CN103342827B - 疏水亲油性聚氨酯海绵的制备方法 - Google Patents
疏水亲油性聚氨酯海绵的制备方法 Download PDFInfo
- Publication number
- CN103342827B CN103342827B CN201310267730.3A CN201310267730A CN103342827B CN 103342827 B CN103342827 B CN 103342827B CN 201310267730 A CN201310267730 A CN 201310267730A CN 103342827 B CN103342827 B CN 103342827B
- Authority
- CN
- China
- Prior art keywords
- sponge
- hydrophobic
- expanded graphite
- graphite
- polyurethane sponge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
本发明是一种疏水亲油性聚氨酯海绵的制备方法。该方法是利用鳞片石墨制备出膨胀石墨,将膨胀石墨在浓硝酸中回流36h并在氨水和乙醇的混合溶液中超声处理3h,最后将所得物质在乙醇溶液中超声90min,得到的即是少层石墨烯纳米片层。将经丙酮和去离子水超声清洗的聚氨酯海绵浸泡入石墨烯乙醇溶液中,涂层后对海绵进行疏水亲油效果的测定,其吸水倍率和吸油倍率分别为0.04和43,具有十分优良的疏水(附图右下角)和亲油(附图左上角)效果。本发明利用石墨烯的特殊形貌构造超疏水的海绵表面,并使海绵具有良好的吸油能力,这在石油污染水体修复中将具有良好的实际应用价值。
Description
技术领域
本发明涉及一种疏水亲油性聚氨酯海绵的制备方法。
背景技术
近来,具有超疏水(水的接触角>150°)和超亲油(油的接触角<5°)的固体表面由于它们选择性的吸附油类或有机溶剂而完全不吸水的能力已经引起了密切关注和研究兴趣。基于这一点,许多高效的吸附材料已经被广泛研究,包括无机纳米线薄膜、微孔聚合物、碳纳米管等。然而,这些材料的生产成本高且过程复杂,很难为实际应用而成批生产。此外,更多的研究最近已经将注意力转移到找出由于石油泄漏和化学药品泄漏造成的全球范围的严重水污染问题的解决方案上。因此,找出具有高的吸附性能及高选择性、轻质、有化学惰性、低成本和环境友好型的新型材料势在必行。
作为一种二维碳材料,石墨烯及其衍生物由于它们有趣的理化性质而引起了广泛关注。这些特性已经被应用到不同的领域,从微米/纳米电子学复合材料到清洁能源。除了它们显著的物理和化学性质外,石墨烯材料最近已被报到具有令人振奋的疏水性能。然而,涉及同时具有超疏水和超吸油特性的石墨烯材料的研究至今未有报道。利用这些特性,这些材料可以用来从水体中分离和吸附油类等有机污染物。
发明内容
本发明的目的在于提供一种疏水亲油性聚氨酯海绵的制备方法,该方法是在聚氨酯海绵表面涂层石墨烯纳米片层而使海绵达到超疏水且超亲油材料的制备方法。
为达到上述目的,本发明采用的技术方案:
一种疏水亲油性聚氨酯海绵的制备方法,其特征在于该方法的具体步骤为:
a. 在室温下,将60~80目的鳞片石墨在体积比为3:2的硫酸/硝酸的混合液中浸泡10~15min,其中鳞片石墨与混合液的重量体积比为1g:(5~6)ml,得到石墨插层化合物,该石墨插层化合物用蒸馏水洗涤至pH值为5~6,烘干;
b. 将步骤a所得石墨插层化合物在1000~1100℃温度下反应10~15秒,得到膨胀石墨;
c. 将步骤b所得膨胀石墨在80~85℃的浓硝酸中回流36~37h,得到酸改性的膨胀石墨;然后该酸改性的膨胀石墨经过滤并用去离子水反复冲洗至pH=7,干燥;
d. 将步骤c所得膨胀石墨在体积比为8:1的NH4OH/C2H5OH的混合溶液中超声处理3h, 再经0.22μm孔径聚四氟乙烯膜过滤并用乙醇洗涤至完全去除氨水;滤渣即为功能化的膨胀石墨;
e. 将步骤d所得功能化的膨胀石墨在乙醇溶液中超声分散90~95min,随后将这种分散液沉淀,取上清液;
f. 将干燥的海绵浸泡于步骤e所得到上清液中15~20min,烘干,即得到疏水亲油性聚氨酯海绵。
石墨烯涂层海绵疏水亲油效果测定:将已涂层烘干的石墨烯聚氨酯海绵分别在水中和油品中进行吸附测试,利用重量法测定其吸水和吸油倍率。
该方法成本低、过程简单、易操作。
附图说明
图1 柴油和水在石墨烯涂层海绵表面的浸润行为图,左上角-亲油效果,右下角-疏水效果。
具体实施方式
1. 材料准备
(1) 试剂的准备
主要的试剂有:浓硫酸(H2SO4),浓硝酸(HNO3),氨水(NH4OH),无水乙醇(CH3CH2OH),丙酮(C3H6O)
(2) 供试基质材料
聚氨酯海绵,在生产厂家购买。
(3) 实验仪器和设备
恒温磁力搅拌器,抽滤瓶,真空抽滤泵,0.22μm聚四氟乙烯膜,烘箱,真空干燥箱,超声波清洗机,马弗炉
2.制备疏水亲油性聚氨酯海绵的具体过程为:
a. 在室温下,将60~80目的鳞片石墨在体积比为3:2的硫酸/硝酸的混合液中浸泡10~15min,其中鳞片石墨与混合液的重量体积比为1g:(5~6)ml,得到石墨插层化合物,该石墨插层化合物用蒸馏水洗涤至pH值为5~6,烘干;
b. 将步骤a所得石墨插层化合物在1000~1100℃温度下反应10~15秒,得到膨胀石墨;
c. 将步骤b所得膨胀石墨在80~85℃的浓硝酸中回流36h,得到酸改性的膨胀石墨;然后 该酸改性的膨胀石墨经过滤并用去离子水反复冲洗至pH=7,干燥;
d. 将步骤c所得膨胀石墨在体积比为8:1的NH4OH/C2H5OH的混合溶液中超声处理3h,再经0.22μm孔径聚四氟乙烯膜过滤并用乙醇洗涤至完全去除氨水;滤渣即为功能化的膨胀石墨;
e. 将步骤d所得功能化的膨胀石墨在乙醇溶液中超声分散90~95min,随后将这种分散液沉淀,取上清液进行实验;
f. 将干燥的海绵浸泡于步骤e所得到上清液中15~20min,烘干。即得疏水亲油性聚氨酯海绵。
3. 聚氨酯海绵的处理及其疏水亲油特性的测定
(1) 海绵的处理
将海绵用丙酮和去离子水相继进行超声清洗,待用。
(2) 供试石油
零号柴油(中石化明和加油站)。
(3) 海绵疏水亲油的测定
将涂层有石墨烯纳米片层的海绵均匀六等分,取任意三块分别称重后放于水面5分钟,及时移出至网架上,静置1分钟,称重并计算吸水倍率;
将剩余三块海绵分别称重放于油面5分钟,及时移至网架上,静置1分钟,称重并计算其吸油倍率。
3. 海绵疏水亲油的测定结果:
根据以下公式计算材料的吸水倍率和吸油倍率:
海绵的吸水倍率=(W2-W1)/W1
海绵的吸油倍率=(W3-W1)/W1
其中,W1为涂层后海绵质量,W2为吸水后涂层的海绵质量,W3为吸油后涂层的海绵质量。
由实验测得,涂层后的海绵吸水倍率和吸油倍率分别为0.04和43,使原本完全吸水的海绵达到超疏水的效果,从附图可以看出,使用这种方法制备出来的材料具有十分优良的疏水(附图右下角)和亲油(附图左上角)效果。
因此,在聚氨酯海绵表面涂层石墨烯纳米片层可使海绵具有良好的疏水性和亲油性,这些特征均证明了在聚氨酯海绵表面涂层石墨烯纳米片层而制备得到超疏水亲油的改性材料在溢油污染水环境事件的应用中将具有良好的前景。
Claims (1)
1.一种疏水亲油性聚氨酯海绵的制备方法,其特征在于该方法的具体步骤为:
a. 在室温下,将60~80目的鳞片石墨在体积比为3:2的硫酸/硝酸的混合液中浸泡10~15min,其中鳞片石墨与混合液的重量体积比为1g:(5~6)ml,得到石墨插层化合物,该石墨插层化合物用蒸馏水洗涤至pH值为5~6,烘干;
b. 将步骤a所得石墨插层化合物在1000~1100℃温度下反应10~15秒,得到膨胀石墨;
c. 将步骤b所得膨胀石墨在80~85℃的浓硝酸中回流36~37h,得到酸改性的膨胀石墨;然后该酸改性的膨胀石墨经过滤并用去离子水反复冲洗至pH=7,干燥;
d. 将步骤c所得酸改性的膨胀石墨在体积比为8:1的NH4OH/C2H5OH的混合溶液中超声处理3h, 再经0.22μm孔径聚四氟乙烯膜过滤并用乙醇洗涤至完全去除氨水;滤渣即为功能化的膨胀石墨;
e. 将步骤d所得功能化的膨胀石墨在乙醇溶液中超声分散90~95min,随后将这种分散液沉淀,取上清液;
f. 将干燥的聚氨酯海绵浸泡于步骤e所得到上清液中15~20min,烘干,即得到疏水亲油性聚氨酯海绵。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310267730.3A CN103342827B (zh) | 2013-06-28 | 2013-06-28 | 疏水亲油性聚氨酯海绵的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310267730.3A CN103342827B (zh) | 2013-06-28 | 2013-06-28 | 疏水亲油性聚氨酯海绵的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103342827A CN103342827A (zh) | 2013-10-09 |
CN103342827B true CN103342827B (zh) | 2015-05-06 |
Family
ID=49277660
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310267730.3A Active CN103342827B (zh) | 2013-06-28 | 2013-06-28 | 疏水亲油性聚氨酯海绵的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103342827B (zh) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103641982B (zh) * | 2013-11-13 | 2016-05-18 | 安徽金马海绵有限公司 | 一种含有石墨烯的海绵及其制备方法 |
CN103626171B (zh) * | 2013-11-28 | 2016-06-08 | 中国科学技术大学 | 一种油水分离材料的制备方法 |
CN103804714B (zh) * | 2014-01-23 | 2016-03-02 | 华南理工大学 | 一种超疏水与超亲油海绵及其制备方法和应用 |
CN104162293B (zh) * | 2014-04-25 | 2016-03-30 | 上海大学 | 构造氧化锌微细结构改性聚氨酯海绵表面的海绵材料及其制备方法 |
CN104163934A (zh) * | 2014-07-29 | 2014-11-26 | 江苏大学 | 一种多孔疏水亲油海绵的制备方法 |
CN104338519A (zh) * | 2014-09-17 | 2015-02-11 | 上海大学 | 改性石墨烯负载聚氨酯海绵及其制备方法 |
CN104289203B (zh) * | 2014-09-17 | 2016-07-06 | 上海大学 | 负载有杂化石墨烯涂层的聚氨酯海绵及其制备方法 |
EP3194047A4 (en) * | 2014-09-18 | 2018-05-09 | Aquafresco, Inc. | Media, systems, and methods for wastewater regeneration |
CN105214630A (zh) * | 2015-10-31 | 2016-01-06 | 仇颖超 | 一种超疏水磁性聚氨酯/四氧化三铁复合材料的制备方法 |
CN105544488B (zh) * | 2015-12-25 | 2018-01-30 | 中国科学技术大学 | 一种回收高粘度浮油的装置及方法 |
CN105694092A (zh) * | 2016-02-01 | 2016-06-22 | 东南大学 | 一种超疏水性石墨烯海绵的制备方法 |
CN105754144B (zh) * | 2016-03-04 | 2018-06-08 | 武汉工程大学 | 一种超疏水还原氧化石墨烯/海绵复合材料及其制备方法 |
CN105999767B (zh) * | 2016-05-25 | 2018-04-24 | 江苏科技大学 | 一种六方氮化硼改性吸油海绵的制备方法 |
CN110606981B (zh) * | 2019-07-22 | 2022-03-15 | 西交利物浦大学 | 一种压力传感器及其制备方法和应用、包含其的可穿戴智能织物 |
KR102653462B1 (ko) * | 2021-11-03 | 2024-03-29 | 한남대학교 산학협력단 | 폴리우레탄 스폰지를 사용한 오일 흡수제의 제조방법 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8318838B2 (en) * | 2010-09-09 | 2012-11-27 | Baker Hughes Incorporated | Method of forming polymer nanocomposite |
CN102557022B (zh) * | 2012-03-02 | 2013-12-18 | 杭州电子科技大学 | 石墨烯导电泡沫的制备方法 |
CN102659099B (zh) * | 2012-05-29 | 2015-04-08 | 上海二工大资产经营有限公司 | 一种各向异性石墨烯泡沫的制备方法 |
-
2013
- 2013-06-28 CN CN201310267730.3A patent/CN103342827B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN103342827A (zh) | 2013-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103342827B (zh) | 疏水亲油性聚氨酯海绵的制备方法 | |
Arabkhani et al. | Development of a novel three-dimensional magnetic polymer aerogel as an efficient adsorbent for malachite green removal | |
Zhang et al. | Preparation of graphene-oxide/polyamidoamine dendrimers and their adsorption properties toward some heavy metal ions | |
Chen et al. | Covalently cross-linked graphene oxide aerogel with stable structure for high-efficiency water purification | |
Mohammadi Nodeh et al. | Equilibrium, kinetic and thermodynamic study of magnetic polyaniline/graphene oxide based nanocomposites for ciprofloxacin removal from water | |
Travlou et al. | Functionalization of graphite oxide with magnetic chitosan for the preparation of a nanocomposite dye adsorbent | |
Vadahanambi et al. | Arsenic removal from contaminated water using three-dimensional graphene-carbon nanotube-iron oxide nanostructures | |
Chavan et al. | Elastomeric nanocomposite foams for the removal of heavy metal ions from water | |
Shen et al. | Constructing three-dimensional hierarchical architectures by integrating carbon nanofibers into graphite felts for water purification | |
Khodam et al. | Enhanced adsorption of Acid Red 14 by co-assembled LDH/MWCNTs nanohybrid: Optimization, kinetic and isotherm | |
Huang et al. | Removal of copper ions from wastewater by adsorption/electrosorption on modified activated carbon cloths | |
Cong et al. | Macroscopic multifunctional graphene-based hydrogels and aerogels by a metal ion induced self-assembly process | |
Huang et al. | EDTA-induced self-assembly of 3D graphene and its superior adsorption ability for paraquat using a teabag | |
Fan et al. | Ionic imprinted silica-supported hybrid sorbent with an anchored chelating schiff base for selective removal of cadmium (II) ions from aqueous media | |
Zhang et al. | Three-dimensional honeycomb-like porous carbon derived from corncob for the removal of heavy metals from water by capacitive deionization | |
Ray et al. | Functionalized reduced graphene oxide (fRGO) for removal of fulvic acid contaminant | |
Xue et al. | Preparation of a polypyrrole/graphene oxide composite electrode by electrochemical codeposition for capacitor deionization | |
CN104090005B (zh) | 羟丙基纤维素/碳纳米管/石墨烯修饰电极及其制备方法和应用 | |
CN108997608A (zh) | 石墨烯疏水吸油海绵的制备方法 | |
Samage et al. | High power, long cycle life capacitive carbon from Hibiscus cannabinus, a Agri-bio-waste with simultaneous value addition in water treatment application | |
Zhao et al. | Efficient adsorption of Congo red by micro/nano MIL-88A (Fe, Al, Fe-Al)/chitosan composite sponge: Preparation, characterization, and adsorption mechanism | |
Xin et al. | Synthesis of biomass-derived mesoporous carbon with super adsorption performance by an aqueous cooperative assemble route | |
Wang et al. | Preparation and oil absorption performance of polyacrylonitrile/reduced graphene oxide composite porous material | |
Krishnan et al. | Removal of EDTA from aqueous solutions using activated carbon prepared from rubber wood sawdust: Kinetic and equilibrium modeling | |
Masrura et al. | Density functional theory for selecting modifiers for enhanced adsorption of tetracycline in water by biochar |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |