CN103365969A - Abnormal data detecting and processing method and system - Google Patents
Abnormal data detecting and processing method and system Download PDFInfo
- Publication number
- CN103365969A CN103365969A CN2013102532234A CN201310253223A CN103365969A CN 103365969 A CN103365969 A CN 103365969A CN 2013102532234 A CN2013102532234 A CN 2013102532234A CN 201310253223 A CN201310253223 A CN 201310253223A CN 103365969 A CN103365969 A CN 103365969A
- Authority
- CN
- China
- Prior art keywords
- data
- user
- transaction
- specific behavior
- interval
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000002159 abnormal effect Effects 0.000 title claims abstract description 41
- 238000003672 processing method Methods 0.000 title abstract 2
- 238000000034 method Methods 0.000 claims abstract description 51
- 238000009826 distribution Methods 0.000 claims description 38
- 238000012545 processing Methods 0.000 claims description 22
- 230000006870 function Effects 0.000 claims description 18
- 230000000630 rising effect Effects 0.000 claims description 6
- 230000008014 freezing Effects 0.000 claims description 5
- 238000007710 freezing Methods 0.000 claims description 5
- 238000012544 monitoring process Methods 0.000 abstract description 3
- 230000006399 behavior Effects 0.000 description 101
- 238000012423 maintenance Methods 0.000 description 9
- 125000004122 cyclic group Chemical group 0.000 description 8
- 238000001514 detection method Methods 0.000 description 8
- 230000003542 behavioural effect Effects 0.000 description 7
- 230000008569 process Effects 0.000 description 5
- 230000009471 action Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- 238000004900 laundering Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 238000013480 data collection Methods 0.000 description 3
- 238000004590 computer program Methods 0.000 description 2
- 238000000429 assembly Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/24—Querying
- G06F16/245—Query processing
- G06F16/2455—Query execution
- G06F16/24553—Query execution of query operations
- G06F16/24554—Unary operations; Data partitioning operations
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/02—Marketing; Price estimation or determination; Fundraising
- G06Q30/0201—Market modelling; Market analysis; Collecting market data
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Finance (AREA)
- Theoretical Computer Science (AREA)
- Strategic Management (AREA)
- Development Economics (AREA)
- Accounting & Taxation (AREA)
- Entrepreneurship & Innovation (AREA)
- Data Mining & Analysis (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Databases & Information Systems (AREA)
- Computational Linguistics (AREA)
- Game Theory and Decision Science (AREA)
- Economics (AREA)
- Marketing (AREA)
- General Business, Economics & Management (AREA)
- Financial Or Insurance-Related Operations Such As Payment And Settlement (AREA)
Abstract
Description
技术领域technical field
本发明涉及数据处理技术领域,具体涉及一种异常数据检测处理的方法,以及,一种异常数据检测处理的系统。The present invention relates to the technical field of data processing, in particular to a method for detecting and processing abnormal data, and a system for detecting and processing abnormal data.
背景技术Background technique
随着互联网技术和电子商务的高速发展,网上交易与日俱增,同时带来了很多安全问题。近年来,通过网络交易平台进行的洗钱,虚假交易和钓鱼行为等异常交易已经严重的扰乱了正常的交易秩序,给人们的生产、生活带来了很大的损失。With the rapid development of Internet technology and e-commerce, online transactions are increasing day by day, which brings many security problems. In recent years, abnormal transactions such as money laundering, false transactions and phishing through online trading platforms have seriously disrupted the normal transaction order and brought great losses to people's production and life.
网络交易平台迫切的需要对这些不正常交易行为进行有效的管控,维护正常的交易秩序。一般的做法是将交易用户进行分类,然后针对每一类的用户设定交易阈值,如果交易金额超过所述交易阈值,则进行告警。然而,上述设定交易阈值一般是笼统设定的,主观成分占据很大的比重,从而导致不能精确地检测出异常交易。Online trading platforms urgently need to effectively control these abnormal trading behaviors and maintain normal trading order. The general practice is to classify transaction users, and then set a transaction threshold for each type of user, and if the transaction amount exceeds the transaction threshold, an alarm will be issued. However, the above-mentioned transaction thresholds are generally set in general, and subjective elements occupy a large proportion, which makes it impossible to accurately detect abnormal transactions.
因此,本领域技术人员迫切需要解决的技术问题是:提供一种异常数据检测处理的机制,能够及时和精确地检测出异常交易数据并进行相应处理,提高异常数据监测效率,降低相应的危害。Therefore, the technical problem urgently needed to be solved by those skilled in the art is: to provide a mechanism for abnormal data detection and processing, which can timely and accurately detect abnormal transaction data and perform corresponding processing, improve abnormal data monitoring efficiency, and reduce corresponding harm.
发明内容Contents of the invention
鉴于上述问题,提出了本发明以便提供一种克服上述问题或者至少部分地解决上述问题的一种异常交易数据检测处理的方法和相应的一种异常交易数据检测处理的系统。In view of the above problems, the present invention is proposed to provide a method for detecting and processing abnormal transaction data and a corresponding system for detecting and processing abnormal transaction data that overcome the above problems or at least partially solve the above problems.
依据本发明的一个方面,提供了一种异常数据检测处理的方法,包括:According to one aspect of the present invention, a method for detecting and processing abnormal data is provided, including:
采集预设时间段内用户的特定行为数据;Collect specific behavioral data of users within a preset period of time;
提取所述特定行为数据中的特征信息,依据所述特征信息确定用户特定行为数据的数据区间;extracting feature information in the specific behavior data, and determining the data interval of the user specific behavior data according to the feature information;
当用户的特定行为数据超出其对应的数据区间时,进行预定的操作。When the user's specific behavior data exceeds its corresponding data range, perform predetermined operations.
可选地,所述用户包括多个,所述依据特征信息确定用户特定行为数据的数据区间的步骤包括:Optionally, there are multiple users, and the step of determining the data interval of user-specific behavior data according to the feature information includes:
依据所述多个用户的特定行为数据中的特征信息将所述多个用户的网上特定行为数据划分成一个或多个数据区间;dividing the online specific behavior data of the multiple users into one or more data intervals according to the characteristic information in the specific behavior data of the multiple users;
确定各个用户的特定行为数据对应的数据区间。Determine the data range corresponding to the specific behavior data of each user.
可选地,所述依据所述特征信息确定用户特定行为数据的数据区间的步骤包括:Optionally, the step of determining the data interval of user-specific behavior data according to the characteristic information includes:
依据所述用户的特定行为数据中的特征信息确定所述用户的特定行为数据的数据区间。The data range of the specific behavior data of the user is determined according to the characteristic information in the specific behavior data of the user.
可选地,所述特定行为数据为交易数据。Optionally, the specific behavior data is transaction data.
可选地,为所述数据区间设置一个或多个阈值;所述当用户的特定行为数据超出其对应的数据区间时,进行预定的操作的步骤包括:Optionally, one or more thresholds are set for the data interval; when the user's specific behavior data exceeds its corresponding data interval, the step of performing a predetermined operation includes:
当用户的交易数据超出其对应数据区间的第一阈值但未超出第二阈值时,进行以下至少一个操作:发出第一级告警信息、分析所述用户的特定行为数据;When the user's transaction data exceeds the first threshold of the corresponding data range but not the second threshold, at least one of the following operations is performed: issuing a first-level warning message, analyzing the specific behavior data of the user;
和/或,and / or,
当用户的交易数据超出其对应数据区间的第二阈值但未超出第三阈值时,进行以下至少一个操作:发出第二级告警信息、暂停所述用户的交易功能、与所述用户核实所述特定行为数据;When the user's transaction data exceeds the second threshold of the corresponding data interval but does not exceed the third threshold, perform at least one of the following operations: issue a second-level warning message, suspend the user's transaction function, and verify the certain behavioral data;
和/或,and / or,
当用户的交易数据超出其对应数据区间的第三阈值时,进行以下至少一个操作:发出第三级告警信息、关闭所述用户的所有功能、冻结所述用户的账户、报警。When the user's transaction data exceeds the third threshold of the corresponding data interval, at least one of the following operations is performed: issuing a third-level warning message, closing all functions of the user, freezing the user's account, and calling the police.
可选地,所述第一级告警信息为邮件告警,所述第二级告警信息为短信告警,所述第三级告警信息为循环短信告警或循环语音信息告警。Optionally, the first-level warning information is an email warning, the second-level warning information is a short message warning, and the third-level warning information is a cyclic short message warning or a cyclic voice message warning.
可选地,当所述数据区间中设置有多个阈值时,所述的方法还包括:Optionally, when multiple thresholds are set in the data interval, the method further includes:
在提取所述交易数据中的特征信息后,依据所述交易数据的特征信息生成对应的交易曲线;After extracting the characteristic information in the transaction data, generate a corresponding transaction curve according to the characteristic information of the transaction data;
当用户的交易数据超出其对应数据区间的第一阈值但未超出第二阈值时,且所述用户的交易曲线为平滑上升时,判定所述用户的交易数据为正常数据。When the user's transaction data exceeds the first threshold of the corresponding data range but not beyond the second threshold, and the user's transaction curve increases smoothly, it is determined that the user's transaction data is normal data.
可选地,所述特征信息包括交易金额和/或交易量,所述依据所述多个用户的特定行为数据中的特征信息将所述多个用户的网上特定行为数据划分成一个或多个数据区间的子步骤包括:Optionally, the feature information includes transaction amount and/or transaction volume, and according to the feature information in the specific behavior data of the multiple users, the online specific behavior data of the multiple users is divided into one or more The sub-steps of the data interval include:
提取每个用户在预设时间段内的交易金额和/或交易量;Extract the transaction amount and/or transaction volume of each user within a preset time period;
将所述每个用户的交易金额和/或交易量进行聚类,获得交易金额聚类分布信息和/或交易量聚类分布信息;Clustering the transaction amount and/or transaction volume of each user to obtain transaction amount cluster distribution information and/or transaction volume cluster distribution information;
按照所述交易金额聚类分布信息和/或交易量聚类分布信息将所有用户的交易金额或交易量划分成一个或多个数据区间。The transaction amounts or transaction volumes of all users are divided into one or more data intervals according to the transaction amount cluster distribution information and/or transaction volume cluster distribution information.
可选地,所述特征信息包括交易金额和/或交易量,所述依据所述用户的特定行为数据中的特征信息确定所述用户的特定行为数据的数据区间的子步骤包括:Optionally, the feature information includes transaction amount and/or transaction volume, and the substep of determining the data interval of the user's specific behavior data according to the feature information in the user's specific behavior data includes:
提取所述用户在预设时间段内的交易金额和/或交易量;Extract the transaction amount and/or transaction volume of the user within a preset time period;
计算所述交易金额的平均值和/或交易量的平均值;calculating an average of said transaction amounts and/or an average of transaction volumes;
按照所述交易金额的平均值和/或交易量的平均值的预设比例范围确定所述用户特定行为数据的数据区间。The data interval of the user-specific behavior data is determined according to a preset ratio range of the average value of the transaction amount and/or the average value of the transaction volume.
根据本发明的另一方面,提供了一种异常数据检测处理的系统,包括:According to another aspect of the present invention, a system for detecting and processing abnormal data is provided, including:
数据采集模块,适于采集预设时间段内用户的特定行为数据;The data collection module is suitable for collecting specific behavioral data of users within a preset time period;
特征信息提取模块,适于提取所述特定行为数据中的特征信息;A feature information extraction module, adapted to extract feature information in the specific behavior data;
区间划分模块,适于依据所述特征信息确定用户特定行为数据的数据区间;An interval division module, adapted to determine the data interval of user-specific behavior data according to the characteristic information;
预定操作执行模块,适于在用户的特定行为数据超出其对应的数据区间时,进行预定的操作。The predetermined operation execution module is adapted to perform predetermined operations when the user's specific behavior data exceeds its corresponding data range.
可选地,所述用户包括多个,所述区间划分模块包括:Optionally, the user includes multiple users, and the section division module includes:
第一区间划分子模块,适于依据所述多个用户的特定行为数据中的特征信息将所述多个用户的网上特定行为数据划分成一个或多个数据区间;The first interval division submodule is adapted to divide the online specific behavior data of the multiple users into one or more data intervals according to the feature information in the specific behavior data of the multiple users;
第一区间确定子模块,适于确定各个用户的特定行为数据对应的数据区间。The first interval determination submodule is adapted to determine the data interval corresponding to the specific behavior data of each user.
可选地,所述区间划分模块包括:Optionally, the interval division module includes:
第二区间划分子模块,适于依据所述用户的特定行为数据中的特征信息确定所述用户的特定行为数据的数据区间。The second interval division submodule is adapted to determine the data interval of the user's specific behavior data according to the feature information in the user's specific behavior data.
可选地,所述特定行为数据为交易数据。Optionally, the specific behavior data is transaction data.
可选地,为所述数据区间设置一个或多个阈值;所述预定操作执行模块包括:Optionally, one or more thresholds are set for the data interval; the predetermined operation execution module includes:
第一级告警子模块,适于在用户的交易数据超出其对应数据区间的第一阈值但未超出第二阈值时,进行以下至少一个操作:发出第一级告警信息、分析所述用户的特定行为数据;The first-level alarm sub-module is adapted to perform at least one of the following operations when the user's transaction data exceeds the first threshold of the corresponding data interval but does not exceed the second threshold: send out the first-level alarm information, analyze the user's specific behavioral data;
和/或,and / or,
第二级告警子模块,适于在用户的交易数据超出其对应数据区间的第二阈值但未超出第三阈值时,进行以下至少一个操作:发出第二级告警信息、暂停所述用户的交易功能、与所述用户核实所述特定行为数据;The second-level alarm sub-module is adapted to perform at least one of the following operations when the user's transaction data exceeds the second threshold of its corresponding data interval but does not exceed the third threshold: issue a second-level alarm message, suspend the user's transaction function, verifying said specific behavioral data with said user;
和/或,and / or,
第三级告警子模块,适于在用户的交易数据超出其对应数据区间的第三阈值时,进行以下至少一个操作:发出第三级告警信息、关闭所述用户的所有功能、冻结所述用户的账户、报警。The third-level alarm sub-module is adapted to perform at least one of the following operations when the user's transaction data exceeds the third threshold of its corresponding data interval: issue a third-level alarm message, close all functions of the user, and freeze the user account, call the police.
可选地,所述第一级告警信息为邮件告警,所述第二级告警信息为短信告警,所述第三级告警信息为循环短信告警或循环语音信息告警。Optionally, the first-level warning information is an email warning, the second-level warning information is a short message warning, and the third-level warning information is a cyclic short message warning or a cyclic voice message warning.
可选地,当所述数据区间中设置有多个阈值时,所述的系统还包括:Optionally, when multiple thresholds are set in the data interval, the system further includes:
交易曲线生成模块,适于在提取所述交易数据中的特征信息后,依据所述交易数据的特征信息生成对应用户的交易曲线;The transaction curve generation module is adapted to generate a transaction curve corresponding to the user according to the characteristic information of the transaction data after extracting the characteristic information in the transaction data;
正常数据判定模块,适于在用户的交易数据超出其对应数据区间的第一阈值但未超出第二阈值时,且所述用户的交易曲线为平滑上升时,判定所述用户的交易数据为正常数据。The normal data judging module is adapted to judge that the user's transaction data is normal when the user's transaction data exceeds the first threshold of its corresponding data interval but does not exceed the second threshold, and the user's transaction curve is rising smoothly data.
可选地,所述特征信息包括交易金额和/或交易量,所述第一区间划分子模块包括:Optionally, the feature information includes transaction amount and/or transaction volume, and the first interval division submodule includes:
交易金额或交易量获取单元,适于提取每个用户在预设时间段内的交易金额和/或交易量;A transaction amount or transaction volume acquisition unit, adapted to extract the transaction amount and/or transaction volume of each user within a preset time period;
聚类分布信息获取单元,适于将所述每个用户的交易金额和/或交易量进行聚类,获得交易金额聚类分布信息和/或交易量聚类分布信息;The cluster distribution information acquisition unit is adapted to cluster the transaction amount and/or transaction volume of each user to obtain transaction amount cluster distribution information and/or transaction volume cluster distribution information;
第一数据区间划分单元,适于按照所述交易金额聚类分布信息和/或交易量聚类分布信息将所有用户的交易金额和/或交易量划分成一个或多个数据区间。The first data interval division unit is adapted to divide the transaction amounts and/or transaction volumes of all users into one or more data intervals according to the transaction amount cluster distribution information and/or transaction volume cluster distribution information.
可选地,所述特征信息包括交易金额和/或交易量,所述第二区间划分子模块包括:Optionally, the feature information includes transaction amount and/or transaction volume, and the second interval division submodule includes:
交易金额或交易量提取单元,适于提取所述用户在预设时间段内的交易金额和/或交易量;A transaction amount or transaction volume extracting unit, adapted to extract the user's transaction amount and/or transaction volume within a preset time period;
计算单元,适于计算所述交易金额的平均值和/或交易量的平均值;a calculation unit adapted to calculate the average value of the transaction amount and/or the average value of the transaction volume;
第二数据区间划分单元,适于按照所述交易金额的平均值和/或交易量的平均值的预设比例范围确定所述用户特定行为数据的数据区间。The second data interval dividing unit is adapted to determine the data interval of the user-specific behavior data according to a preset ratio range of the average value of the transaction amount and/or the average value of the transaction volume.
根据本发明的一种异常数据检测处理的方法和系统,可以依据用户预设时间段内的特定行为数据确定用户特定行为数据的数据区间,并为所述数据区间设置不同的阈值,当所述数据区间内的交易数据超过某一阈值时进行预定的操作,以此来检测出异常数据,由此解决了传统的异常数据检测中数据检测不精确的问题,取得了有效监控用户的特定行为数据曲线和用户的数据的活跃度,从而及时和精确地检测出异常数据并进行相应处理,提高异常数据检测的效率,降低相应危害的有益效果。According to a method and system for abnormal data detection and processing of the present invention, the data interval of user-specific behavior data can be determined according to the specific behavior data of the user within a preset time period, and different thresholds can be set for the data interval. When the When the transaction data in the data interval exceeds a certain threshold, a predetermined operation is performed to detect abnormal data, thus solving the problem of inaccurate data detection in traditional abnormal data detection, and effectively monitoring specific behavior data of users The activeness of curves and user data, so as to timely and accurately detect abnormal data and deal with them accordingly, improve the efficiency of abnormal data detection, and reduce the beneficial effect of corresponding harm.
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其它目的、特征和优点能够更明显易懂,以下特举本发明的具体实施方式。The above description is only an overview of the technical solution of the present invention. In order to better understand the technical means of the present invention, it can be implemented according to the contents of the description, and in order to make the above and other purposes, features and advantages of the present invention more obvious and understandable , the specific embodiments of the present invention are enumerated below.
附图说明Description of drawings
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:Various other advantages and benefits will become apparent to those of ordinary skill in the art upon reading the following detailed description of the preferred embodiment. The drawings are only for the purpose of illustrating a preferred embodiment and are not to be considered as limiting the invention. Also throughout the drawings, the same reference numerals are used to designate the same components. In the attached picture:
图1示出了根据本发明一个实施例的一种异常数据检测处理的方法实施例1的步骤流程图;FIG. 1 shows a flow chart of steps in Embodiment 1 of a method for detecting and processing abnormal data according to an embodiment of the present invention;
图2示出了根据本发明一个实施例的一种异常数据检测处理的方法实施例2的步骤流程图;FIG. 2 shows a flow chart of steps in Embodiment 2 of a method for detecting and processing abnormal data according to an embodiment of the present invention;
图3示出了根据本发明一个实施例的一种异常数据检测处理的方法中特征信息交易曲线示意图;Fig. 3 shows a schematic diagram of a characteristic information transaction curve in a method for detecting and processing abnormal data according to an embodiment of the present invention;
图4示出了根据本发明一个实施例的一种异常数据检测处理的系统的结构框图。Fig. 4 shows a structural block diagram of a system for detecting and processing abnormal data according to an embodiment of the present invention.
具体实施方式Detailed ways
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。Exemplary embodiments of the present disclosure will be described in more detail below with reference to the accompanying drawings. Although exemplary embodiments of the present disclosure are shown in the drawings, it should be understood that the present disclosure may be embodied in various forms and should not be limited by the embodiments set forth herein. Rather, these embodiments are provided for more thorough understanding of the present disclosure and to fully convey the scope of the present disclosure to those skilled in the art.
参照图1,示出了根据本发明一个实施例的一种异常数据检测处理的方法实施例1的步骤流程图,具体可以包括以下步骤:Referring to FIG. 1 , it shows a flow chart of steps in Embodiment 1 of a method for detecting and processing abnormal data according to an embodiment of the present invention, which may specifically include the following steps:
步骤S110,采集预设时间段内用户的特定行为数据;Step S110, collecting specific behavior data of the user within a preset time period;
步骤S120,提取所述特定行为数据中的特征信息,依据所述特征信息确定用户特定行为数据的数据区间;Step S120, extracting feature information in the specific behavior data, and determining the data interval of the user specific behavior data according to the feature information;
步骤S130,当用户的特定行为数据超出其对应的数据区间时,进行预定的操作。Step S130, when the user's specific behavior data exceeds its corresponding data range, perform a predetermined operation.
在本发明实施例中,通过对用户预设时间段内的特定行为数据进行检测以确定用户特定行为数据的数据区间,并为所述数据区间设定一个或多个阈值,从而能及时检测出异常数据,并能针对不同程度的异常数据,进行预定的操作,防止异常数据造成的损失。In the embodiment of the present invention, the data interval of the user-specific behavior data is determined by detecting the specific behavior data of the user within a preset time period, and one or more thresholds are set for the data interval, so that it can be detected in time Abnormal data, and according to different degrees of abnormal data, scheduled operations can be performed to prevent losses caused by abnormal data.
参照图2,示出了根据本发明一个实施例的一种异常数据检测处理的方法实施例2的步骤流程图,在本实施例中,以所述特定行为数据为交易数据的情况进行说明,具体可以包括以下步骤:Referring to FIG. 2 , it shows a flow chart of the steps of Embodiment 2 of a method for detecting and processing abnormal data according to an embodiment of the present invention. In this embodiment, the description will be made in the case where the specific behavior data is transaction data. Specifically, the following steps may be included:
步骤S210,采集预设时间段内用户的交易数据;Step S210, collecting transaction data of users within a preset time period;
具体而言,所述采集预设时间段内的交易数据可以为采集交易平台在一个时间单位内用户的交易数据,所述用户的交易数据可以包括用户在过去的一段时间内发生的交易的各种情况,例如交易量、单笔交易金额、一段时间内交易总额等等,其中,所述用户可以为一个或多个。Specifically, the collection of transaction data within a preset period of time may be the collection of transaction data of a user within a unit of time on the trading platform, and the transaction data of a user may include various transactions of the user in a past period of time. For example, the transaction volume, the amount of a single transaction, the total amount of transactions within a period of time, etc., where the number of users can be one or more.
需要说明的是,本发明实施例中所指的预设时间段可以是一个月或者一天等时间段,本发明实施例对此无需加以限制。It should be noted that the preset time period referred to in the embodiment of the present invention may be a time period such as one month or one day, which is not limited in the embodiment of the present invention.
步骤S220,提取所述交易数据中的特征信息,依据所述特征信息确定用户交易数据的数据区间;Step S220, extracting characteristic information in the transaction data, and determining the data interval of the user transaction data according to the characteristic information;
对于交易平台而言,用户的交易数据可以使用多项特征信息来体现,所述特征信息可以为交易量、交易金额等。在采集预设时间段内的用户的交易数据后,可以提取所述交易数据中的特征信息,为了能够更好地观察每个用户在预设时间段内交易数据的特征信息的交易规律,可以为用户的交易数据按照特征信息生成对应的交易曲线。如参照图3示出了特征信息交易曲线示意图,图中横坐标表示时间,纵坐标表示交易量,两条交易曲线表示两周以来用户每天的交易量情况。For the trading platform, the user's transaction data can be represented by multiple characteristic information, and the characteristic information can be transaction volume, transaction amount, and the like. After collecting the user's transaction data within the preset time period, the feature information in the transaction data can be extracted. In order to better observe the transaction rules of the feature information of each user's transaction data within the preset time period, you can Generate a corresponding transaction curve for the user's transaction data according to the characteristic information. For example, referring to FIG. 3 , a schematic diagram of characteristic information transaction curve is shown, in which the abscissa represents time, and the ordinate represents transaction volume, and the two transaction curves represent the user's daily transaction volume for two weeks.
在本发明的一种优选实施例中,当所述用户为多个时,所述依据特征信息确定用户特定行为数据的数据区间的步骤可以包括如下子步骤:In a preferred embodiment of the present invention, when there are multiple users, the step of determining the data interval of user-specific behavior data according to characteristic information may include the following sub-steps:
子步骤S11,依据所述多个用户的特定行为数据中的特征信息将所述多个用户的网上特定行为数据划分成一个或多个数据区间;Sub-step S11, dividing the online specific behavior data of the multiple users into one or more data intervals according to the feature information in the specific behavior data of the multiple users;
子步骤S13,确定各个用户的特定行为数据对应的数据区间。Sub-step S13, determining the data interval corresponding to the specific behavior data of each user.
具体而言,因为每个行业的交易情况不一样,用户的交易数据中的特征信息根据行业的特点可以分为很多组,例如一般小商品的日交易量往往较高,平均在一百多笔;而衣服则成交要相对小一些,在十几到几十笔不等,鉴于此,可以将不同等级的交易量划分成一个或多个交易数据区间,可以将交易量在一百以上的划分一个交易数据区间,交易量在一百以下的划分另一个交易数据区间。而根据交易数据的特征信息不一样,给用户的交易数据划分的交易数据区间也是不一样的,因此,可以根据所述特征信息的聚类信息来划分数据区间。Specifically, because the transaction situation of each industry is different, the characteristic information in the user's transaction data can be divided into many groups according to the characteristics of the industry. For example, the daily transaction volume of general small commodities is often high, with an average of more than 100 transactions; For clothes, the transaction volume is relatively small, ranging from a dozen to dozens of transactions. In view of this, the transaction volume of different levels can be divided into one or more transaction data intervals, and the transaction volume of more than one hundred can be divided into one Transaction data interval, if the transaction volume is less than 100, divide another transaction data interval. According to the different feature information of the transaction data, the transaction data intervals for the user's transaction data are also different. Therefore, the data intervals can be divided according to the clustering information of the feature information.
在本发明的一种优选实施例中,所述特征信息可以包括交易金额,所述子步骤S11可以包括如下子步骤:In a preferred embodiment of the present invention, the feature information may include transaction amount, and the sub-step S11 may include the following sub-steps:
子步骤S111,提取每个用户在预设时间段内的交易金额;Sub-step S111, extracting the transaction amount of each user within a preset time period;
子步骤S113,将所述每个用户的交易金额进行聚类,获得交易金额聚类分布信息;Sub-step S113, clustering the transaction amount of each user to obtain the cluster distribution information of the transaction amount;
子步骤S115,按照所述交易金额聚类分布信息将所有用户的交易金额划分成一个或多个数据区间。Sub-step S115, dividing the transaction amounts of all users into one or more data intervals according to the transaction amount cluster distribution information.
具体而言,可以根据获取每个用户在预设时间段内的交易金额来获取所有用户交易金额的聚类分布信息,按照所述聚类分布信息将所有用户的交易金额划分成一个或多个数据区间。例如,通过获取交易金额的分布情况得到小商品(单件商品价格不高于100元)的交易金额集中在1000元以下、1000到5000元、5000元以上,则划分的交易数据区间可以为1000元以下、1000元-5000元、5000元以上。Specifically, the cluster distribution information of all user transaction amounts can be obtained according to the transaction amount of each user within a preset time period, and the transaction amounts of all users can be divided into one or more data range. For example, by obtaining the distribution of the transaction amount, it is found that the transaction amount of small commodities (the price of a single commodity is not higher than 100 yuan) is concentrated below 1,000 yuan, 1,000 to 5,000 yuan, and more than 5,000 yuan, then the divided transaction data range can be 1,000 yuan Below, RMB 1,000-5,000, and above RMB 5,000.
在本发明的另一种优选实施例中,所述特征信息可以包括交易量,所述子步骤S11可以包括如下子步骤:In another preferred embodiment of the present invention, the feature information may include transaction volume, and the sub-step S11 may include the following sub-steps:
子步骤S121,提取每个用户在预设时间段内的交易量;Sub-step S121, extracting the transaction volume of each user within a preset time period;
子步骤S123,将所述每个用户的交易量进行聚类,获得交易量聚类分布信息;Sub-step S123, clustering the transaction volume of each user to obtain the cluster distribution information of the transaction volume;
子步骤S125,按照所述交易量聚类分布信息将所有用户的交易量划分成一个或多个数据区间。Sub-step S125, dividing the transaction volume of all users into one or more data intervals according to the transaction volume cluster distribution information.
具体而言,所述按照交易量进行聚类来获得数据区间的方法与所述按照交易金额来获得数据区间的方法相同,本实施例在此不再详述。Specifically, the method for obtaining the data interval by clustering according to the transaction volume is the same as the method for obtaining the data interval according to the transaction amount, and will not be described in detail in this embodiment.
在本发明的一种优选实施例中,所述依据特征信息确定用户特定行为数据的数据区间的步骤可以包括如下子步骤:In a preferred embodiment of the present invention, the step of determining the data interval of the user-specific behavior data according to the characteristic information may include the following sub-steps:
子步骤S21,依据所述用户的特定行为数据中的特征信息确定所述用户的特定行为数据的数据区间。Sub-step S21, determining the data interval of the user's specific behavior data according to the feature information in the user's specific behavior data.
在本发明的一种优选实施例中,所述特征信息可以包括交易金额,所述子步骤S21可以包括如下子步骤:In a preferred embodiment of the present invention, the feature information may include transaction amount, and the sub-step S21 may include the following sub-steps:
子步骤S211,提取所述用户在预设时间段内的交易金额;Sub-step S211, extracting the transaction amount of the user within a preset time period;
子步骤S213,计算所述交易金额的平均值;Sub-step S213, calculating the average value of the transaction amount;
子步骤S215,按照所述交易金额的平均值的预设比例范围确定所述用户交易数据的数据区间。Sub-step S215, determining the data interval of the user's transaction data according to the preset ratio range of the average value of the transaction amount.
在本发明的另一种优选实施例中,所述特征信息可以包括交易量,所述子步骤S21可以包括如下子步骤:In another preferred embodiment of the present invention, the feature information may include transaction volume, and the sub-step S21 may include the following sub-steps:
子步骤S221,提取所述用户在预设时间段内的交易量;Sub-step S221, extracting the transaction volume of the user within a preset time period;
子步骤S223,计算所述交易量的平均值;Sub-step S223, calculating the average value of the transaction volume;
子步骤S225,按照所述交易量的平均值的预设比例范围确定所述用户交易数据的数据区间。Sub-step S225, determining the data interval of the user's transaction data according to the preset ratio range of the average value of the transaction volume.
具体而言,可以提取用户交易数据的特征信息,如交易量、交易金额等,通过计算所述特征信息的平均值,按照所述平均值的预设比例范围确定用户交易数据的数据区间。其中,所述平均值的预设比例范围可以为平均值上下浮动的一个数值范围或百分比范围等,例如根据交易量,或交易金额的平均值上下20%划分数据区间。Specifically, feature information of user transaction data, such as transaction volume and transaction amount, can be extracted, and the data interval of user transaction data can be determined according to a preset ratio range of the average value by calculating the average value of the feature information. Wherein, the preset ratio range of the average value may be a numerical range or a percentage range in which the average value fluctuates, for example, divide the data interval according to the transaction volume or the average value of the transaction amount by 20%.
当然,所述按照聚类分布信息或按照特征信息的平均值来划分交易数据区间仅是本发明实施例的示例,本领域技术人员根据实际情况采用其他方式划分数据区间均是可以的,例如,若所述预设时间段为比较长的一个时间段(如一个月),也可以根据所述交易数据中指定的特征信息的平均值的聚类分布信息来划分数据区间,例如以日为单位获取每个用户每日的交易金额,在一个月后,以所述每日的交易金额的总和除以天数得到交易金额平均值,然后根据每个用户的交易金额平均值获取交易金额的聚类分布信息,依据所述聚类分布信息把比较集中的分布区域作为数据区间;或者,依据交易数据中指定特征信息的平均值和最大值划分交易数据区间,或者根据旺季和淡季的情况对交易数据进行加权后进行划分,本发明实施例对此无需加以限制。Of course, the division of the transaction data interval according to the cluster distribution information or the average value of the feature information is only an example of the embodiment of the present invention, and it is possible for those skilled in the art to divide the data interval in other ways according to the actual situation, for example, If the preset time period is a relatively long time period (such as one month), the data interval can also be divided according to the cluster distribution information of the average value of the characteristic information specified in the transaction data, for example, in units of days Obtain the daily transaction amount of each user, and after one month, divide the sum of the daily transaction amount by the number of days to obtain the average transaction amount, and then obtain the clustering of the transaction amount according to the average transaction amount of each user Distribution information, according to the cluster distribution information, the relatively concentrated distribution area is used as the data interval; or, the transaction data interval is divided according to the average value and maximum value of the specified characteristic information in the transaction data, or the transaction data is divided according to the peak season and the off-season The division is performed after weighting is performed, and this embodiment of the present invention does not need to limit this.
另外,在具体实现中,由于用户的交易情况不会是一成不变的,存在很多可能性,例如用户在一段时间内业务开展的非常好,所以日交易金额在不断增长;当然也存在相反的可能。那么给用户划分的一个或多个交易数据区间应该是具有弹性的,可以根据交易的情况而动态变化,因此,本发明实施例还可以动态调整所述一个或多个交易数据区间,例如,依然引用上述例子,随着经济情况的变化,小商品市场发展很好,用户的交易金额主要集中在2000元以下,2000元到7000,7000元以上三个区间,那么可以依据所述变化调整每个交易数据区间的分界值了,因为以往的分界值已经过时了。总之,交易平台可以根据这种数据表现来调整分界值。当然,本领域技术人员也可以对所述交易数据区间进行手工调整,本发明对此无需加以限制。In addition, in the specific implementation, since the user's transaction situation will not be static, there are many possibilities. For example, the user's business is very good for a period of time, so the daily transaction amount is constantly increasing; of course, there is also the opposite possibility. Then one or more transaction data intervals for users should be flexible and can be dynamically changed according to the transaction situation. Therefore, the embodiment of the present invention can also dynamically adjust the one or more transaction data intervals, for example, still Citing the above example, with the changes in the economic situation, the small commodity market is developing very well. The transaction amount of users is mainly concentrated in three ranges below 2,000 yuan, 2,000 yuan to 7,000 yuan, and above 7,000 yuan. Then each transaction can be adjusted according to the above changes. The boundary value of the data interval has been changed, because the previous boundary value is out of date. In short, the trading platform can adjust the cut-off value according to this data performance. Of course, those skilled in the art can also manually adjust the transaction data range, and the present invention does not need to limit this.
步骤S230,当用户的交易数据超出其对应的数据区间时,进行预定的操作。Step S230, when the user's transaction data exceeds its corresponding data range, perform a predetermined operation.
应用于本发明实施例,为数据区间设置了对应的一个或多个阈值,可以对每个数据区间定义交易上限风险检测的阈值,当交易数据区间内的用户的交易数据达到指定阈值时进行预定的操作。其中,所述定义的阈值并不是唯一的一个值,而是一组值,每个阈值对应一种预定操作,即行为。Applied to the embodiment of the present invention, one or more corresponding thresholds are set for the data interval, and the threshold of transaction upper limit risk detection can be defined for each data interval, and when the transaction data of the user in the transaction data interval reaches the specified threshold, a reservation is made operation. Wherein, the defined threshold is not the only value, but a set of values, and each threshold corresponds to a predetermined operation, that is, a behavior.
所述一组阈值可以由多个阈值组成,本发明实施例对此不作限制,本发明实施例以所述阈值为三个的情况进行说明,在本发明的一种优选实施例中,所述步骤S230可以包括如下子步骤:The set of thresholds may be composed of multiple thresholds, which is not limited in the embodiment of the present invention. The embodiment of the present invention is described in the case of three thresholds. In a preferred embodiment of the present invention, the Step S230 may include the following sub-steps:
子步骤S31,当用户的交易数据超出其对应数据区间的第一阈值但未超出第二阈值时,进行以下至少一个操作:发出第一级告警信息、分析所述用户的交易数据。In sub-step S31, when the user's transaction data exceeds the first threshold of the corresponding data range but not the second threshold, perform at least one of the following operations: issue a first-level warning message, and analyze the user's transaction data.
具体而言,所述数据区间的第一阈值(或称上限值)就是对应阈值中的最低值,这个值被称为“基本水位值”。当指定的特征属性的交易数据突破这个值,但未突破下一个值,所述第一级告警信息可以包括告警级别和告警方式,所述警告级别可以为“普通”,可以采用较为缓和的告警方式告警运维人员,例如邮件告警,对应的“行为”也较为缓和。运维人员得到报警时,表示该交易数据可能有异常,需要引起对该交易数据对应的用户的重视,运维人员可以分析所述用户的交易数据,例如检查该用户这段时间的交易曲线,看是否属于一个平滑上升的过程,如果属于平滑上升,则可以判定为正常交易数据,可以考虑是否修改该用户的区间属性(将该用户移入另外一个交易量更大的交易数据区间中),或者暂时观察,不采取任何动作。Specifically, the first threshold (or upper limit) of the data interval is the lowest value among the corresponding thresholds, and this value is called the "basic water level". When the transaction data of the specified characteristic attribute breaks through this value, but not the next value, the first-level warning information can include the warning level and warning method, the warning level can be "normal", and a more moderate warning can be used Alarm operation and maintenance personnel, such as email alarm, the corresponding "behavior" is relatively moderate. When the operation and maintenance personnel get an alarm, it means that the transaction data may be abnormal, and the user corresponding to the transaction data needs to be paid attention to. The operation and maintenance personnel can analyze the transaction data of the user, for example, check the transaction curve of the user during this period, See if it belongs to a smooth rising process. If it belongs to a smooth rising process, it can be judged as normal transaction data. You can consider whether to modify the user's interval attribute (move the user into another transaction data interval with a larger transaction volume), or Observe momentarily and take no action.
在本发明的另一种优选实施例中,所述步骤S230可以包括如下子步骤:In another preferred embodiment of the present invention, the step S230 may include the following sub-steps:
子步骤S41,当用户的交易数据超出其对应数据区间的第二阈值但未超出第三阈值时,进行以下至少一个操作:发出第二级告警信息、暂停所述用户的交易功能、与所述用户核实所述交易数据。In sub-step S41, when the user's transaction data exceeds the second threshold of the corresponding data interval but does not exceed the third threshold, perform at least one of the following operations: issue a second-level warning message, suspend the user's transaction function, and communicate with the The user verifies the transaction data.
具体而言,如果用户的交易数据直接突破对应数据区间的第二阈值,未突破第三阈值,表示该交易数据在某一段时间内的交易突然激增,这种突然的激增往往是不正常的,这个时候就存在很大交易风险的可能性。第二阈值位于“基本水位值”之上,可以定在超过10%的位置或者20%的地方,视具体情况而定,这个值为“警戒水位”,所述第二级告警信息可以包括告警级别与告警方式,其中所述告警级别可以为“较严重”,可以采用比较迅速的报警方式告警运维人员,例如短信报警,对应的“行为”也较为严格。这时定义的行为可以分为两部分,一是交易平台自动暂停该交易数据对应的用户的交易功能,暂停所有该用户的当前交易,但该用户其他的功能保留。二是运维人员需要去审核该用户的交易数据,和该用户进行核实,检查是否存在虚假交易或者其它不规范行为。Specifically, if the user's transaction data directly breaks through the second threshold of the corresponding data interval, but does not break through the third threshold, it means that the transaction data of the transaction data suddenly surges in a certain period of time, and this sudden surge is often abnormal. At this time, there is a possibility of great transaction risk. The second threshold is located above the "basic water level" and can be set at a position exceeding 10% or 20%. Depending on the specific situation, this value is a "warning water level". The second-level warning information can include a warning Level and alarm method, wherein the alarm level can be "serious", and the operation and maintenance personnel can be alarmed in a relatively rapid alarm mode, such as SMS alarm, and the corresponding "behavior" is also relatively strict. The behavior defined at this time can be divided into two parts. One is that the trading platform automatically suspends the transaction function of the user corresponding to the transaction data, and suspends all the current transactions of the user, but the other functions of the user are reserved. The second is that the operation and maintenance personnel need to review the transaction data of the user, verify with the user, and check whether there are false transactions or other irregular behaviors.
在本发明的另一种优选实施例中,所述步骤S230可以包括如下子步骤:In another preferred embodiment of the present invention, the step S230 may include the following sub-steps:
子步骤S51,当用户的交易数据超出其对应数据区间的第三阈值时,进行以下至少一个操作:发出第三级告警信息、关闭所述用户的所有功能、冻结所述用户的账户、报警。In sub-step S51, when the user's transaction data exceeds the third threshold of the corresponding data interval, at least one of the following operations is performed: issuing a third-level warning message, closing all functions of the user, freezing the user's account, and calling the police.
具体而言,如果用户的交易数据直接突破对应交易数据区间的第三阈值,这个阈值为“灾难水位”,所述告警信息中的告警级别可以为“严重”,表明该交易数据存在非常严重的问题,需要立刻通知运维人员,在得不到运维人员反馈的情况下,不间断通知,例如循环短信通知或者语言电话,直到运维人员响应,采用的“行为”也非常严格。这时交易平台会关闭该交易数据对应的用户的所有功能,例如禁止交易,禁止提现、冻结该用户的账户。运维人员对交易进行分析,如果怀疑是洗钱或者是虚假交易,可以进行报警。Specifically, if the user's transaction data directly breaks through the third threshold of the corresponding transaction data interval, this threshold is "disaster water level", and the alarm level in the alarm information can be "serious", indicating that there is a very serious threat to the transaction data. If there is a problem, the operation and maintenance personnel need to be notified immediately. If there is no feedback from the operation and maintenance personnel, continuous notification, such as circular SMS notification or voice phone calls, until the operation and maintenance personnel respond, the "behavior" adopted is also very strict. At this time, the trading platform will close all functions of the user corresponding to the transaction data, such as prohibiting transactions, prohibiting cash withdrawal, and freezing the user's account. The operation and maintenance personnel analyze the transaction, and if it is suspected of money laundering or false transaction, they can call the police.
本发明实施例通过对预设时间段内的交易数据进行检测,以划分数据区间,以及对数据区间设定一个或多个阈值的方式检测出异常交易数据。其中,所述异常交易数据可以为利用支付平台进行洗钱、虚假交易等。其中,洗钱是指不法分子将其通过非法手段获得的金钱,通过合法的金融作业流程如一连串的交易或者是转账,变成看似合法的金钱的过程;虚假交易是指通过不正当方式提高账户信用,妨碍买家高效购物权益的行为。通过本发明实施例可以有效监控用户的交易曲线和用户的交易数据的活跃度,从而检测出异常交易数据,避免交易平台成为不法分子获取不当利益的工具。The embodiment of the present invention detects abnormal transaction data by detecting transaction data within a preset time period, dividing data intervals, and setting one or more thresholds for the data intervals. Wherein, the abnormal transaction data may be money laundering and false transactions using payment platforms. Among them, money laundering refers to the process in which criminals turn money obtained through illegal means into seemingly legal money through legal financial operations such as a series of transactions or transfers; Credit, the behavior that hinders the buyer's efficient shopping rights. Through the embodiments of the present invention, the user's transaction curve and the activity of the user's transaction data can be effectively monitored, thereby detecting abnormal transaction data, and preventing the transaction platform from becoming a tool for criminals to obtain improper benefits.
当然,所述用户的特定行为数据为交易数据的情况仅是本实施例的一种示例,所述特定行为数据也可以为其他行为数据,本发明对此无需加以限制。Of course, the fact that the specific behavior data of the user is transaction data is only an example of this embodiment, and the specific behavior data may also be other behavior data, which is not limited in the present invention.
需要说明的是,对于方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本发明,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本发明所必须的。It should be noted that, for the method embodiment, for the sake of simple description, it is expressed as a series of action combinations, but those skilled in the art should know that the present invention is not limited by the described action order, because according to this According to the invention, certain steps may be performed in other order or simultaneously. Secondly, those skilled in the art should also know that the embodiments described in the specification belong to preferred embodiments, and the actions and modules involved are not necessarily required by the present invention.
参照图4,示出了根据本发明一个实施例的一种异常数据检测处理的系统实施例的结构框图,具体可以包括以下模块:Referring to FIG. 4 , it shows a structural block diagram of a system embodiment of abnormal data detection processing according to an embodiment of the present invention, which may specifically include the following modules:
数据采集模块410,适于采集预设时间段内用户的特定行为数据;The
在本实施例的一种优选示例中,所述特定行为数据可以为交易数据。In a preferred example of this embodiment, the specific behavior data may be transaction data.
特征信息提取模块420,适于提取所述特定行为数据中的特征信息;A feature
区间划分模块430,适于依据所述特征信息为确定用户特定行为数据的数据区间;The
在本发明的一种优选实施例中,所述用户可以为多个,所述区间划分模块430可以包括如下子模块:In a preferred embodiment of the present invention, there may be multiple users, and the
第一区间划分子模块,适于依据所述多个用户的特定行为数据中的特征信息将所述多个用户的网上特定行为数据划分成一个或多个数据区间;The first interval division submodule is adapted to divide the online specific behavior data of the multiple users into one or more data intervals according to the feature information in the specific behavior data of the multiple users;
第一区间确定子模块,适于确定各个用户的特定行为数据对应的数据区间。The first interval determination submodule is adapted to determine the data interval corresponding to the specific behavior data of each user.
进一步地,在本发明的一种优选实施例中,所述特征信息可以包括交易金额和/或交易量,所述第一区间划分子模块可以包括如下单元:Further, in a preferred embodiment of the present invention, the feature information may include transaction amount and/or transaction volume, and the first section division submodule may include the following units:
交易金额或交易量获取单元,适于提取每个用户在预设时间段内的交易金额和/或交易量;A transaction amount or transaction volume acquisition unit, adapted to extract the transaction amount and/or transaction volume of each user within a preset time period;
聚类分布信息获取单元,适于将所述每个用户的交易金额和/或交易量进行聚类,获得交易金额聚类分布信息和/或交易量聚类分布信息;The cluster distribution information acquisition unit is adapted to cluster the transaction amount and/or transaction volume of each user to obtain transaction amount cluster distribution information and/or transaction volume cluster distribution information;
第一数据区间划分单元,适于按照所述交易金额聚类分布信息和/或交易量聚类分布信息将所有用户的交易金额和/或交易量划分成一个或多个数据区间。The first data interval division unit is adapted to divide the transaction amounts and/or transaction volumes of all users into one or more data intervals according to the transaction amount cluster distribution information and/or transaction volume cluster distribution information.
在本发明的另一种优选实施例中,所述区间划分模块430可以包括如下子模块:In another preferred embodiment of the present invention, the
第二区间划分子模块,适于依据所述用户的特定行为数据中的特征信息确定所述用户的特定行为数据的数据区间。The second interval division submodule is adapted to determine the data interval of the user's specific behavior data according to the feature information in the user's specific behavior data.
进一步地,在本发明的一种优选实施例中,所述特征信息可以包括交易金额和/或交易量,所述第二区间划分子模块可以包括如下单元:Further, in a preferred embodiment of the present invention, the feature information may include transaction amount and/or transaction volume, and the second interval division submodule may include the following units:
交易金额或交易量提取单元,适于提取所述用户在预设时间段内的交易金额和/或交易量;A transaction amount or transaction volume extracting unit, adapted to extract the user's transaction amount and/or transaction volume within a preset time period;
计算单元,适于计算所述交易金额的平均值和/或交易量的平均值;a calculation unit adapted to calculate the average value of the transaction amount and/or the average value of the transaction volume;
第二数据区间划分单元,适于按照所述交易金额的平均值和/或交易量的平均值的预设比例范围确定所述用户特定行为数据的数据区间。The second data interval dividing unit is adapted to determine the data interval of the user-specific behavior data according to a preset ratio range of the average value of the transaction amount and/or the average value of the transaction volume.
预定操作执行模块440,适于在用户的特定行为数据超出其对应的数据区间时,进行预定的操作。The predetermined
在本发明的一种优选实施例中,为所述数据区间设置了一个或多个阈值;所述预定操作执行模块440可以包括:In a preferred embodiment of the present invention, one or more thresholds are set for the data interval; the predetermined
第一级告警子模块,适于在用户的交易数据超出其对应数据区间的第一阈值但未超出第二阈值时,进行以下至少一个操作:发出第一级告警信息、分析所述用户的特定行为数据;The first-level alarm sub-module is adapted to perform at least one of the following operations when the user's transaction data exceeds the first threshold of the corresponding data interval but does not exceed the second threshold: send out the first-level alarm information, analyze the user's specific behavioral data;
和/或,and / or,
第二级告警子模块,适于在用户的交易数据超出其对应数据区间的第二阈值但未超出第三阈值时,进行以下至少一个操作:发出第二级告警信息、暂停所述用户的交易功能、与所述用户核实所述特定行为数据;The second-level alarm sub-module is adapted to perform at least one of the following operations when the user's transaction data exceeds the second threshold of its corresponding data interval but does not exceed the third threshold: issue a second-level alarm message, suspend the user's transaction function, verifying said specific behavioral data with said user;
和/或,and / or,
第三级告警子模块,适于在用户的交易数据超出其对应数据区间的第三阈值时,进行以下至少一个操作:发出第三级告警信息、关闭所述用户的所有功能、冻结所述用户的账户、报警。The third-level alarm sub-module is adapted to perform at least one of the following operations when the user's transaction data exceeds the third threshold of its corresponding data interval: issue a third-level alarm message, close all functions of the user, and freeze the user account, call the police.
其中,所述第一级告警信息可以为邮件告警,所述第二级告警信息可以为短信告警,所述第三级告警信息可以为循环短信告警或循环语音信息告警。Wherein, the first-level warning information may be an email warning, the second-level warning information may be a short message warning, and the third-level warning information may be a cyclic short message warning or a cyclic voice message warning.
可选地,当所述数据区间中设置有多个阈值时,所述的系统还可以包括:Optionally, when multiple thresholds are set in the data interval, the system may further include:
交易曲线生成模块,适于在提取所述交易数据中的特征信息后,依据所述交易数据的特征信息生成对应用户的交易曲线;The transaction curve generation module is adapted to generate a transaction curve corresponding to the user according to the characteristic information of the transaction data after extracting the characteristic information in the transaction data;
正常数据判定模块,适于在用户的交易数据超出其对应数据区间的第一阈值但未超出第二阈值时,且所述用户的交易曲线为平滑上升时,判定所述用户的交易数据为正常数据。The normal data judging module is adapted to judge that the user's transaction data is normal when the user's transaction data exceeds the first threshold of its corresponding data interval but does not exceed the second threshold, and the user's transaction curve is rising smoothly data.
对于图4的系统实施例而言,由于其与上述的方法实施例基本相似,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。As for the system embodiment in FIG. 4 , since it is basically similar to the above-mentioned method embodiment, the description is relatively simple, and for related parts, refer to the part of the description of the method embodiment.
在此提供的算法和显示不与任何特定计算机、虚拟系统或者其它设备固有相关。各种通用系统也可以与基于在此的示教一起使用。根据上面的描述,构造这类系统所要求的结构是显而易见的。此外,本发明也不针对任何特定编程语言。应当明白,可以利用各种编程语言实现在此描述的本发明的内容,并且上面对特定语言所做的描述是为了披露本发明的最佳实施方式。The algorithms and displays presented herein are not inherently related to any particular computer, virtual system, or other device. Various generic systems can also be used with the teachings based on this. The structure required to construct such a system is apparent from the above description. Furthermore, the present invention is not specific to any particular programming language. It should be understood that various programming languages can be used to implement the content of the present invention described herein, and the above description of specific languages is for disclosing the best mode of the present invention.
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本发明的实施例可以在没有这些具体细节的情况下实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。In the description provided herein, numerous specific details are set forth. However, it is understood that embodiments of the invention may be practiced without these specific details. In some instances, well-known methods, structures and techniques have not been shown in detail in order not to obscure the understanding of this description.
类似地,应当理解,为了精简本公开并帮助理解各个发明方面中的一个或多个,在上面对本发明的示例性实施例的描述中,本发明的各个特征有时被一起分组到单个实施例、图、或者对其的描述中。然而,并不应将该公开的方法解释成反映如下意图:即所要求保护的本发明要求比在每个权利要求中所明确记载的特征更多的特征。更确切地说,如下面的权利要求书所反映的那样,发明方面在于少于前面公开的单个实施例的所有特征。因此,遵循具体实施方式的权利要求书由此明确地并入该具体实施方式,其中每个权利要求本身都作为本发明的单独实施例。Similarly, it should be appreciated that in the foregoing description of exemplary embodiments of the invention, in order to streamline this disclosure and to facilitate an understanding of one or more of the various inventive aspects, various features of the invention are sometimes grouped together in a single embodiment, figure, or its description. This method of disclosure, however, is not to be interpreted as reflecting an intention that the claimed invention requires more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive aspects lie in less than all features of a single foregoing disclosed embodiment. Thus, the claims following the Detailed Description are hereby expressly incorporated into this Detailed Description, with each claim standing on its own as a separate embodiment of this invention.
本领域那些技术人员可以理解,可以对实施例中的设备中的模块进行自适应性地改变并且把它们设置在与该实施例不同的一个或多个设备中。可以把实施例中的模块或单元或组件组合成一个模块或单元或组件,以及此外可以把它们分成多个子模块或子单元或子组件。除了这样的特征和/或过程或者单元中的至少一些是相互排斥之外,可以采用任何组合对本说明书(包括伴随的权利要求、摘要和附图)中公开的所有特征以及如此公开的任何方法或者设备的所有过程或单元进行组合。除非另外明确陈述,本说明书(包括伴随的权利要求、摘要和附图)中公开的每个特征可以由提供相同、等同或相似目的的替代特征来代替。Those skilled in the art can understand that the modules in the device in the embodiment can be adaptively changed and arranged in one or more devices different from the embodiment. Modules or units or components in the embodiments may be combined into one module or unit or component, and furthermore may be divided into a plurality of sub-modules or sub-units or sub-assemblies. All features disclosed in this specification (including accompanying claims, abstract and drawings), as well as any method or method so disclosed, may be used in any combination, except that at least some of such features and/or processes or units are mutually exclusive. All processes or units of equipment are combined. Each feature disclosed in this specification (including accompanying claims, abstract and drawings) may be replaced by alternative features serving the same, equivalent or similar purpose, unless expressly stated otherwise.
此外,本领域的技术人员能够理解,尽管在此所述的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本发明的范围之内并且形成不同的实施例。例如,在下面的权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。Furthermore, those skilled in the art will understand that although some embodiments described herein include some features included in other embodiments but not others, combinations of features from different embodiments are meant to be within the scope of the invention. and form different embodiments. For example, in the following claims, any of the claimed embodiments may be used in any combination.
本发明的各个部件实施例可以以硬件实现,或者以在一个或者多个处理器上运行的软件模块实现,或者以它们的组合实现。本领域的技术人员应当理解,可以在实践中使用微处理器或者数字信号处理器(DSP)来实现根据本发明实施例的异常数据检测处理设备中的一些或者全部部件的一些或者全部功能。本发明还可以实现为用于执行这里所描述的方法的一部分或者全部的设备或者装置程序(例如,计算机程序和计算机程序产品)。这样的实现本发明的程序可以存储在计算机可读介质上,或者可以具有一个或者多个信号的形式。这样的信号可以从因特网网站上下载得到,或者在载体信号上提供,或者以任何其他形式提供。The various component embodiments of the present invention may be implemented in hardware, or in software modules running on one or more processors, or in a combination thereof. Those skilled in the art should understand that a microprocessor or a digital signal processor (DSP) may be used in practice to implement some or all functions of some or all components in the abnormal data detection and processing device according to the embodiment of the present invention. The present invention can also be implemented as an apparatus or an apparatus program (for example, a computer program and a computer program product) for performing a part or all of the methods described herein. Such a program for realizing the present invention may be stored on a computer-readable medium, or may be in the form of one or more signals. Such a signal may be downloaded from an Internet site, or provided on a carrier signal, or provided in any other form.
应该注意的是上述实施例对本发明进行说明而不是对本发明进行限制,并且本领域技术人员在不脱离所附权利要求的范围的情况下可设计出替换实施例。在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本发明可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。It should be noted that the above-mentioned embodiments illustrate rather than limit the invention, and that those skilled in the art will be able to design alternative embodiments without departing from the scope of the appended claims. In the claims, any reference signs placed between parentheses shall not be construed as limiting the claim. The word "comprising" does not exclude the presence of elements or steps not listed in a claim. The word "a" or "an" preceding an element does not exclude the presence of a plurality of such elements. The invention can be implemented by means of hardware comprising several distinct elements, and by means of a suitably programmed computer. In a unit claim enumerating several means, several of these means can be embodied by one and the same item of hardware. The use of the words first, second, and third, etc. does not indicate any order. These words can be interpreted as names.
本发明的实施例公开了A1、一种异常数据检测处理的方法,包括:采集预设时间段内用户的特定行为数据;提取所述特定行为数据中的特征信息,依据所述特征信息确定用户特定行为数据的数据区间;当用户的特定行为数据超出其对应的数据区间时,进行预定的操作。A2、如A1所述的方法,所述用户包括多个,所述依据特征信息确定用户特定行为数据的数据区间的步骤包括:依据所述多个用户的特定行为数据中的特征信息将所述多个用户的网上特定行为数据划分成一个或多个数据区间;确定各个用户的特定行为数据对应的数据区间。A3、如A1所述的方法,所述依据所述特征信息确定用户特定行为数据的数据区间的步骤包括:依据所述用户的特定行为数据中的特征信息确定所述用户的特定行为数据的数据区间。A4、如A1或A2或A3所述的方法,所述特定行为数据为交易数据。A5、如A4所述的方法,为所述数据区间设置一个或多个阈值;所述当用户的特定行为数据超出其对应的数据区间时,进行预定的操作的步骤包括:当用户的交易数据超出其对应数据区间的第一阈值但未超出第二阈值时,进行以下至少一个操作:发出第一级告警信息、分析所述用户的特定行为数据;和/或,当用户的交易数据超出其对应数据区间的第二阈值但未超出第三阈值时,进行以下至少一个操作:发出第二级告警信息、暂停所述用户的交易功能、与所述用户核实所述特定行为数据;和/或,当用户的交易数据超出其对应数据区间的第三阈值时,进行以下至少一个操作:发出第三级告警信息、关闭所述用户的所有功能、冻结所述用户的账户、报警。A6、如A5所述的方法,所述第一级告警信息为邮件告警,所述第二级告警信息为短信告警,所述第三级告警信息为循环短信告警或循环语音信息告警。A7、如A5所述的方法,当所述数据区间中设置有多个阈值时,所述的方法还包括:在提取所述交易数据中的特征信息后,依据所述交易数据的特征信息生成对应的交易曲线;当用户的交易数据超出其对应数据区间的第一阈值但未超出第二阈值时,且所述用户的交易曲线为平滑上升时,判定所述用户的交易数据为正常数据。A8、如A2所述的方法,所述特征信息包括交易金额和/或交易量,所述依据所述多个用户的特定行为数据中的特征信息将所述多个用户的网上特定行为数据划分成一个或多个数据区间的子步骤包括:提取每个用户在预设时间段内的交易金额和/或交易量;将所述每个用户的交易金额和/或交易量进行聚类,获得交易金额聚类分布信息和/或交易量聚类分布信息;按照所述交易金额聚类分布信息和/或交易量聚类分布信息将所有用户的交易金额或交易量划分成一个或多个数据区间。A9、如A3所述的方法,所述特征信息包括交易金额和/或交易量,所述依据所述用户的特定行为数据中的特征信息确定所述用户的特定行为数据的数据区间的子步骤包括:提取所述用户在预设时间段内的交易金额和/或交易量;计算所述交易金额的平均值和/或交易量的平均值;按照所述交易金额的平均值和/或交易量的平均值的预设比例范围确定所述用户特定行为数据的数据区间。The embodiment of the present invention discloses A1. A method for detecting and processing abnormal data, including: collecting specific behavior data of users within a preset time period; extracting characteristic information in the specific behavior data, and determining the user according to the characteristic information The data interval of specific behavior data; when the user's specific behavior data exceeds its corresponding data interval, a predetermined operation is performed. A2. The method as described in A1, wherein the users include multiple users, and the step of determining the data interval of the user-specific behavior data according to the characteristic information includes: according to the characteristic information in the specific behavior data of the multiple users, the The online specific behavior data of multiple users is divided into one or more data intervals; and the data interval corresponding to the specific behavior data of each user is determined. A3. The method as described in A1, the step of determining the data interval of the user-specific behavior data according to the characteristic information includes: determining the data of the user-specific behavior data according to the characteristic information in the user-specific behavior data interval. A4. The method as described in A1 or A2 or A3, wherein the specific behavior data is transaction data. A5. The method as described in A4, setting one or more thresholds for the data interval; when the user’s specific behavior data exceeds its corresponding data interval, the step of performing a predetermined operation includes: when the user’s transaction data When exceeding the first threshold of its corresponding data interval but not exceeding the second threshold, perform at least one of the following operations: issue a first-level warning message, analyze the user’s specific behavior data; and/or, when the user’s transaction data exceeds its When the second threshold corresponding to the data interval does not exceed the third threshold, at least one of the following operations is performed: issuing a second-level warning message, suspending the user's transaction function, and verifying the specific behavior data with the user; and/or , when the user's transaction data exceeds the third threshold of the corresponding data interval, at least one of the following operations is performed: issuing a third-level warning message, closing all functions of the user, freezing the user's account, and calling the police. A6. The method as described in A5, wherein the first-level alarm information is an email alarm, the second-level alarm information is a text message alarm, and the third-level alarm information is a cyclic text message alarm or a cyclic voice message alarm. A7. The method as described in A5, when multiple thresholds are set in the data interval, the method further includes: after extracting the characteristic information in the transaction data, generating Corresponding transaction curve: when the user's transaction data exceeds the first threshold of the corresponding data range but not beyond the second threshold, and the user's transaction curve is rising smoothly, it is determined that the user's transaction data is normal data. A8. The method as described in A2, the feature information includes transaction amount and/or transaction volume, and the online specific behavior data of the multiple users are divided according to the feature information in the specific behavior data of the multiple users The sub-steps of forming one or more data intervals include: extracting the transaction amount and/or transaction volume of each user within a preset time period; clustering the transaction amount and/or transaction volume of each user to obtain Transaction amount cluster distribution information and/or transaction volume cluster distribution information; according to the transaction amount cluster distribution information and/or transaction volume cluster distribution information, the transaction amount or transaction volume of all users is divided into one or more data interval. A9. The method as described in A3, the feature information includes transaction amount and/or transaction volume, and the sub-step of determining the data interval of the user’s specific behavior data according to the feature information in the user’s specific behavior data Including: extracting the transaction amount and/or transaction volume of the user within a preset time period; calculating the average value of the transaction amount and/or the average value of the transaction volume; according to the average value of the transaction amount and/or transaction A preset proportional range of the average value of the quantity determines a data interval of the user-specific behavior data.
本发明的实施例还公开了B10、一种异常数据检测处理的系统,包括:数据采集模块,适于采集预设时间段内用户的特定行为数据;特征信息提取模块,适于提取所述特定行为数据中的特征信息;区间划分模块,适于依据所述特征信息确定用户特定行为数据的数据区间;预定操作执行模块,适于在用户的特定行为数据超出其对应的数据区间时,进行预定的操作。B11、如B10所述的系统,所述用户包括多个,所述区间划分模块包括:第一区间划分子模块,适于依据所述多个用户的特定行为数据中的特征信息将所述多个用户的网上特定行为数据划分成一个或多个数据区间;第一区间确定子模块,适于确定各个用户的特定行为数据对应的数据区间。B12、如B10所述的系统,所述区间划分模块包括:第二区间划分子模块,适于依据所述用户的特定行为数据中的特征信息确定所述用户的特定行为数据的数据区间。B13、如B10或B11或B12所述的系统,所述特定行为数据为交易数据。B14、如B13所述的系统,为所述数据区间设置一个或多个阈值;所述预定操作执行模块包括:第一级告警子模块,适于在用户的交易数据超出其对应数据区间的第一阈值但未超出第二阈值时,进行以下至少一个操作:发出第一级告警信息、分析所述用户的特定行为数据;和/或,第二级告警子模块,适于在用户的交易数据超出其对应数据区间的第二阈值但未超出第三阈值时,进行以下至少一个操作:发出第二级告警信息、暂停所述用户的交易功能、与所述用户核实所述特定行为数据;和/或,第三级告警子模块,适于在用户的交易数据超出其对应数据区间的第三阈值时,进行以下至少一个操作:发出第三级告警信息、关闭所述用户的所有功能、冻结所述用户的账户、报警。B15、如B14所述的系统,所述第一级告警信息为邮件告警,所述第二级告警信息为短信告警,所述第三级告警信息为循环短信告警或循环语音信息告警。B16、如B14所述的系统,当所述数据区间中设置有多个阈值时,所述的系统还包括:交易曲线生成模块,适于在提取所述交易数据中的特征信息后,依据所述交易数据的特征信息生成对应用户的交易曲线;正常数据判定模块,适于在用户的交易数据超出其对应数据区间的第一阈值但未超出第二阈值时,且所述用户的交易曲线为平滑上升时,判定所述用户的交易数据为正常数据。B17、如B11所述的系统,所述特征信息包括交易金额和/或交易量,所述第一区间划分子模块包括:交易金额或交易量获取单元,适于提取每个用户在预设时间段内的交易金额和/或交易量;聚类分布信息获取单元,适于将所述每个用户的交易金额和/或交易量进行聚类,获得交易金额聚类分布信息和/或交易量聚类分布信息;第一数据区间划分单元,适于按照所述交易金额聚类分布信息和/或交易量聚类分布信息将所有用户的交易金额和/或交易量划分成一个或多个数据区间。B18、如B12所述的系统,所述特征信息包括交易金额和/或交易量,所述第二区间划分子模块包括:交易金额或交易量提取单元,适于提取所述用户在预设时间段内的交易金额和/或交易量;计算单元,适于计算所述交易金额的平均值和/或交易量的平均值;第二数据区间划分单元,适于按照所述交易金额的平均值和/或交易量的平均值的预设比例范围确定所述用户特定行为数据的数据区间。The embodiment of the present invention also discloses B10, a system for detecting and processing abnormal data, including: a data collection module, suitable for collecting specific behavior data of users within a preset time period; a feature information extraction module, suitable for extracting the specific behavior data The feature information in the behavior data; the interval division module, adapted to determine the data interval of the user's specific behavior data according to the feature information; the scheduled operation execution module, adapted to perform reservation when the user's specific behavior data exceeds its corresponding data interval. operation. B11. The system as described in B10, wherein the users include multiple users, and the interval division module includes: a first interval division submodule, adapted to classify the multiple users according to the feature information in the specific behavior data of the multiple users The online specific behavior data of each user is divided into one or more data intervals; the first interval determination submodule is adapted to determine the data interval corresponding to the specific behavior data of each user. B12. The system according to B10, wherein the interval division module includes: a second interval division submodule, adapted to determine the data interval of the user's specific behavior data according to the feature information in the user's specific behavior data. B13. The system as described in B10 or B11 or B12, the specific behavior data is transaction data. B14, the system as described in B13, one or more thresholds are set for the data interval; the predetermined operation execution module includes: a first-level alarm sub-module, which is suitable for the first time when the user's transaction data exceeds its corresponding data interval When a threshold is reached but the second threshold is not exceeded, perform at least one of the following operations: issue a first-level warning message, analyze the specific behavior data of the user; When exceeding the second threshold of the corresponding data interval but not exceeding the third threshold, perform at least one of the following operations: issue a second-level warning message, suspend the transaction function of the user, and verify the specific behavior data with the user; and /or, the third-level alarm sub-module is adapted to perform at least one of the following operations when the user's transaction data exceeds the third threshold of its corresponding data interval: issue a third-level alarm message, close all functions of the user, freeze The user's account, alarm. B15. The system as described in B14, wherein the first-level alarm information is an email alarm, the second-level alarm information is a short message alarm, and the third-level alarm information is a circular SMS alarm or a circular voice message alarm. B16. The system as described in B14, when multiple thresholds are set in the data interval, the system also includes: a transaction curve generation module, adapted to extract the characteristic information in the transaction data according to the The feature information of the transaction data generates a transaction curve corresponding to the user; the normal data determination module is adapted to when the user’s transaction data exceeds the first threshold of its corresponding data interval but does not exceed the second threshold, and the user’s transaction curve is When it rises smoothly, it is determined that the user's transaction data is normal data. B17. The system as described in B11, the characteristic information includes transaction amount and/or transaction volume, and the first interval division submodule includes: transaction amount or transaction volume acquisition unit, which is suitable for extracting The transaction amount and/or transaction volume in the segment; the cluster distribution information acquisition unit is adapted to cluster the transaction amount and/or transaction volume of each user to obtain the transaction amount cluster distribution information and/or transaction volume Cluster distribution information; the first data interval division unit is adapted to divide the transaction amounts and/or transaction volumes of all users into one or more data intervals according to the transaction amount cluster distribution information and/or transaction volume cluster distribution information interval. B18. The system as described in B12, the feature information includes transaction amount and/or transaction volume, and the second interval division submodule includes: transaction amount or transaction volume extraction unit, which is suitable for extracting the transaction amount and/or transaction volume of the user at a preset time The transaction amount and/or transaction volume in the segment; the calculation unit is adapted to calculate the average value of the transaction amount and/or the average value of the transaction volume; the second data interval division unit is adapted to calculate the average value of the transaction amount and/or the preset ratio range of the average value of the transaction volume determines the data interval of the user-specific behavior data.
Claims (10)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310253223.4A CN103365969B (en) | 2013-06-24 | 2013-06-24 | The method and system that a kind of anomaly data detection processes |
CN201610755774.4A CN106446021B (en) | 2013-06-24 | 2013-06-24 | A kind of method and system of anomaly data detection processing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310253223.4A CN103365969B (en) | 2013-06-24 | 2013-06-24 | The method and system that a kind of anomaly data detection processes |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610755774.4A Division CN106446021B (en) | 2013-06-24 | 2013-06-24 | A kind of method and system of anomaly data detection processing |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103365969A true CN103365969A (en) | 2013-10-23 |
CN103365969B CN103365969B (en) | 2016-09-28 |
Family
ID=49367310
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610755774.4A Expired - Fee Related CN106446021B (en) | 2013-06-24 | 2013-06-24 | A kind of method and system of anomaly data detection processing |
CN201310253223.4A Active CN103365969B (en) | 2013-06-24 | 2013-06-24 | The method and system that a kind of anomaly data detection processes |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610755774.4A Expired - Fee Related CN106446021B (en) | 2013-06-24 | 2013-06-24 | A kind of method and system of anomaly data detection processing |
Country Status (1)
Country | Link |
---|---|
CN (2) | CN106446021B (en) |
Cited By (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103986515A (en) * | 2014-05-09 | 2014-08-13 | 浙江中烟工业有限责任公司 | Performance index monitoring method for fiber channel switch |
CN104077371A (en) * | 2014-06-24 | 2014-10-01 | 用友优普信息技术有限公司 | Method and system for monitoring abnormal data of database |
CN104751566A (en) * | 2013-12-30 | 2015-07-01 | 中国银联股份有限公司 | Method for monitoring fake card risk and transaction processing system for achieving the method |
CN104852810A (en) * | 2014-02-18 | 2015-08-19 | 中国移动通信集团公司 | Method and equipment for determining abnormity of business platform |
CN105225116A (en) * | 2014-06-24 | 2016-01-06 | 阿里巴巴集团控股有限公司 | The recognition methods of transactional operation and server |
CN105335851A (en) * | 2014-08-01 | 2016-02-17 | 小米科技有限责任公司 | Payment history-based before-payment confirmation protection method and device |
CN105405048A (en) * | 2014-09-09 | 2016-03-16 | 阿里巴巴集团控股有限公司 | Method and device for recognizing periodic behavior |
CN105426365A (en) * | 2014-08-01 | 2016-03-23 | 阿里巴巴集团控股有限公司 | Method and apparatus for distinguishing interactive behavior |
CN105528535A (en) * | 2015-12-25 | 2016-04-27 | 北京奇虎科技有限公司 | Log information based user behavior analysis method and apparatus |
CN106202389A (en) * | 2016-07-08 | 2016-12-07 | 中国银联股份有限公司 | A kind of method for monitoring abnormality based on transaction data and device |
CN106326913A (en) * | 2016-08-09 | 2017-01-11 | 中国银联股份有限公司 | Money laundering account determination method and device |
CN106327230A (en) * | 2015-06-30 | 2017-01-11 | 阿里巴巴集团控股有限公司 | Abnormal user detection method and device |
CN106815452A (en) * | 2015-11-27 | 2017-06-09 | 苏宁云商集团股份有限公司 | A kind of cheat detection method and device |
CN106980998A (en) * | 2016-01-18 | 2017-07-25 | 阿里巴巴集团控股有限公司 | The abnormal monitoring method of merchant transaction and device |
CN106991145A (en) * | 2017-03-23 | 2017-07-28 | 中国银联股份有限公司 | A kind of method and device of Monitoring Data |
CN107038181A (en) * | 2016-09-07 | 2017-08-11 | 阿里巴巴集团控股有限公司 | The determination method and device of the trade date of transactional operation |
CN107133833A (en) * | 2016-02-26 | 2017-09-05 | 阿里巴巴集团控股有限公司 | abnormal transaction identification method and device |
WO2017167064A1 (en) * | 2016-03-30 | 2017-10-05 | 阿里巴巴集团控股有限公司 | Data control method and system |
CN107894745A (en) * | 2017-11-20 | 2018-04-10 | 广东汇嵘绿色能源股份有限公司 | A boiler energy internet of things online monitoring system and monitoring method thereof |
CN108011782A (en) * | 2017-12-06 | 2018-05-08 | 北京百度网讯科技有限公司 | Method and apparatus for pushing warning information |
CN108230137A (en) * | 2016-12-14 | 2018-06-29 | 大唐半导体设计有限公司 | A kind of method and device for realizing collage-credit data processing |
CN108710559A (en) * | 2018-05-22 | 2018-10-26 | 阿里巴巴集团控股有限公司 | The notification method and device of data exception |
CN108965207A (en) * | 2017-05-19 | 2018-12-07 | 北京京东尚科信息技术有限公司 | Machine Activity recognition method and apparatus |
CN108961059A (en) * | 2018-07-11 | 2018-12-07 | 海南新软软件有限公司 | Digital cash exception transaction monitoring method, apparatus and system |
CN108985798A (en) * | 2018-07-04 | 2018-12-11 | 成都中医药大学 | A kind of Chinese medicine source tracing method of full chain multistage |
CN109034821A (en) * | 2018-06-29 | 2018-12-18 | 深圳春沐源控股有限公司 | transaction monitoring method and monitoring device, storage medium and server |
CN109816323A (en) * | 2018-12-12 | 2019-05-28 | 上海点融信息科技有限责任公司 | Transaction auditing method, calculating equipment, storage medium for block chain network |
CN110458580A (en) * | 2018-05-07 | 2019-11-15 | 中移(苏州)软件技术有限公司 | Abnormal channel detection method, device, medium and equipment |
CN110881035A (en) * | 2019-11-13 | 2020-03-13 | 广西大学行健文理学院 | Network security system based on cloud computing and artificial intelligence |
CN111598699A (en) * | 2020-05-20 | 2020-08-28 | 嘉联支付有限公司 | Divide moist system based on cluster |
CN111629010A (en) * | 2015-11-23 | 2020-09-04 | 阿里巴巴集团控股有限公司 | Malicious user identification method and device |
CN111652718A (en) * | 2020-07-09 | 2020-09-11 | 平安银行股份有限公司 | Method, device, equipment and medium for monitoring value flow direction based on relational network diagram |
CN112214528A (en) * | 2020-09-25 | 2021-01-12 | 桦蓥(上海)信息科技有限责任公司 | Financial object single item abnormal attribute analysis method based on correlation analysis |
CN112612998A (en) * | 2020-12-25 | 2021-04-06 | 福州掌中云科技有限公司 | Method and equipment for detecting and identifying abnormal channel based on real-time access condition |
CN113127470A (en) * | 2021-05-10 | 2021-07-16 | 广州欢网科技有限责任公司 | Method and equipment for judging whether Clickhouse data is abnormal or not |
CN119090616A (en) * | 2024-11-06 | 2024-12-06 | 无锡锡商银行股份有限公司 | Intelligent digital bank monitoring system based on risk control |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107103688B (en) * | 2017-02-28 | 2020-08-18 | 广州地理研究所 | Method, device and system for processing public transportation credit card payment data |
CN108446148B (en) * | 2018-01-29 | 2021-05-07 | 北京奇艺世纪科技有限公司 | Rule management method and device and electronic equipment |
CN110189178B (en) * | 2019-05-31 | 2023-06-20 | 创新先进技术有限公司 | Abnormal transaction monitoring method and device and electronic equipment |
CN110298705A (en) * | 2019-07-03 | 2019-10-01 | 深圳市中农数据有限公司 | Circulation of Agricultural Products price index instructs system |
CN112150162A (en) * | 2020-11-24 | 2020-12-29 | 深圳华锐金融技术股份有限公司 | Transaction account supervision method and device, computer equipment and storage medium |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110087535A1 (en) * | 2009-10-14 | 2011-04-14 | Seiko Epson Corporation | Information processing device, information processing system, control method for an information processing device, and a program |
CN102368842A (en) * | 2011-10-12 | 2012-03-07 | 中国联合网络通信集团有限公司 | Detection method of abnormal behavior of mobile terminal and detection system thereof |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101154287A (en) * | 2006-09-29 | 2008-04-02 | 阿里巴巴公司 | Method and system for filtering merchandise information |
CN102467726B (en) * | 2010-11-04 | 2015-07-29 | 阿里巴巴集团控股有限公司 | A kind of data processing method based on online trade platform and device |
CN102855588B (en) * | 2011-06-29 | 2016-08-24 | 北京神州绿盟信息安全科技股份有限公司 | Method for detection of transaction data, device and server |
CN102890803B (en) * | 2011-07-21 | 2016-01-06 | 阿里巴巴集团控股有限公司 | The defining method of the abnormal process of exchange of electronic goods and device thereof |
CN103136247B (en) * | 2011-11-29 | 2015-12-02 | 阿里巴巴集团控股有限公司 | Attribute data interval division method and device |
-
2013
- 2013-06-24 CN CN201610755774.4A patent/CN106446021B/en not_active Expired - Fee Related
- 2013-06-24 CN CN201310253223.4A patent/CN103365969B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110087535A1 (en) * | 2009-10-14 | 2011-04-14 | Seiko Epson Corporation | Information processing device, information processing system, control method for an information processing device, and a program |
CN102368842A (en) * | 2011-10-12 | 2012-03-07 | 中国联合网络通信集团有限公司 | Detection method of abnormal behavior of mobile terminal and detection system thereof |
Cited By (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104751566A (en) * | 2013-12-30 | 2015-07-01 | 中国银联股份有限公司 | Method for monitoring fake card risk and transaction processing system for achieving the method |
CN104852810A (en) * | 2014-02-18 | 2015-08-19 | 中国移动通信集团公司 | Method and equipment for determining abnormity of business platform |
CN104852810B (en) * | 2014-02-18 | 2018-11-30 | 中国移动通信集团公司 | A kind of determination method and apparatus of business platform exception |
CN103986515B (en) * | 2014-05-09 | 2016-06-08 | 浙江中烟工业有限责任公司 | The performance indications monitoring method of fibre channel media |
CN103986515A (en) * | 2014-05-09 | 2014-08-13 | 浙江中烟工业有限责任公司 | Performance index monitoring method for fiber channel switch |
CN105225116A (en) * | 2014-06-24 | 2016-01-06 | 阿里巴巴集团控股有限公司 | The recognition methods of transactional operation and server |
CN104077371B (en) * | 2014-06-24 | 2019-03-29 | 用友优普信息技术有限公司 | The method and system of monitor database abnormal data |
CN104077371A (en) * | 2014-06-24 | 2014-10-01 | 用友优普信息技术有限公司 | Method and system for monitoring abnormal data of database |
CN105335851A (en) * | 2014-08-01 | 2016-02-17 | 小米科技有限责任公司 | Payment history-based before-payment confirmation protection method and device |
CN105426365A (en) * | 2014-08-01 | 2016-03-23 | 阿里巴巴集团控股有限公司 | Method and apparatus for distinguishing interactive behavior |
CN105335851B (en) * | 2014-08-01 | 2021-12-21 | 小米科技有限责任公司 | Pre-payment confirmation protection method and device based on payment history |
CN105426365B (en) * | 2014-08-01 | 2018-11-02 | 阿里巴巴集团控股有限公司 | Distinguish the method and device of interbehavior |
CN105405048A (en) * | 2014-09-09 | 2016-03-16 | 阿里巴巴集团控股有限公司 | Method and device for recognizing periodic behavior |
CN105405048B (en) * | 2014-09-09 | 2020-02-11 | 阿里巴巴集团控股有限公司 | Method and device for identifying periodic behaviors |
CN106327230A (en) * | 2015-06-30 | 2017-01-11 | 阿里巴巴集团控股有限公司 | Abnormal user detection method and device |
CN111629010A (en) * | 2015-11-23 | 2020-09-04 | 阿里巴巴集团控股有限公司 | Malicious user identification method and device |
CN106815452A (en) * | 2015-11-27 | 2017-06-09 | 苏宁云商集团股份有限公司 | A kind of cheat detection method and device |
CN105528535A (en) * | 2015-12-25 | 2016-04-27 | 北京奇虎科技有限公司 | Log information based user behavior analysis method and apparatus |
CN106980998A (en) * | 2016-01-18 | 2017-07-25 | 阿里巴巴集团控股有限公司 | The abnormal monitoring method of merchant transaction and device |
CN107133833A (en) * | 2016-02-26 | 2017-09-05 | 阿里巴巴集团控股有限公司 | abnormal transaction identification method and device |
WO2017167064A1 (en) * | 2016-03-30 | 2017-10-05 | 阿里巴巴集团控股有限公司 | Data control method and system |
CN107292641A (en) * | 2016-03-30 | 2017-10-24 | 阿里巴巴集团控股有限公司 | A kind of method and system of data management and control |
CN106202389A (en) * | 2016-07-08 | 2016-12-07 | 中国银联股份有限公司 | A kind of method for monitoring abnormality based on transaction data and device |
CN106202389B (en) * | 2016-07-08 | 2020-02-07 | 中国银联股份有限公司 | Anomaly monitoring method and device based on transaction data |
CN106326913A (en) * | 2016-08-09 | 2017-01-11 | 中国银联股份有限公司 | Money laundering account determination method and device |
CN107038181A (en) * | 2016-09-07 | 2017-08-11 | 阿里巴巴集团控股有限公司 | The determination method and device of the trade date of transactional operation |
CN108230137B (en) * | 2016-12-14 | 2022-05-03 | 大唐半导体设计有限公司 | Method and device for processing credit investigation data |
CN108230137A (en) * | 2016-12-14 | 2018-06-29 | 大唐半导体设计有限公司 | A kind of method and device for realizing collage-credit data processing |
CN106991145A (en) * | 2017-03-23 | 2017-07-28 | 中国银联股份有限公司 | A kind of method and device of Monitoring Data |
CN108965207A (en) * | 2017-05-19 | 2018-12-07 | 北京京东尚科信息技术有限公司 | Machine Activity recognition method and apparatus |
CN108965207B (en) * | 2017-05-19 | 2021-02-26 | 北京京东尚科信息技术有限公司 | Machine behavior identification method and device |
CN107894745A (en) * | 2017-11-20 | 2018-04-10 | 广东汇嵘绿色能源股份有限公司 | A boiler energy internet of things online monitoring system and monitoring method thereof |
CN108011782A (en) * | 2017-12-06 | 2018-05-08 | 北京百度网讯科技有限公司 | Method and apparatus for pushing warning information |
CN108011782B (en) * | 2017-12-06 | 2020-10-16 | 北京百度网讯科技有限公司 | Method and device for pushing alarm information |
CN110458580A (en) * | 2018-05-07 | 2019-11-15 | 中移(苏州)软件技术有限公司 | Abnormal channel detection method, device, medium and equipment |
CN108710559A (en) * | 2018-05-22 | 2018-10-26 | 阿里巴巴集团控股有限公司 | The notification method and device of data exception |
CN109034821A (en) * | 2018-06-29 | 2018-12-18 | 深圳春沐源控股有限公司 | transaction monitoring method and monitoring device, storage medium and server |
CN108985798A (en) * | 2018-07-04 | 2018-12-11 | 成都中医药大学 | A kind of Chinese medicine source tracing method of full chain multistage |
CN108961059A (en) * | 2018-07-11 | 2018-12-07 | 海南新软软件有限公司 | Digital cash exception transaction monitoring method, apparatus and system |
CN109816323A (en) * | 2018-12-12 | 2019-05-28 | 上海点融信息科技有限责任公司 | Transaction auditing method, calculating equipment, storage medium for block chain network |
CN110881035A (en) * | 2019-11-13 | 2020-03-13 | 广西大学行健文理学院 | Network security system based on cloud computing and artificial intelligence |
CN111598699A (en) * | 2020-05-20 | 2020-08-28 | 嘉联支付有限公司 | Divide moist system based on cluster |
CN111652718A (en) * | 2020-07-09 | 2020-09-11 | 平安银行股份有限公司 | Method, device, equipment and medium for monitoring value flow direction based on relational network diagram |
CN111652718B (en) * | 2020-07-09 | 2023-07-28 | 平安银行股份有限公司 | Value flow direction monitoring method, device, equipment and medium based on relational network graph |
CN112214528A (en) * | 2020-09-25 | 2021-01-12 | 桦蓥(上海)信息科技有限责任公司 | Financial object single item abnormal attribute analysis method based on correlation analysis |
CN112612998A (en) * | 2020-12-25 | 2021-04-06 | 福州掌中云科技有限公司 | Method and equipment for detecting and identifying abnormal channel based on real-time access condition |
CN113127470A (en) * | 2021-05-10 | 2021-07-16 | 广州欢网科技有限责任公司 | Method and equipment for judging whether Clickhouse data is abnormal or not |
CN119090616A (en) * | 2024-11-06 | 2024-12-06 | 无锡锡商银行股份有限公司 | Intelligent digital bank monitoring system based on risk control |
Also Published As
Publication number | Publication date |
---|---|
CN106446021B (en) | 2019-08-02 |
CN103365969B (en) | 2016-09-28 |
CN106446021A (en) | 2017-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103365969B (en) | The method and system that a kind of anomaly data detection processes | |
WO2019154115A1 (en) | Resource transferring monitoring method and device | |
WO2020011191A1 (en) | Monitoring method for unusual digital currency transaction, device, and system | |
CN106850346B (en) | Method and device for monitoring node change and assisting in identifying blacklist and electronic equipment | |
CN109272323B (en) | Risk transaction identification method, device, equipment and medium | |
CN105243252B (en) | A kind of method and device of account risk assessment | |
KR20190075083A (en) | Method and apparatus for automatic processing of risk control events | |
WO2020107331A1 (en) | Fire alarm confirmation method for smoke detector, apparatus and terminal device | |
CN114443429B (en) | Alarm event processing method and device and computer readable storage medium | |
CN105429801B (en) | A flow monitoring method and device | |
TWI718379B (en) | Evaluation method, device and equipment for users using shared items | |
CN103258039B (en) | A kind of detection method of microblogging spurious | |
CN106933677A (en) | System exception processing method and processing device | |
KR101937458B1 (en) | Method for establishing a reliable network and method for calculating user influence | |
CN107247649A (en) | Method, device and the gateway of detecting system health status | |
CN113849362B (en) | Business service platform management method, device and computer readable storage medium | |
CN105740709B (en) | A kind of Android malware detection method based on permission combination | |
CN110458571B (en) | Risk identification method, device and equipment for information leakage | |
CN105930430A (en) | Non-cumulative attribute based real-time fraud detection method and apparatus | |
CN106503075A (en) | A kind of method and system of filtering spam message | |
CN104680423A (en) | Electricity charge abnormity detection system and method | |
CN115130577A (en) | Method, device and electronic device for identifying fraudulent numbers | |
CN104461714A (en) | Method and device for processing progresses of server | |
TWI869013B (en) | Information fraud prevention system and method thereof | |
WO2019184233A1 (en) | Method and device for risk indication in online payments |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C41 | Transfer of patent application or patent right or utility model | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20160808 Address after: 100015, room 2, building B, building 6, No. 108, Jiuxianqiao Road, Chaoyang District, Beijing Applicant after: BEIJING QICHUANG YOUSHENG TECHNOLOGY Co.,Ltd. Address before: 100088 Beijing city Xicheng District xinjiekouwai Street 28, block D room 112 (Desheng Park) Applicant before: BEIJING QIHOO TECHNOLOGY Co.,Ltd. Applicant before: Qizhi software (Beijing) Co.,Ltd. |
|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20220211 Address after: Room 801, 8th floor, No. 104, floors 1-19, building 2, yard 6, Jiuxianqiao Road, Chaoyang District, Beijing 100015 Patentee after: BEIJING QIHOO TECHNOLOGY Co.,Ltd. Address before: Room 108, block B, building 2, yard 6, Jiuxianqiao Road, Chaoyang District, Beijing 100015 Patentee before: BEIJING QICHUANG YOUSHENG TECHNOLOGY Co.,Ltd. |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20220725 Address after: 300450 No. 9-3-401, No. 39, Gaoxin 6th Road, Binhai Science Park, Binhai New Area, Tianjin Patentee after: 3600 Technology Group Co.,Ltd. Address before: Room 801, 8th floor, No. 104, floors 1-19, building 2, yard 6, Jiuxianqiao Road, Chaoyang District, Beijing 100015 Patentee before: BEIJING QIHOO TECHNOLOGY Co.,Ltd. |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20230714 Address after: 1765, floor 17, floor 15, building 3, No. 10 Jiuxianqiao Road, Chaoyang District, Beijing 100015 Patentee after: Beijing Hongxiang Technical Service Co.,Ltd. Address before: 300450 No. 9-3-401, No. 39, Gaoxin 6th Road, Binhai Science Park, Binhai New Area, Tianjin Patentee before: 3600 Technology Group Co.,Ltd. |
|
TR01 | Transfer of patent right | ||
CP03 | Change of name, title or address |
Address after: 1765, floor 17, floor 15, building 3, No. 10 Jiuxianqiao Road, Chaoyang District, Beijing 100015 Patentee after: Beijing 360 Zhiling Technology Co.,Ltd. Country or region after: China Address before: 1765, floor 17, floor 15, building 3, No. 10 Jiuxianqiao Road, Chaoyang District, Beijing 100015 Patentee before: Beijing Hongxiang Technical Service Co.,Ltd. Country or region before: China |
|
CP03 | Change of name, title or address |