain the blood regurgitation volume V RM , the mitral valve forward output volume V FM and the mitral valve volume V M when the mitral valve is insufficient,
式中T0表示任一心动周期的开始时间,T表示心动周期。In the formula, T 0 represents the start time of any cardiac cycle, and T represents the cardiac cycle.
本发明提出的一种二尖瓣关闭不全血液返流的数字仿真方法,替代实物物理模型,可以动态实时观察仿真结果,这种方法缩短实验时间,降低费用,增强实验的灵活性和安全性,能够模拟一些在人体、动物以及实物物理模型上无法产生的现象。本发明提出的二尖瓣关闭不全血液返流的数字仿真方法克服了现有方法的不足之处,结合了肺循环系统、体循环系统和心脏循环系统三个系统,可以连续变化、定量表示二尖瓣关闭不全程度,可以精确计算血液返流以及其他相关生理参数情况,对临床研究二尖瓣关闭不全具有重要指导意义。A digital simulation method of mitral valve insufficiency blood regurgitation proposed by the present invention replaces the physical model and can observe the simulation results dynamically and in real time. This method shortens the experimental time, reduces the cost, and enhances the flexibility and safety of the experiment. It can simulate some phenomena that cannot be produced on the human body, animals and physical models. The digital simulation method of mitral valve insufficiency blood regurgitation proposed by the present invention overcomes the shortcomings of the existing methods, and combines the three systems of the pulmonary circulation system, the systemic circulation system and the cardiac circulation system, and can continuously change and quantitatively represent the mitral valve The degree of regurgitation can accurately calculate blood regurgitation and other related physiological parameters, which has important guiding significance for clinical research on mitral regurgitation.
附图说明Description of drawings
图1为本发明实施例的包含肺循环系统、体循环系统和心脏循环系统的四腔室集总参数心血管电路模型。FIG. 1 is a four-chamber lumped-parameter cardiovascular circuit model including a pulmonary circulatory system, a systemic circulatory system and a cardiac circulatory system according to an embodiment of the present invention.
图2为左心室压时间曲线仿真结果图。Fig. 2 is a graph showing the simulation results of the left ventricular pressure time curve.
图3为左心室容积时间曲线仿真结果图。Fig. 3 is a graph showing the simulation results of the volume-time curve of the left ventricle.
图4为左心房压时间曲线仿真结果图。Fig. 4 is a simulation result diagram of the left atrial pressure time curve.
图5为左心房容积时间曲线仿真结果图。Fig. 5 is a graph showing the simulation results of the volume-time curve of the left atrium.
图6为肺静脉压时间曲线仿真结果图。Fig. 6 is a simulation result diagram of the time curve of pulmonary venous pressure.
图7为二尖瓣流量时间曲线仿真结果图。Fig. 7 is a graph showing the simulation results of the flow time curve of the mitral valve.
图8为二尖瓣容积时间曲线仿真结果图。Fig. 8 is a graph showing the simulation results of the volume-time curve of the mitral valve.
具体实施方式Detailed ways
以下实施例将结合附图对本发明做进一步说明。The following embodiments will further illustrate the present invention in conjunction with the accompanying drawings.
本发明实施例的具体步骤如下:The concrete steps of the embodiment of the present invention are as follows:
步骤一、step one,
按照图1建立四腔室集总参数心血管动态电路模型,电路中各个元器件的含义以及表示的仿真生理意义如表1所示。According to Figure 1, a four-chamber lumped parameter cardiovascular dynamic circuit model was established. The meaning of each component in the circuit and the simulated physiological significance expressed are shown in Table 1.
步骤二、Step two,
根据步骤一建立的电路模型,用状态变量分析法分析建立的动态电路,对电路中相关节点按照说明书中公式建立相应的状态方程。According to the circuit model established in step 1, the established dynamic circuit is analyzed by the state variable analysis method, and the corresponding state equations are established for the relevant nodes in the circuit according to the formula in the specification.
步骤三、设置相应参数(详见表4)并求解状态方程,其中DM的值按照如下公式,表示仿真中度二尖瓣关闭不全情况。Step 3: Set the corresponding parameters (see Table 4 for details) and solve the state equation, wherein the value of D M represents the simulated moderate mitral regurgitation according to the following formula.
表4Table 4
采用四阶龙格库塔法对状态方程的求解。得到主要状态变量(PLV、VLV、PLA、VLA、PPV)的时间曲线图,如图2~6。The equation of state is solved using the fourth-order Runge-Kutta method. Obtain the time curves of the main state variables (P LV , V LV , P LA , V LA , P PV ), as shown in Figures 2-6.
步骤四、对步骤三得到的QM按照如说明书中的公式行计算,得到二尖瓣关闭不全时血液返流量VRM、二尖瓣前向输出量VFM以及二尖瓣容积VM。Step 4: Calculate the Q M obtained in Step 3 according to the formula in the instruction manual, and obtain the blood regurgitation volume V RM , the mitral valve forward output volume V FM and the mitral valve volume V M during mitral regurgitation.
结果如图7和8。The results are shown in Figures 7 and 8.
最后所应说明的是,以上实施例仅用以说明本发明专利技术方案而非限制,尽管参照较佳实施例对本发明进行了说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者同等替换,而不脱离本发明方案的精神和范围。Finally, it should be noted that the above examples are only used to illustrate the patented technical solution of the present invention without limitation, although the present invention has been described with reference to the preferred embodiments, those of ordinary skill in the art should understand that the technical solution of the present invention can be Modifications or equivalent replacements can be made without departing from the spirit and scope of the solutions of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310338575.XA CN103366072B (en) | 2013-08-06 | 2013-08-06 | A kind of digital simulation method of mitral valve insufficiency blood reflux |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310338575.XA CN103366072B (en) | 2013-08-06 | 2013-08-06 | A kind of digital simulation method of mitral valve insufficiency blood reflux |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103366072A true CN103366072A (en) | 2013-10-23 |
CN103366072B CN103366072B (en) | 2016-04-06 |
Family
ID=49367403
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310338575.XA Expired - Fee Related CN103366072B (en) | 2013-08-06 | 2013-08-06 | A kind of digital simulation method of mitral valve insufficiency blood reflux |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103366072B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104794973A (en) * | 2015-04-29 | 2015-07-22 | 中国人民解放军第四军医大学 | Distributed-type cardiovascular system simulation model |
CN109844869A (en) * | 2016-09-23 | 2019-06-04 | 皇家飞利浦有限公司 | System and method for assessing the outflow obstruction of the heart of object |
CN114913752A (en) * | 2022-05-26 | 2022-08-16 | 中国人民解放军陆军军医大学 | A Human Respiratory System Model Based on Lumped Parameters |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4009306A4 (en) * | 2019-08-02 | 2023-01-25 | Fasotec Co., Ltd. | Mitral valve model and fixing jig |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100210899A1 (en) * | 2009-01-21 | 2010-08-19 | Tendyne Medical, Inc. | Method for percutaneous lateral access to the left ventricle for treatment of mitral insufficiency by papillary muscle alignment |
CN102440811A (en) * | 2010-09-14 | 2012-05-09 | 西门子公司 | Apparatus and method for minimally invasive therapy of mitral regurgitation |
-
2013
- 2013-08-06 CN CN201310338575.XA patent/CN103366072B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100210899A1 (en) * | 2009-01-21 | 2010-08-19 | Tendyne Medical, Inc. | Method for percutaneous lateral access to the left ventricle for treatment of mitral insufficiency by papillary muscle alignment |
CN102440811A (en) * | 2010-09-14 | 2012-05-09 | 西门子公司 | Apparatus and method for minimally invasive therapy of mitral regurgitation |
Non-Patent Citations (4)
Title |
---|
冯敏 等: "基于双弹性腔的左心循环系统的建模与仿真", 《厦门大学学报(自然科学版)》 * |
胡喆 等: "心脏—肺循环—体循环系统建模初探", 《同济大学学报》 * |
郑莉: "心血管系统的电路建模及电磁生物效应研究", 《中国优秀硕士学位论文全文数据库-医药卫生科技辑》 * |
陈丽琳 等: "心血管循环系统的建模仿真", 《北京生物医学工程》 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104794973A (en) * | 2015-04-29 | 2015-07-22 | 中国人民解放军第四军医大学 | Distributed-type cardiovascular system simulation model |
CN109844869A (en) * | 2016-09-23 | 2019-06-04 | 皇家飞利浦有限公司 | System and method for assessing the outflow obstruction of the heart of object |
CN109844869B (en) * | 2016-09-23 | 2024-05-14 | 皇家飞利浦有限公司 | System and method for assessing outflow obstruction of a heart of a subject |
CN114913752A (en) * | 2022-05-26 | 2022-08-16 | 中国人民解放军陆军军医大学 | A Human Respiratory System Model Based on Lumped Parameters |
CN114913752B (en) * | 2022-05-26 | 2024-03-26 | 中国人民解放军陆军军医大学 | Human respiratory system model based on lumped parameters |
Also Published As
Publication number | Publication date |
---|---|
CN103366072B (en) | 2016-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2016513516A (en) | Systems and methods for individual hemodynamic modeling and monitoring | |
CN104244813B (en) | The framework of the personalization that coronary flow is calculated during for tranquillization and hyperemia | |
Ferreira et al. | A nonlinear state-space model of a combined cardiovascular system and a rotary pump | |
Kolyva et al. | A mock circulatory system with physiological distribution of terminal resistance and compliance: application for testing the intra‐aortic balloon pump | |
CN212342143U (en) | heart bionic device | |
CN103366072B (en) | A kind of digital simulation method of mitral valve insufficiency blood reflux | |
CN111241759B (en) | FFR (Fabry-Perot) rapid calculation method based on zero-dimensional hemodynamic model | |
Sooriamoorthy et al. | A Study on the Effect of Electrical Parameters of Zero-Dimensional Cardiovascular System on Aortic Waveform | |
CN104068841B (en) | A kind of measuring method and device measuring Indices of Systolic Time parameter | |
CN205981729U (en) | A simulation cavity room for external simulation blood circulation | |
CN104050857B (en) | cardiovascular system simulation model based on lumped parameter | |
Fanni et al. | An integrated in-vitro and in-silico workflow to study the pulmonary bifurcation hemodynamics | |
US20240278001A1 (en) | Systems and methods for simulating cardiovascular fluid flow | |
Rezaienia et al. | In-vitro investigation of cerebral-perfusion effects of a rotary blood pump installed in the descending aorta | |
CN115736874B (en) | Simulation method for predicting personalized in-vitro counterpulsation hemodynamic effect | |
CN115019613A (en) | A Human Cardiovascular System Based on Lumped Parameters and Its Modeling Method and Application | |
Siewnicka et al. | Hybrid cardiovascular simulator as a tool for physical reproduction of the conditions prevailing in the apex of the heart | |
CN115050255A (en) | Cardiovascular fluid dynamics simulation test system | |
Huang et al. | Modeling left ventricular dynamics using a switched system approach based on a modified atrioventricular piston unit | |
Manoliu | Modeling cardiovascular hemodynamics in a model with nonlinear parameters | |
Pironet | Model-based prediction of the response to vascular filling therapy | |
CN116884622A (en) | A method and system for intelligent non-invasive sensing of isolated heart function | |
Diedrich et al. | Reliability of left atrial pressure estimation from left ventricular filling measurement in a total artificial heart | |
Desaive et al. | Study of ventricular interaction during pulmonary embolism using clinical identification in a minimum cardiovascular system model | |
Alonazi et al. | Simulation of motor current waveforms in monitoring aortic valve state during ventricular assist device support |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160406 Termination date: 20210806 |
|
CF01 | Termination of patent right due to non-payment of annual fee |