CN103346283A - 一种镍锌电池的保护方法 - Google Patents

一种镍锌电池的保护方法 Download PDF

Info

Publication number
CN103346283A
CN103346283A CN2013102744045A CN201310274404A CN103346283A CN 103346283 A CN103346283 A CN 103346283A CN 2013102744045 A CN2013102744045 A CN 2013102744045A CN 201310274404 A CN201310274404 A CN 201310274404A CN 103346283 A CN103346283 A CN 103346283A
Authority
CN
China
Prior art keywords
nickel
zinc
zinc cell
battery
diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2013102744045A
Other languages
English (en)
Inventor
马福元
叶竞荣
何太亮
潘维洁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HANGZHOU NEUCELL ENERGY CO Ltd
Original Assignee
HANGZHOU NEUCELL ENERGY CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HANGZHOU NEUCELL ENERGY CO Ltd filed Critical HANGZHOU NEUCELL ENERGY CO Ltd
Priority to CN2013102744045A priority Critical patent/CN103346283A/zh
Publication of CN103346283A publication Critical patent/CN103346283A/zh
Priority to US14/176,125 priority patent/US20150010803A1/en
Priority to EP14175206.3A priority patent/EP2822087A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/503Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the shape of the interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • H01M50/51Connection only in series
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/521Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the material
    • H01M50/522Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/521Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the material
    • H01M50/526Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/30Nickel accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/244Zinc electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

本发明提供一种镍锌电池的保护方法,将若干镍锌电池用连接片连接成镍锌电池组,将二极管的反向端接入到镍锌电池的正极端,而二极管的正向端接入到镍锌电池的负极端。本发明通过这种简单易行的镍锌电池保护方法,在实际应用中对放电较弱的电池有保护作用,也就是在放电过程中,当放电弱的电池达到截止电压时,该电池不放电或少放电,而其它电池继续放电,且该保护措施的自耗电在微安级,即不引入过大的功耗,防止电池组在长久搁置后会因为引入该保护措施而失效。

Description

一种镍锌电池的保护方法
技术领域
     本发明涉及一种镍锌电池的保护方法。
技术背景
单节镍锌电池的循环寿命已达1000次以上, 但当组合成电池组时循环寿命却少得多, 有时只有几十个循环就坏了。很大一部分是因为电池在放电过程中损坏了。究其原因,是由于各个电池放电不一致引起的。尽管单个电池有很好的循环寿命,一旦组合在一起放电,由于各个电池间放电能力的不一致,有的电池放电电压比其他电池低一些,这个电池就容易造成 "过放”而损坏电池,从而使整个电池组无法工作。
     在现有技术中,一般通过加电路保护板的方法来克服电池间相对不一致性的问题。通过电子线路控制的方法,是能使电池组提高一定的循环寿命, 但会带来以下问题: (1) 电子线路成本很高。典型的例子就是锂电池,锂电池是很怕"过放”的一种电池,因此任何一组锂电池,甚至于单节锂电池都有保护电路防过充和过放。而锂电池中的保护电路是其成本中的很大一部分。特别是,当需要保护大电流时,锂电池的控制电路的成本会相当地高,而且需要解决大电流放电散热等问题使得控制板所占的空间太大而大大降低了锂电原有的能量密度。(2) 使用不方便,遇大电流时电路被切断。用保护电路进行过放保护时,保护电路参与电池的整个放电过程。在有些实际使用中使用的瞬间电流会很大,若保护电路的电流达不到那么大(设计大的电流保护电路的成本上升太大),电路就会断开,造成使用的不方便。以电动工具为例,一般电钻正常运行时要求10-20A的电流,而在堵钻时瞬间电流要求达到50-60A甚至70-80A,若设计的保护电路达不到这样的电流,电钻就会停止,使用时会觉得电钻没劲,而设计很高的保护电流所需的成本很高。(3)电池容量不能完全释放,容量积累,损坏电池。用了保护电路,当较弱的一节电池达到截止电压时,放电停止,而此时其他电池的容量并没有完全释放而"积累”,类似于“记忆效应”, 这种不断的积累会造成电池过充或放电容量越来越低。在有些高端的应用中为了释放这部分容量而在电路中设计了旁路或用所谓的能量均衡来达到目的,但无论哪种方法都会增加相当大的成本,而使得在实际应用中难以接受。
发明内容
本发明所要解决的技术问题是解决现有技术中存在的镍锌电池保护方法不能使电池容量完全释放的技术问题。
本发明提供一种镍锌电池的保护方法,其特征在于:将若干镍锌电池用连接片连接成镍锌电池组,将二极管的反向端接入到镍锌电池的正极端, 而二极管的正向端接入到镍锌电池的负极端 。
本发明通过这种简单易行的镍锌电池保护方法,在实际应用中对放电较弱的电池有保护作用,也就是在放电过程中,当放电弱的电池达到截止电压时,该电池不放电或少放电,而其它电池继续放电,且该保护措施的自耗电在微安级,即不引入过大的功耗,防止电池组在长久搁置后会因为引入该保护措施而失效。该镍锌电池使用过程没有“断电”的感觉, 即使用时不应像保护板那样有电流的限制而断路且成本低廉。
附图说明
图1为本发明镍锌电池保护方法原理图。
图2是单节镍锌电池与12节镍锌电池串接电池组不带二极管的循环寿
命比较图;
图3是12节镍锌电池串接电池组不带二极管与12节镍锌电池串接电池组带二极管的循环寿命比较图。
其中:1镍锌电池,2二极管。
具体实施方式
下面结合附图对本发明技术方案进行详细说明。
如图1所述,本发明方法将若干镍锌电池1用连接片连接成镍锌电池组,将二极管2的反向端接入到镍锌电池1的正极端, 而二极管2的正向端接入到镍锌电池1的负极端,所述镍锌电池1的形状为圆柱形或方形。所述二极管2呈圆柱形、方形或贴片形。所述二极管2的两端设置用于连接镍锌电池1的薄片,薄皮采用焊接或机械压接的结构连接。
所述连接片的材料为镍、铜、铝、银、金以及这些材料镀层的薄片,也可以是这些材料的合金和复合带。所述连接片的厚度在0.1-0.3mm之间。
镍锌电池组可为镍锌电池串联、并联或串并联混合连接结构。
二极管2是电子线路中最基本的电子原器件之一, 其性能稳定, 价格便宜。 市场可供选择的二极管2有硅管、锗管和肖特基管, 它们的基本性能列于表1。
表1  市场上几种常用的二极管性能比较
二极管类型 正向导通电压 优点 缺点
硅管 0.7 – 0.9V 便宜, 功耗低 导通电压太高
锗管 0.3 – 0.5V 导通电压低 较少使用, 功耗大
肖特基管 0.3 – 0.5V 导通电压低,功耗小,性能稳定 价格贵
我们通过大量的测试发现二极管2的这些特性对镍锌电池本体1是适用的。允许将单个放电性能不一致的镍锌电池1组合在一起,从而克服了现有技术中由于单个镍锌电池1不一致而引起的放电性能差和循环寿命短的问题,既提高了镍锌电池1的放电性能,又大大地改善镍锌电池本体1的使用寿命。
实验1
本实验1说明本发明方法采用的二极管2对镍锌电池组循环寿命的影响。
以圆柱型SC1200mAh的镍锌电池1为应用实例,电池经下列步骤进行表征:测试工步(以SC1200mAh电池5C放电循环为例):
(一)  单节镍锌电池1测试工步:
步骤1:恒流6A放电,截止电压1.2V;
步骤2:搁置60分钟;
步骤3:恒流1.2A充电30分钟,电压控制1.98V,转下一步;
      步骤4:恒流0.6A充电60分钟,电压控制1.98V断开;
      步骤5:搁置15分钟;
      步骤6:从步骤1到步骤5循环200次;
      步骤7:结束。
(二)  12节镍锌电池1串联电池组测试工步:
步骤1:恒流6A放电,截止电压12V;
步骤2:搁置60分钟;
步骤3:恒流1.2A充电30分钟,电压控制23.75V,转下一步;
      步骤4:恒流0.6A充电60分钟,电压控制23.75V断开;
      步骤5:搁置15分钟;
      步骤6:从步骤1到步骤5循环200次;
     步骤7:结束。
以200次循环对单节镍锌电池1、12节镍锌电池1串联电池组不带二极管2、12节镍锌电池1串联电池组带二极管2进行测试,典型测试结果如图2图3所示:
进行200次循环,单节镍锌电池1的容量仍然在1200mAh, 即100%容量(A线);而不带二极管的12节镍锌电池1串联电池组在100个循环时容量已下降到0,即电池组已损坏不能使用了(B线);当12节镍锌电池1用二极管保护后再组合,其循环寿命在200次时还有100%的容量,即电池组仍然完好(C线)。
实验2
本实验说明本发明方法采用的二极管2对电池的保护性能。
二极管具有单向导通的性能,在没达到正向导通电压前二极管不起作用,而达到该正向导通电压时相应的电池工作在负电压区。按表1所示,不同的二极管具有不同的正向导通电压,因此使用不同的二极管对电池也会有不同的影响。由于锗管较少使用并且功耗大,因此这里主要测试硅管和肖特基管的性能。用SC1200mAh的镍锌电池1进行测试,将二极管2按图1的方式跨接在电池两端,结果如表2:
表2  不同二极管的导通电压及对电池的保护
Figure DEST_PATH_IMAGE001
从表2实测的数据可以看到:硅管有~0.7V的正向导通电压,肖特基管有~0.3V的正向导通电压。因此,根据图1的连接方式,若用硅管对镍锌电池保护时,只有当镍锌的正端处于负0.7V时,二极管才导通开始工作,并将电池两端的电压维持在负0.7V,即镍锌电池工作在0.7V的负电压区;若用肖特基管对镍锌电池保护时,当镍锌的正端处于负0.3V时,二极管导通开始工作,并将电池两端的电压维持在负0.3V,即镍锌电池工作在0.3V的负电压区。放电时电池工作在负电位区(即“反极”)易损坏电池,并且电压越负越容易损坏电池。我们经过大量的测试,发现即使用硅管尽管有0.7V的负电压,对镍锌电池并不至于损坏。对要求较高的应用可以用肖特基管。
最后所应说明的是,以上实施例仅用于说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围中。

Claims (7)

1.一种镍锌电池的保护方法,其特征在于:将若干镍锌电池(1)用连接片连接成镍锌电池组,将二极管(2)的反向端接入到镍锌电池(1)的正极端, 而二极管(2)的正向端接入到镍锌电池(1)的负极端 。
2.根据权利要求1所述的一种镍锌电池的保护方法,其特征在于所述二极管(2)呈圆柱形、方形或贴片形。
3.根据权利要求1所述的一种镍锌电池的保护方法,其特点在于:所述二极管(2)的两端设置用于连接镍锌电池(1)的薄片。
4.根据权利要求1所述的一种镍锌电池的保护方法,,其特点在于:所述连接片的材料为镍、铜、铝、银、金或合金。
5.根据权利要求1所述的一种镍锌电池的保护方法,其特点
在于:所述连接片的厚度在0.1-0.3mm之间。
6.根据权利要求1所述的一种镍锌电池的保护方法,其特点在于:所述镍锌电池(1)的形状为圆柱形或方形。
7.根据权利要求1所述的一种镍锌电池的保护方法,其特点在于:所述二极管(2)为硅管、锗管和肖特基管。
CN2013102744045A 2013-07-02 2013-07-02 一种镍锌电池的保护方法 Pending CN103346283A (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2013102744045A CN103346283A (zh) 2013-07-02 2013-07-02 一种镍锌电池的保护方法
US14/176,125 US20150010803A1 (en) 2013-07-02 2014-02-09 Nickel-Zinc Battery Assembly and Manufacturing Method Thereof
EP14175206.3A EP2822087A1 (en) 2013-07-02 2014-07-01 Nickel-zinc battery assembly and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2013102744045A CN103346283A (zh) 2013-07-02 2013-07-02 一种镍锌电池的保护方法

Publications (1)

Publication Number Publication Date
CN103346283A true CN103346283A (zh) 2013-10-09

Family

ID=49281066

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2013102744045A Pending CN103346283A (zh) 2013-07-02 2013-07-02 一种镍锌电池的保护方法

Country Status (2)

Country Link
US (1) US20150010803A1 (zh)
CN (1) CN103346283A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105633426A (zh) * 2016-04-07 2016-06-01 中银(宁波)电池有限公司 防止因串联使用引起过放电导致漏液的碱性锌锰电池
CN105870388A (zh) * 2015-02-05 2016-08-17 杭州新研动力能源有限公司 电动工具、镍锌电池系统及其制造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108110069A (zh) * 2017-12-14 2018-06-01 江苏润达光伏无锡有限公司 一种智能光伏晶硅组件及其制造方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1126381A (zh) * 1994-09-16 1996-07-10 电池技术公司 串联电池组保护电路

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003124324A (ja) * 2001-10-11 2003-04-25 Toshiba Corp 逆電圧保護機能を有する半導体回路
JP2004087238A (ja) * 2002-08-26 2004-03-18 Nissan Motor Co Ltd 積層型電池
CA2517188A1 (en) * 2004-08-26 2006-02-26 Pure Energy Visions Inc. Rechargeable alkaline battery with overcharging protection
US8501351B2 (en) * 2009-05-18 2013-08-06 Powergenix Systems, Inc. Pasted zinc electrode for rechargeable nickel-zinc batteries
US8242739B2 (en) * 2010-07-20 2012-08-14 Tesla Motors, Inc. Leakage current reduction in combined motor drive and energy storage recharge system
US9375804B2 (en) * 2011-07-27 2016-06-28 GM Global Technology Operations LLC Low pressure electron beam welding of Li-ion battery connections
CN203644836U (zh) * 2013-11-29 2014-06-11 武汉瀚兴日月电源有限公司 带有二极管的一次锂电池

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1126381A (zh) * 1994-09-16 1996-07-10 电池技术公司 串联电池组保护电路

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105870388A (zh) * 2015-02-05 2016-08-17 杭州新研动力能源有限公司 电动工具、镍锌电池系统及其制造方法
CN105870386A (zh) * 2015-02-05 2016-08-17 杭州新研动力能源有限公司 电动工具、镍锌电池系统及其制造方法
CN105633426A (zh) * 2016-04-07 2016-06-01 中银(宁波)电池有限公司 防止因串联使用引起过放电导致漏液的碱性锌锰电池

Also Published As

Publication number Publication date
US20150010803A1 (en) 2015-01-08

Similar Documents

Publication Publication Date Title
CN104600676B (zh) 电池保护电路、电能提供装置与电子装置
CN107834519B (zh) 锂电池保护控制asic芯片系统
US9136715B2 (en) Rechargeable battery pack and method of charge/discharge equalizing
CN202190065U (zh) 一种电池保护电路
CN104064827A (zh) 带有安全保护系统的镍氢电池组
CN105098933A (zh) 一种电池单体采集检测装置
CN201134461Y (zh) 多串锂离子电池保护板的防灾保护装置
CN2922241Y (zh) 车用锂离子蓄电池均衡保护电路
CN103346283A (zh) 一种镍锌电池的保护方法
CN103036257A (zh) 单电感式蓄电池组均衡电路及方法
CN205282574U (zh) 一种电池的新型电芯结构
CN203103929U (zh) 锂电池保护电路
CN105048606A (zh) 电池放电保护电路及具备放电保护功能的可充电电池组
CN203352147U (zh) 一种锂离子电池保护电路
CN205178544U (zh) 一种用于故障指示器通信终端的低功耗低电压关断电路
CN203984060U (zh) 大电流平衡电源管理系统
CN204258355U (zh) 一种欠压截止电路
CN203193337U (zh) 一种动力电池组放电均衡装置
CN204103480U (zh) 一种充电器反接和短路保护电路
EP2822087A1 (en) Nickel-zinc battery assembly and manufacturing method thereof
CN203398238U (zh) 一种镍锌电池组
CN207884279U (zh) 一种电池保护板
TW201234733A (en) Battery circuit protection module and battery module thereof
CN206135398U (zh) 一种防电池短路和极性接反保护电路
CN201260085Y (zh) 太阳能控制器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20131009