CN103341310A - Method for recycling gas-state zero-valence mercury and sulfur dioxide from non-ferrous metal metallurgy smoke gas - Google Patents
Method for recycling gas-state zero-valence mercury and sulfur dioxide from non-ferrous metal metallurgy smoke gas Download PDFInfo
- Publication number
- CN103341310A CN103341310A CN2013102770660A CN201310277066A CN103341310A CN 103341310 A CN103341310 A CN 103341310A CN 2013102770660 A CN2013102770660 A CN 2013102770660A CN 201310277066 A CN201310277066 A CN 201310277066A CN 103341310 A CN103341310 A CN 103341310A
- Authority
- CN
- China
- Prior art keywords
- mercury
- absorption liquid
- sulfate
- flue gas
- sulfur dioxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 title claims abstract description 133
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 title claims abstract description 91
- 238000000034 method Methods 0.000 title claims abstract description 45
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 28
- 239000002184 metal Substances 0.000 title claims abstract description 28
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 title claims abstract description 26
- 229910000474 mercury oxide Inorganic materials 0.000 title claims abstract description 17
- 238000005272 metallurgy Methods 0.000 title claims description 8
- 238000004064 recycling Methods 0.000 title claims description 6
- 239000000779 smoke Substances 0.000 title claims 4
- 238000010521 absorption reaction Methods 0.000 claims abstract description 173
- 239000007788 liquid Substances 0.000 claims abstract description 125
- 229910052753 mercury Inorganic materials 0.000 claims abstract description 100
- 239000002131 composite material Substances 0.000 claims abstract description 93
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims abstract description 91
- 239000003546 flue gas Substances 0.000 claims abstract description 91
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims abstract description 90
- DOBUSJIVSSJEDA-UHFFFAOYSA-L 1,3-dioxa-2$l^{6}-thia-4-mercuracyclobutane 2,2-dioxide Chemical compound [Hg+2].[O-]S([O-])(=O)=O DOBUSJIVSSJEDA-UHFFFAOYSA-L 0.000 claims abstract description 61
- 229910000370 mercury sulfate Inorganic materials 0.000 claims abstract description 37
- RUTXIHLAWFEWGM-UHFFFAOYSA-H iron(3+) sulfate Chemical compound [Fe+3].[Fe+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O RUTXIHLAWFEWGM-UHFFFAOYSA-H 0.000 claims abstract description 19
- 229910000360 iron(III) sulfate Inorganic materials 0.000 claims abstract description 19
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 claims abstract description 12
- 238000006243 chemical reaction Methods 0.000 claims abstract description 4
- 229940074994 mercuric sulfate Drugs 0.000 claims description 27
- 229910000372 mercury(II) sulfate Inorganic materials 0.000 claims description 27
- 238000000926 separation method Methods 0.000 claims description 19
- 230000008569 process Effects 0.000 claims description 14
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims description 7
- 235000003891 ferrous sulphate Nutrition 0.000 claims description 7
- 239000011790 ferrous sulphate Substances 0.000 claims description 7
- 229910000359 iron(II) sulfate Inorganic materials 0.000 claims description 7
- 239000007921 spray Substances 0.000 claims description 6
- 239000000126 substance Substances 0.000 claims description 5
- 239000012528 membrane Substances 0.000 claims description 4
- 238000006552 photochemical reaction Methods 0.000 claims description 4
- 238000006303 photolysis reaction Methods 0.000 claims description 3
- 239000012141 concentrate Substances 0.000 claims 1
- 150000002500 ions Chemical class 0.000 claims 1
- 238000011027 product recovery Methods 0.000 claims 1
- 238000003723 Smelting Methods 0.000 abstract description 23
- 238000011084 recovery Methods 0.000 abstract description 16
- 229910000358 iron sulfate Inorganic materials 0.000 abstract description 5
- BQPIGGFYSBELGY-UHFFFAOYSA-N mercury(2+) Chemical compound [Hg+2] BQPIGGFYSBELGY-UHFFFAOYSA-N 0.000 abstract description 3
- 230000002745 absorbent Effects 0.000 abstract description 2
- 239000002250 absorbent Substances 0.000 abstract description 2
- 230000000694 effects Effects 0.000 abstract description 2
- 230000009467 reduction Effects 0.000 abstract description 2
- UONOSZUBLNXHGW-UHFFFAOYSA-L mercury(2+);sulfite Chemical compound [Hg+2].[O-]S([O-])=O UONOSZUBLNXHGW-UHFFFAOYSA-L 0.000 abstract 2
- 239000000047 product Substances 0.000 description 11
- 238000000354 decomposition reaction Methods 0.000 description 10
- MINVSWONZWKMDC-UHFFFAOYSA-L mercuriooxysulfonyloxymercury Chemical compound [Hg+].[Hg+].[O-]S([O-])(=O)=O MINVSWONZWKMDC-UHFFFAOYSA-L 0.000 description 9
- 229910000371 mercury(I) sulfate Inorganic materials 0.000 description 9
- 239000007789 gas Substances 0.000 description 7
- 239000013589 supplement Substances 0.000 description 7
- 238000009826 distribution Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 239000002253 acid Substances 0.000 description 3
- 238000004090 dissolution Methods 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229960002523 mercuric chloride Drugs 0.000 description 3
- LWJROJCJINYWOX-UHFFFAOYSA-L mercury dichloride Chemical compound Cl[Hg]Cl LWJROJCJINYWOX-UHFFFAOYSA-L 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 2
- 230000005587 bubbling Effects 0.000 description 2
- 229940075397 calomel Drugs 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- RCTYPNKXASFOBE-UHFFFAOYSA-M chloromercury Chemical compound [Hg]Cl RCTYPNKXASFOBE-UHFFFAOYSA-M 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- ZOMNIUBKTOKEHS-UHFFFAOYSA-L dimercury dichloride Chemical compound Cl[Hg][Hg]Cl ZOMNIUBKTOKEHS-UHFFFAOYSA-L 0.000 description 2
- 239000003344 environmental pollutant Substances 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000015843 photosynthesis, light reaction Effects 0.000 description 2
- 231100000719 pollutant Toxicity 0.000 description 2
- 239000012286 potassium permanganate Substances 0.000 description 2
- 230000001603 reducing effect Effects 0.000 description 2
- 229910052711 selenium Inorganic materials 0.000 description 2
- 239000011669 selenium Substances 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 208000030527 Minamata disease Diseases 0.000 description 1
- 208000009507 Nervous System Mercury Poisoning Diseases 0.000 description 1
- 229920005372 Plexiglas® Polymers 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 1
- PXOAQMNTMUGXLN-UHFFFAOYSA-N [Hg].S(O)(O)=O Chemical compound [Hg].S(O)(O)=O PXOAQMNTMUGXLN-UHFFFAOYSA-N 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 231100000693 bioaccumulation Toxicity 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- -1 mercury ions Chemical class 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000002688 persistence Effects 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000011112 process operation Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 231100001234 toxic pollutant Toxicity 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Treating Waste Gases (AREA)
- Gas Separation By Absorption (AREA)
Abstract
本发明涉及一种从有色金属冶炼烟气中回收气态零价汞和二氧化硫的方法,以硫酸汞、硫酸铁和硫酸作为主要组分配置成复合吸收液,利用吸收塔对烟气中的零价汞进行高效吸收,将零价汞经转化为亚硫酸汞,利用硫酸铁与二氧化硫的反应生成硫酸。生成的亚硫酸汞通过回收装置分解成单质汞和硫酸汞。与现有技术相比,采用本发明可以提高烟气零价汞的吸收效率,减少吸收剂的使用量,实现零价汞的回收。同时通过对二氧化硫的吸收不仅可以回收硫酸,还能减少二氧化硫对Hg2+的还原作用,提高零价汞的总回收率,因此非常适合应用于二氧化硫浓度较高的烟气汞排放控制。
The invention relates to a method for recovering gaseous zero-valent mercury and sulfur dioxide from non-ferrous metal smelting flue gas. Mercury sulfate, ferric sulfate and sulfuric acid are used as main components to form a composite absorption liquid, and the zero-valent mercury in the flue gas is recovered by an absorption tower Mercury is absorbed efficiently, zero-valent mercury is converted into mercury sulfite, and sulfuric acid is generated by the reaction of iron sulfate and sulfur dioxide. The generated mercury sulfite is decomposed into elemental mercury and mercury sulfate through the recovery device. Compared with the prior art, the adoption of the invention can improve the absorption efficiency of zero-valent mercury in flue gas, reduce the usage of absorbent, and realize the recovery of zero-valent mercury. At the same time, through the absorption of sulfur dioxide, it can not only recover sulfuric acid, but also reduce the reduction effect of sulfur dioxide on Hg2+, and improve the total recovery rate of zero-valent mercury, so it is very suitable for the control of mercury emission in flue gas with high concentration of sulfur dioxide.
Description
技术领域technical field
本发明属于环境保护领域的大气污染控制技术,尤其是涉及一种从有色金属冶炼烟气中去除并回收气态零价汞和二氧化硫制酸的方法。The invention belongs to the air pollution control technology in the field of environmental protection, and in particular relates to a method for removing and recovering gaseous zero-valent mercury and sulfur dioxide from nonferrous metal smelting flue gas to make acid.
背景技术Background technique
众所周知,汞是一种有毒污染物,具有持久性、易迁移性和高度的生物富集性等特点。它不仅对生态环境的危害也非常大,而且对人体健康产生直接或间接的危害。20世纪五六十年代暴发于日本的“水俣病”事件,即是一次严重的汞污染灾难。As we all know, mercury is a toxic pollutant with characteristics of persistence, easy migration and high bioaccumulation. It is not only very harmful to the ecological environment, but also directly or indirectly harmful to human health. The "Minamata disease" incident that broke out in Japan in the 1950s and 1960s was a serious mercury pollution disaster.
联合国环境规划署(UNEP)已经把汞列为全球性污染物。2013年1月在瑞士日内瓦召开的关于汞的政府间谈判委员会第五次会议,形成了《国际防治汞污染公约》,国际社会对全球汞污染控制的步伐逐渐加快。目前我国的汞排放量十分大,我国政府正为此承受着巨大的国际压力。在众多汞排放源中,有色金属冶炼烟气中汞的排放量占很大比重。清华大学研究表明:2003年中国非燃煤大气汞排放量为393t,其中有色金属冶炼排放330t,占全国总汞排放量的52%左右。然而,当前国内外大部分的研究都将关注点放在燃煤烟气的汞排放控制上,一定程度上忽视了有色金属冶炼行业汞排放控制的研究。与燃煤烟气相比,有色金属冶炼烟气具有汞浓度高、二氧化硫浓度高、生产周期波动大等特点。所以适用于燃煤烟气的除汞技术未必在有色金属冶炼烟气的汞排放控制中同样有效。同时,汞虽然是污染物,同时也是一种稀有资源,在冶炼、仪器制造、化学工业、医药工业和原子能工业等都有广泛应用。因此,针对发展有色金属冶炼行业烟气中汞浓度较高的特点,宜采用以回收为主的除汞技术。这样,既可以有效控制烟气中汞的排放,又能实现对烟气汞的资源化利用。The United Nations Environment Program (UNEP) has listed mercury as a global pollutant. In January 2013, the fifth meeting of the Intergovernmental Negotiating Committee on Mercury was held in Geneva, Switzerland, and the International Convention on the Prevention and Control of Mercury Pollution was formed. The international community has gradually accelerated the pace of global mercury pollution control. At present, my country's mercury emissions are very large, and our government is under tremendous international pressure for this. Among the many sources of mercury emissions, the emission of mercury in flue gas from non-ferrous metal smelting accounts for a large proportion. Research by Tsinghua University shows that in 2003 China's non-coal-burning atmospheric mercury emissions were 393 tons, of which non-ferrous metal smelting emissions were 330 tons, accounting for about 52% of the country's total mercury emissions. However, most of the current research at home and abroad focuses on the control of mercury emissions from coal-fired flue gas, ignoring the research on the control of mercury emissions from the non-ferrous metal smelting industry to a certain extent. Compared with coal-fired flue gas, non-ferrous metal smelting flue gas has the characteristics of high mercury concentration, high sulfur dioxide concentration, and large fluctuations in production cycles. Therefore, the mercury removal technology applicable to coal-fired flue gas may not be equally effective in the control of mercury emissions from non-ferrous metal smelting flue gas. At the same time, although mercury is a pollutant, it is also a rare resource, which is widely used in smelting, instrument manufacturing, chemical industry, pharmaceutical industry and atomic energy industry. Therefore, in view of the high concentration of mercury in the flue gas of the non-ferrous metal smelting industry, it is advisable to adopt a mercury removal technology based on recovery. In this way, the emission of mercury in the flue gas can be effectively controlled, and the resource utilization of mercury in the flue gas can be realized.
有色金属冶炼行业矿石焙烧一般在高温条件下进行,因此矿石中的汞绝大部分以零价汞(Hg0)的形态进入烟气中。与燃煤烟气不同,针对高浓度含汞烟气的治理,国内外一般采用冷凝法、吸附法和吸收法等几种方法。其中冷凝法除汞即通过特定冷凝装置将烟气中的汞集中冷却,由于汞的饱和蒸气压急剧下降会从烟气中冷凝出来,从而达到与烟气分离的目的。但是,该方法除汞效率偏低,且能耗较大,一般只作为烟气预除汞方法。吸附法主要利用硒过滤器或碳过滤器对烟气中的汞进行吸附。然而硒过滤器和碳过滤器的吸附容量一般仅为自身重量的10-15%,因此一般仅适合处理含汞量较低的烟气,不适合有色金属冶炼烟气的汞处理。在有色金属冶炼行业应用比较多的除汞方法大都为吸收法,其中比较有代表性的是氯化汞吸收法(波立登-诺辛克吸收法)。该方法的实质是以氯化汞溶液为吸收剂,对烟气中的零价汞进行吸收,并将其转化为难溶于水的氯化亚汞(甘汞),氯化亚汞经沉淀后可作为产品进行回收。目前,氯化汞吸收法是最有效烟气汞回收工艺之一,在冶金领域占有重要地位。然而,该工艺同样存在一些问题:首先该工艺要求将吸收塔入口的烟气汞浓度控制在30mg/m3以下,否则吸收效率会有较明显的下降,导致烟气汞排放浓度超标;其次,吸收液中所用氯化汞同样是剧毒品,其吸收液浓度一般为3g/L左右,使用量较大,存在较大的环境风险;第三,该工艺的出口汞浓度一般为0.1mg/m3,无法满足越来越严格的汞排放标准。因此,开发一种新型高效稳定的吸收技术对于实现有色金属冶炼烟气汞的排放控制和资源化利用非常必要。The ore roasting in the non-ferrous metal smelting industry is generally carried out under high temperature conditions, so most of the mercury in the ore enters the flue gas in the form of zero-valent mercury (Hg 0 ). Different from coal-fired flue gas, for the treatment of high-concentration mercury-containing flue gas, several methods such as condensation method, adsorption method and absorption method are generally used at home and abroad. Among them, mercury removal by condensation means that the mercury in the flue gas is cooled intensively through a specific condensing device. Because the saturated vapor pressure of mercury drops sharply, it will condense out of the flue gas, so as to achieve the purpose of separation from the flue gas. However, the mercury removal efficiency of this method is relatively low, and the energy consumption is large, so it is generally only used as a method for flue gas pre-mercury removal. The adsorption method mainly uses a selenium filter or a carbon filter to adsorb mercury in the flue gas. However, the adsorption capacity of selenium filters and carbon filters is generally only 10-15% of their own weight, so they are generally only suitable for treating flue gas with low mercury content, and are not suitable for mercury treatment of non-ferrous metal smelting flue gas. Most of the mercury removal methods used in the non-ferrous metal smelting industry are absorption methods, and the most representative one is the mercuric chloride absorption method (Polliden-Norsink absorption method). The essence of this method is to use mercuric chloride solution as an absorbent to absorb zero-valent mercury in the flue gas and convert it into calomel (calomel), which is insoluble in water. Can be recycled as a product. At present, the mercury chloride absorption method is one of the most effective flue gas mercury recovery processes, and occupies an important position in the field of metallurgy. However, this process also has some problems: first, the process requires that the flue gas mercury concentration at the inlet of the absorption tower be controlled below 30 mg/m 3 , otherwise the absorption efficiency will be significantly reduced, resulting in excessive emission of flue gas mercury concentration; secondly, Mercury chloride used in the absorption liquid is also highly toxic, and its concentration in the absorption liquid is generally about 3g/L, which is used in a large amount, and there is a large environmental risk; third, the outlet mercury concentration of the process is generally 0.1mg/L m 3 , unable to meet the increasingly stringent mercury emission standards. Therefore, it is necessary to develop a new type of efficient and stable absorption technology to realize the emission control and resource utilization of mercury in non-ferrous metal smelting flue gas.
发明内容Contents of the invention
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种高效、稳定并具有抗二氧化硫干扰性能的从有色金属冶炼烟气中回收气态零价汞和二氧化硫的方法。The object of the present invention is to provide a method for recovering gaseous zero-valent mercury and sulfur dioxide from non-ferrous metal smelting flue gas with high efficiency, stability and anti-interference performance of sulfur dioxide in order to overcome the defects of the above-mentioned prior art.
本发明的目的可以通过以下技术方案来实现:一种从有色金属冶炼烟气中回收气态零价汞和二氧化硫的方法,其特征在于,该方法包括以下几个步骤:The object of the present invention can be achieved through the following technical solutions: a method for reclaiming gaseous zerovalent mercury and sulfur dioxide from non-ferrous metal smelting flue gas, characterized in that the method comprises the following steps:
第一步,将硫酸汞、硫酸铁和硫酸配制成复合吸收液并储存于复合吸收液配液槽(1)中;In the first step, mercuric sulfate, ferric sulfate and sulfuric acid are prepared into a composite absorption liquid and stored in the composite absorption liquid dosing tank (1);
第二步,将复合吸收液配液槽(1)中的复合吸收液通过复合吸收液循环槽(2)喷入烟气吸收塔(4)中,对输入烟气吸收塔(4)的有色金属冶炼烟气中的零价汞和二氧化硫进行吸收,其中零价汞与硫酸汞反应生成硫酸亚汞,二氧化硫与硫酸铁反应生成硫酸和硫酸亚铁,气液接触后的复合吸收液通入复合吸收液循环槽(2)中重复利用;In the second step, the composite absorption liquid in the composite absorption liquid distribution tank (1) is sprayed into the flue gas absorption tower (4) through the composite absorption liquid circulation tank (2), and the colored The zero-valent mercury and sulfur dioxide in the metal smelting flue gas are absorbed, in which the zero-valent mercury reacts with mercury sulfate to generate mercurous sulfate, sulfur dioxide reacts with ferric sulfate to generate sulfuric acid and ferrous sulfate, and the composite absorption liquid after gas-liquid contact is passed into the composite Reuse in the absorption liquid circulation tank (2);
第三步,待到复合吸收液循环槽(2)中的汞离子浓度下降至低于25mmol/L以后,将部分复合吸收液通入汞分解回收装置(9)中;In the third step, after the concentration of mercury ions in the composite absorption liquid circulation tank (2) drops below 25mmol/L, part of the composite absorption liquid is passed into the mercury decomposition and recovery device (9);
第四步,利用汞分解回收装置(9)将的吸收液中的硫酸亚汞分解成单质汞和硫酸汞吸收液,其中单质汞经过收集纯化后可以作为产品进行回收,而硫酸汞吸收液返回复合吸收液循环槽(2)中循环利用以补充烟气零价汞吸收过程中消耗的硫酸汞;The 4th step, utilize mercury decomposing and recovering device (9) to decompose the mercurous sulfate in the absorbing liquid into elemental mercury and mercuric sulfate absorbing liquid, wherein elemental mercury can be recovered as a product after being collected and purified, and the mercuric sulfate absorbing liquid returns The composite absorption liquid circulation tank (2) is recycled to supplement the mercury sulfate consumed in the absorption process of zero-valent mercury in the flue gas;
第五步,待到复合吸收液循环槽(2)中的硫酸根离子浓度大于8mol/L以后,将部分复合吸收液通入硫酸溶液分离装置(10)中;硫酸经分离、纯化、提浓以后可以作为产品回收,而剩余的吸收液则返回复合吸收液循环槽(2)中重复利用。In the fifth step, after the sulfate ion concentration in the composite absorption liquid circulation tank (2) is greater than 8mol/L, part of the composite absorption liquid is passed into the sulfuric acid solution separation device (10); the sulfuric acid is separated, purified, and concentrated It can be recovered as a product in the future, and the remaining absorption liquid is returned to the composite absorption liquid circulation tank (2) for reuse.
所述的复合吸收液主要组分为硫酸汞和硫酸,复合吸收液中硫酸汞浓度范围是50-200mmol/L,硫酸铁浓度范围是0.5-1.5mol/L,硫酸浓度范围是0.5-2.0mol/L,复合吸收液的温度保持在40-60℃,以确保硫酸汞的完全溶解。The main components of the composite absorption liquid are mercury sulfate and sulfuric acid, the concentration range of mercury sulfate in the composite absorption liquid is 50-200mmol/L, the concentration range of ferric sulfate is 0.5-1.5mol/L, and the concentration range of sulfuric acid is 0.5-2.0mol /L, the temperature of the composite absorption solution is kept at 40-60°C to ensure the complete dissolution of mercury sulfate.
所述的烟气吸收塔(4)为喷淋塔、填料塔或板式塔。The flue gas absorption tower (4) is a spray tower, a packed tower or a tray tower.
所述的汞分解回收装置(9)主要为光化学反应装置,硫酸亚汞经过光解生成单质汞和硫酸汞,其中单质汞经收集、纯化后可作为产品回收,而硫酸汞则重新通入复合吸收液循环槽(2)中,以补充烟气零价汞吸收过程中消耗的硫酸汞。The mercury decomposition and recovery device (9) is mainly a photochemical reaction device. Mercurous sulfate is photolyzed to generate elemental mercury and mercuric sulfate, wherein the elemental mercury can be recovered as a product after being collected and purified, and mercuric sulfate is re-introduced into the composite The absorption liquid circulation tank (2) is used to supplement the mercury sulfate consumed in the absorption process of the zero-valent mercury in the flue gas.
所述的硫酸溶液分离装置(10)是指膜分离装置或萃取分离装置。The sulfuric acid solution separation device (10) refers to a membrane separation device or an extraction separation device.
研究表明,以硫酸汞为吸收液,较低浓度的硫酸汞即可对零价汞有较高的吸收效率,而且当吸收液中配入一定比例的硫酸铁时,该吸收液不仅可以吸收二氧化硫并制成硫酸,而且能够有效的抵抗二氧化硫对Hg2+的还原作用。本发明涉及到主要反应方程式为:Studies have shown that using mercuric sulfate as the absorbing liquid, a lower concentration of mercuric sulfate can have a higher absorption efficiency for zero-valent mercury, and when a certain proportion of ferric sulfate is added to the absorbing liquid, the absorbing liquid can not only absorb sulfur dioxide And make sulfuric acid, and can effectively resist the reducing effect of sulfur dioxide on Hg 2+ . The present invention relates to main reaction equation as:
HgSO4(l)+Hg0(g)→Hg2SO4(s)HgSO 4 (l)+Hg 0 (g)→Hg 2 SO 4 (s)
Hg2SO4→HgSO4+Hg0 Hg 2 SO 4 →HgSO 4 +Hg 0
Fe2(SO4)3+SO2+2H2O→2FeSO4+2H2SO4 Fe 2 (SO 4 ) 3 +SO 2 +2H 2 O→2FeSO 4 +2H 2 SO 4
2FeSO4+SO2+O2→Fe2(SO4)3 2FeSO 4 +SO 2 +O 2 →Fe 2 (SO 4 ) 3
吸收装置生成的硫酸亚汞经过凝聚沉淀后进行收集,通过光解等方法分解生成硫酸汞和单质汞,硫酸汞用于补充烟气零价汞吸收过程中消耗的硫酸汞,单质汞经过收集、提纯后可作为产品回收。The mercurous sulfate generated by the absorption device is collected after coagulation and precipitation, and decomposed by photolysis and other methods to generate mercury sulfate and elemental mercury. Mercury sulfate is used to supplement the mercury sulfate consumed in the absorption process of zero-valent mercury in flue gas. It can be recovered as a product after purification.
而二氧化硫经过硫酸铁的吸收后,可生成硫酸亚铁及硫酸。硫酸亚铁经与二氧化硫和氧气反应又可生成硫酸铁重复使用。After sulfur dioxide is absorbed by ferric sulfate, ferrous sulfate and sulfuric acid can be generated. Ferrous sulfate reacts with sulfur dioxide and oxygen to generate ferric sulfate for reuse.
与现有以氯化汞为主要成分的“波立登”技术相比,本发明具有以下一些优点:Compared with the existing "Boriden" technology with mercuric chloride as the main component, the present invention has the following advantages:
1、本发明利用以硫酸汞、硫酸铁和硫酸为主要组分的复合吸收液,可以在较低浓度吸收液条件下对零价汞有较高的吸收效率,能够保证出口汞浓度的达标排放;1. The present invention utilizes the composite absorption liquid with mercuric sulfate, ferric sulfate and sulfuric acid as the main components, which can have higher absorption efficiency for zero-valent mercury under the condition of lower concentration absorption liquid, and can ensure the up-to-standard discharge of mercury concentration at the outlet ;
2、本发明所用的硫酸可以由企业内部的二氧化硫制酸系统提供,既降低了工艺运行成本,又降低了剧毒品的环境风险;2. The sulfuric acid used in the present invention can be provided by the sulfur dioxide acid production system inside the enterprise, which not only reduces the process operation cost, but also reduces the environmental risk of highly toxic substances;
3、本发明使用复合吸收液中含有一定量的硫酸铁,硫酸铁可以与烟气中的二氧化硫反应生成硫酸亚铁和硫酸,不仅可以减少亚硫酸根的生成从而降低二氧化硫气体对吸收液中Hg2+的还原作用,又可以将烟气中的高浓度二氧化硫进行有效吸收并制酸,除了适用于一般含硫烟气的零价汞脱除,更加适用于含有高浓度二氧化硫的有色金属冶炼行业烟气中高浓度汞和二氧化硫的去除及回收利用。3. The present invention uses a certain amount of ferric sulfate in the composite absorption liquid, which can react with sulfur dioxide in the flue gas to generate ferrous sulfate and sulfuric acid, which can not only reduce the generation of sulfite, thereby reducing the impact of sulfur dioxide gas on Hg in the absorption liquid. The reduction effect of 2+ can effectively absorb the high-concentration sulfur dioxide in the flue gas and make acid. In addition to being suitable for the removal of zero-valent mercury in general sulfur-containing flue gas, it is more suitable for the non-ferrous metal smelting industry containing high-concentration sulfur dioxide. Removal and recycling of high concentrations of mercury and sulfur dioxide in flue gas.
附图说明Description of drawings
图1为本发明采用的设备示意图。Figure 1 is a schematic diagram of the equipment used in the present invention.
具体实施方式Detailed ways
下面结合具体实施例对本发明进行进一步说明。本实施例在以本发明技术方案前提下进行实施,给出了详细的实施方式和具体操作过程,但本发明的保护范围不限于下述的实施例。The present invention will be further described below in conjunction with specific examples. This embodiment is implemented on the premise of the technical solution of the present invention, and the detailed implementation and specific operation process are given, but the protection scope of the present invention is not limited to the following embodiments.
本发明的主要目的是将一般烟气中零价汞进行高效吸收脱除;对含中、高浓度零价汞和较高浓度二氧化硫的有色冶炼行业烟气汞进行高效吸收和回收利用。本发明方案的实施过程中,重点以实现烟气汞的高效吸收为目标。The main purpose of the invention is to efficiently absorb and remove zero-valent mercury in general flue gas; to efficiently absorb and recycle mercury in non-ferrous smelting industry flue gas containing medium and high concentrations of zero-valent mercury and relatively high concentration of sulfur dioxide. During the implementation of the solution of the present invention, the focus is on realizing the efficient absorption of flue gas mercury.
实施例1Example 1
利用一个体积为500mL的玻璃制鼓泡装置作为主反应器,反应器内液量保持在250mL左右。(1)配制复合吸收液:称取一定的硫酸汞并用硫酸将其溶解,并将溶液加热至40-60度,以保证硫酸汞完全溶解,复合吸收液中硫酸汞浓度为50mmol/L,硫酸浓度为0.5mol/L。(2)取配置好的复合吸收液250mL置于鼓泡反应器中,向反应器中通入初始零价汞浓度为2mg/m3的模拟烟气,烟气流量控制在1L/min,记录烟气经过复合吸收液的零价汞浓度,并据此计算零价汞的吸收去除效率;尾气用5%高锰酸钾溶液吸收;装置总动力由空气泵提供。采用上述方法后,模拟烟气零价汞的吸收效率达到99%左右。(2)同样的复合吸收液条件下,向反应器中通入含零价汞初始浓度为2mg/m3和含8000mg/m3二氧化硫的模拟烟气,混合烟气流量控制在1L/min,记录烟气经吸收液吸收后的汞浓度,可计算得出含有高浓度二氧化硫条件下,零价汞的吸收效率可在50%左右。(3)在原始配制的复合吸收液中加入适量硫酸铁,使硫酸铁浓度为1.0mol/L,硫酸汞浓度为50mmol/L,硫酸浓度为0.5mol/L;向反应器中通入含零价汞初始浓度为2mg/m3和含8000mg/m3二氧化硫的模拟烟气,混合烟气流量控制在1L/min,经过吸收反应后,计算得出烟气中含有高浓度二氧化硫条件下,零价汞吸收效率可达到95%以上,说明吸收液中加入适量的硫酸和氯离子能够提高复合吸收液的抗二氧化硫干扰性能。而二氧化硫的去除效率也达到了85%,说明该复合吸收液可以有效吸收二氧化硫气体。A glass bubbling device with a volume of 500 mL was used as the main reactor, and the liquid volume in the reactor was kept at about 250 mL. (1) Preparation of composite absorption solution: weigh a certain amount of mercuric sulfate and dissolve it with sulfuric acid, and heat the solution to 40-60 degrees to ensure that the mercury sulfate is completely dissolved. The concentration of mercuric sulfate in the composite absorption solution is 50mmol/L. The concentration is 0.5mol/L. (2) Take 250mL of the prepared composite absorption solution and place it in the bubbling reactor, and introduce simulated flue gas with an initial zero-valent mercury concentration of 2mg/ m3 into the reactor, and control the flue gas flow rate at 1L/min, record The flue gas passes through the zero-valent mercury concentration of the composite absorption liquid, and the absorption and removal efficiency of zero-valent mercury is calculated accordingly; the tail gas is absorbed by 5% potassium permanganate solution; the total power of the device is provided by the air pump. After adopting the above method, the absorption efficiency of zero-valent mercury in simulated flue gas reaches about 99%. (2) Under the same composite absorption liquid condition, feed the simulated flue gas containing zero-valent mercury initial concentration of 2mg/ m3 and sulfur dioxide containing 8000mg/ m3 into the reactor, and the mixed flue gas flow rate is controlled at 1L/min, Record the mercury concentration after the flue gas is absorbed by the absorption liquid, and it can be calculated that under the condition of high concentration of sulfur dioxide, the absorption efficiency of zero-valent mercury can be about 50%. (3) Add an appropriate amount of ferric sulfate to the originally prepared composite absorption solution, so that the concentration of ferric sulfate is 1.0mol/L, the concentration of mercury sulfate is 50mmol/L, and the concentration of sulfuric acid is 0.5mol/L; The simulated flue gas with an initial mercury concentration of 2 mg/m 3 and 8000 mg/m 3 sulfur dioxide, the flow rate of the mixed flue gas is controlled at 1 L/min, after the absorption reaction, it is calculated that under the condition of high concentration of sulfur dioxide in the flue gas, zero The absorption efficiency of valent mercury can reach more than 95%, which shows that the addition of appropriate amount of sulfuric acid and chloride ions in the absorption liquid can improve the anti-sulfur dioxide interference performance of the composite absorption liquid. And the removal efficiency of sulfur dioxide also reached 85%, indicating that the composite absorption liquid can effectively absorb sulfur dioxide gas.
实施例2Example 2
利用一个内径为100mm,长1200mm的有机玻璃材质的湿式洗涤塔为吸收反应器。(1)配置复合吸收液:称取一定的硫酸汞并用硫酸将其溶解,并将溶液加热至40-60度,以保证硫酸汞完全溶解,复合吸收液中硫酸汞浓度为50mmol/L,硫酸浓度为0.5mol/L。(2)含初始汞浓度为2mg/m3的模拟烟气从洗涤塔底部进入,经吸收液洗涤后从塔顶部排除进入在线测汞仪,模拟烟气流量为3.0m3/h;将配制好的复合吸收液以150mL/min的流量从塔上部经过喷嘴喷入,洗涤烟气后从塔底部的缓冲池用泵循环打入洗涤塔,吸收反应器内的液气比为3.0L/m3。(3)经过测汞仪的尾气用5%高锰酸钾吸收。采用上述方法后,模拟烟气中零价汞的吸收效率可达到90%以上。(4)将复合吸收液中的硫酸汞浓度提高至100mmol/L,硫酸浓度为1.0mol/L,在同样的烟气条件和液气比条件下喷入吸收反应器中,结果表明零价汞的吸收效率可达到96%以上。(5)在复合吸收液中添加一定量的硫酸铁,使得复合吸收液中硫酸汞浓度为100mmol/L,硫酸铁浓度为1.0mol/L,硫酸浓度为1.0mol/L,将零价汞含量为2mg/m3和二氧化硫浓度为8000mg/m3的模拟烟气以3.0m3/h的流量通入吸收反应器中,并将复合吸收液以150mL/min的流量喷入吸收反应器中,结果表明烟气中零价汞的吸收效率可达到85%以上,二氧化硫吸收效率达到80%左右。A plexiglass wet scrubber with an inner diameter of 100 mm and a length of 1200 mm is used as the absorption reactor. (1) Configure composite absorption liquid: weigh a certain amount of mercury sulfate and dissolve it with sulfuric acid, and heat the solution to 40-60 degrees to ensure that mercury sulfate is completely dissolved. The concentration of mercury sulfate in the composite absorption liquid is 50mmol/L, and sulfuric acid The concentration is 0.5mol/L. (2) The simulated flue gas with an initial mercury concentration of 2mg/ m3 enters from the bottom of the washing tower, and after being washed by the absorption liquid, it is discharged from the top of the tower and enters the online mercury measuring instrument. The simulated flue gas flow rate is 3.0m3 /h; The good composite absorption liquid is sprayed from the upper part of the tower through the nozzle at a flow rate of 150mL/min. After washing the flue gas, it is pumped into the washing tower from the buffer tank at the bottom of the tower. The liquid-gas ratio in the absorption reactor is 3.0L/m 3 . (3) The tail gas passing through the mercury detector is absorbed with 5% potassium permanganate. After adopting the above method, the absorption efficiency of zero-valent mercury in simulated flue gas can reach more than 90%. (4) Increase the concentration of mercury sulfate in the composite absorption liquid to 100mmol/L, and the concentration of sulfuric acid is 1.0mol/L, and spray it into the absorption reactor under the same flue gas conditions and liquid-gas ratio conditions. The results show that zero-valent mercury The absorption efficiency can reach more than 96%. (5) Add a certain amount of iron sulfate in the composite absorption liquid, so that the concentration of mercury sulfate in the composite absorption liquid is 100mmol/L, the concentration of iron sulfate is 1.0mol/L, and the concentration of sulfuric acid is 1.0mol/L. Simulated flue gas with a concentration of 2mg/m 3 and a sulfur dioxide concentration of 8000mg/m 3 was passed into the absorption reactor at a flow rate of 3.0m 3 /h, and the composite absorption liquid was sprayed into the absorption reactor at a flow rate of 150mL/min. The results show that the absorption efficiency of zero-valent mercury in flue gas can reach more than 85%, and the absorption efficiency of sulfur dioxide can reach about 80%.
实施例3Example 3
采用的设备如图1所示,包括复合吸收液配液槽1,复合吸收液循环槽2、烟气吸收塔4、泵8、汞分解回收装置9、硫酸溶液分离装置10,烟气吸收塔4为喷淋塔,底部一侧设有烟气吸收塔入口3,有色金属冶炼烟气从烟气吸收塔入口3输入烟气吸收塔4,顶部设有吸收液喷嘴7、尾气除雾器5和烟气吸收塔出口6,其中复合吸收液循环槽2一端连接复合吸收液配液槽1,另一端通过管道依次连接泵8和吸收液喷嘴7,通过泵8将复合吸收液输入吸收液喷嘴7,喷入烟气吸收塔4中,汞分解回收装置9通过支路连接泵8出口,并连通复合吸收液循环槽2,硫酸溶液分离装置10通过支路连接泵8出口,并连通复合吸收液循环槽2。The equipment used is shown in Figure 1, including composite absorption liquid distribution tank 1, composite absorption liquid circulation tank 2, flue gas absorption tower 4, pump 8, mercury decomposition and
采用上述设备从有色金属冶炼烟气中回收气态零价汞和二氧化硫的方法,包括以下几个步骤:The method for recovering gaseous zero-valent mercury and sulfur dioxide from non-ferrous metal smelting flue gas by using the above-mentioned equipment comprises the following steps:
第一步,将硫酸汞、硫酸铁和硫酸配制成复合吸收液并储存于复合吸收液配液槽1中;所述的复合吸收液主要组分为硫酸汞和硫酸,复合吸收液中硫酸汞浓度是200mmol/L,硫酸铁浓度是1.5mol/L,硫酸浓度是2.0mol/L,复合吸收液的温度保持在40-60℃,以确保硫酸汞的完全溶解。In the first step, mercuric sulfate, ferric sulfate and sulfuric acid are formulated into a composite absorption liquid and stored in the composite absorption liquid distribution tank 1; the main components of the composite absorption liquid are mercuric sulfate and sulfuric acid, and the mercuric sulfate in the composite absorption liquid is The concentration is 200mmol/L, the concentration of iron sulfate is 1.5mol/L, the concentration of sulfuric acid is 2.0mol/L, and the temperature of the composite absorption liquid is kept at 40-60°C to ensure the complete dissolution of mercury sulfate.
第二步,将复合吸收液配液槽1中的复合吸收液通过复合吸收液循环槽2喷入烟气吸收塔4中,对输入烟气吸收塔4的有色金属冶炼烟气中的零价汞和二氧化硫进行吸收,其中零价汞与硫酸汞反应生成硫酸亚汞,二氧化硫与硫酸铁反应生成硫酸和硫酸亚铁,气液接触后的复合吸收液通入复合吸收液循环槽2中重复利用;烟气吸收塔4为喷淋塔。In the second step, the composite absorption liquid in the composite absorption liquid distribution tank 1 is sprayed into the flue gas absorption tower 4 through the composite absorption liquid circulation tank 2, and the zero price in the non-ferrous metal smelting flue gas input into the flue gas absorption tower 4 is Mercury and sulfur dioxide are absorbed, wherein zero-valent mercury reacts with mercury sulfate to generate mercurous sulfate, sulfur dioxide reacts with ferric sulfate to generate sulfuric acid and ferrous sulfate, and the composite absorption liquid after gas-liquid contact is passed into the composite absorption liquid circulation tank 2 for reuse ; The flue gas absorption tower 4 is a spray tower.
第三步,待到复合吸收液循环槽2中的汞离子浓度下降至低于25mmol/L以后,将部分复合吸收液通入汞分解回收装置9中;汞分解回收装置9主要为光化学反应装置,硫酸亚汞经过光解生成单质汞和硫酸汞,其中单质汞经收集、纯化后可作为产品回收,而硫酸汞则重新通入复合吸收液循环槽2中,以补充烟气零价汞吸收过程中消耗的硫酸汞。In the third step, after the mercury ion concentration in the composite absorption liquid circulation tank 2 drops below 25mmol/L, part of the composite absorption liquid is passed into the mercury decomposition and
第四步,利用汞分解回收装置9将的吸收液中的硫酸亚汞分解成单质汞和硫酸汞吸收液,其中单质汞经过收集纯化后可以作为产品进行回收,而硫酸汞吸收液返回复合吸收液循环槽2中循环利用以补充烟气零价汞吸收过程中消耗的硫酸汞;The fourth step is to use the mercury decomposition and
第五步,待到复合吸收液循环槽2中的硫酸根离子浓度大于8mol/L以后,将部分复合吸收液通入硫酸溶液分离装置10中;硫酸经分离、纯化、提浓以后可以作为产品回收,而剩余的吸收液则返回复合吸收液循环槽2中重复利用;所述的硫酸溶液分离装置10是指膜分离装置或萃取分离装置。In the fifth step, after the sulfate ion concentration in the composite absorption liquid circulation tank 2 is greater than 8mol/L, part of the composite absorption liquid is passed into the sulfuric acid
实施例4Example 4
从有色金属冶炼烟气中回收气态零价汞和二氧化硫的方法,包括以下几个步骤:The method for recovering gaseous zerovalent mercury and sulfur dioxide from nonferrous metal smelting flue gas comprises the following steps:
第一步,将硫酸汞、硫酸铁和硫酸配制成复合吸收液并储存于复合吸收液配液槽中;所述的复合吸收液主要组分为硫酸汞和硫酸,复合吸收液中硫酸汞浓度范围是50mmol/L,硫酸铁浓度范围是0.5mol/L,硫酸浓度范围是0.5mol/L,复合吸收液的温度保持在40-60℃,以确保硫酸汞的完全溶解。In the first step, mercuric sulfate, ferric sulfate and sulfuric acid are formulated into a composite absorption liquid and stored in a composite absorption liquid dosing tank; the main components of the composite absorption liquid are mercuric sulfate and sulfuric acid, and the concentration of mercuric sulfate in the composite absorption liquid is The range is 50mmol/L, the range of iron sulfate concentration is 0.5mol/L, the range of sulfuric acid concentration is 0.5mol/L, and the temperature of the composite absorption liquid is kept at 40-60°C to ensure the complete dissolution of mercury sulfate.
第二步,将复合吸收液配液槽中的复合吸收液通过复合吸收液循环槽喷入烟气吸收塔中,对输入烟气吸收塔的有色金属冶炼烟气中的零价汞和二氧化硫进行吸收,其中零价汞与硫酸汞反应生成硫酸亚汞,二氧化硫与硫酸铁反应生成硫酸和硫酸亚铁,气液接触后的复合吸收液通入复合吸收液循环槽中重复利用;烟气吸收塔为填料塔。In the second step, the composite absorption liquid in the composite absorption liquid distribution tank is sprayed into the flue gas absorption tower through the composite absorption liquid circulation tank, and the zero-valent mercury and sulfur dioxide in the non-ferrous metal smelting flue gas input into the flue gas absorption tower are analyzed. Absorption, in which zero-valent mercury reacts with mercury sulfate to generate mercurous sulfate, sulfur dioxide reacts with ferric sulfate to generate sulfuric acid and ferrous sulfate, and the composite absorption liquid after gas-liquid contact is passed into the composite absorption liquid circulation tank for reuse; the flue gas absorption tower For packed tower.
第三步,待到复合吸收液循环槽中的汞离子浓度下降至低于25mmol/L以后,将部分复合吸收液通入汞分解回收装置中;汞分解回收装置主要为光化学反应装置,硫酸亚汞经过光解生成单质汞和硫酸汞,其中单质汞经收集、纯化后可作为产品回收,而硫酸汞则重新通入复合吸收液循环槽中,以补充烟气零价汞吸收过程中消耗的硫酸汞。In the third step, after the mercury ion concentration in the composite absorption liquid circulation tank drops below 25mmol/L, part of the composite absorption liquid is passed into the mercury decomposition and recovery device; the mercury decomposition and recovery device is mainly a photochemical reaction device, sulfurous acid Mercury is photolyzed to generate elemental mercury and mercury sulfate. The elemental mercury can be recovered as a product after being collected and purified, while the mercury sulfate is re-introduced into the composite absorption liquid circulation tank to supplement the waste consumed in the absorption process of zero-valent mercury in flue gas. Mercury sulfate.
第四步,利用汞分解回收装置将的吸收液中的硫酸亚汞分解成单质汞和硫酸汞吸收液,其中单质汞经过收集纯化后可以作为产品进行回收,而硫酸汞吸收液返回复合吸收液循环槽中循环利用以补充烟气零价汞吸收过程中消耗的硫酸汞;The fourth step is to use the mercury decomposition and recovery device to decompose the mercurous sulfate in the absorption liquid into elemental mercury and mercury sulfate absorption liquid, in which the elemental mercury can be recovered as a product after being collected and purified, and the mercury sulfate absorption liquid returns to the composite absorption liquid Recycling in the circulation tank to supplement the mercury sulfate consumed in the absorption process of zero-valent mercury in the flue gas;
第五步,待到复合吸收液循环槽中的硫酸根离子浓度大于8mol/L以后,将部分复合吸收液通入硫酸溶液分离装置中;硫酸经分离、纯化、提浓以后可以作为产品回收,而剩余的吸收液则返回复合吸收液循环槽中重复利用;所述的硫酸溶液分离装置是指膜分离装置或萃取分离装置。The fifth step, after the sulfate ion concentration in the composite absorption liquid circulation tank is greater than 8mol/L, part of the composite absorption liquid is passed into the sulfuric acid solution separation device; the sulfuric acid can be recovered as a product after separation, purification, and concentration. The remaining absorption liquid is returned to the composite absorption liquid circulation tank for reuse; the sulfuric acid solution separation device refers to a membrane separation device or an extraction separation device.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310277066.0A CN103341310B (en) | 2013-07-03 | 2013-07-03 | Method for recovering gaseous zero-valent mercury and sulfur dioxide from non-ferrous metal smelting flue gas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310277066.0A CN103341310B (en) | 2013-07-03 | 2013-07-03 | Method for recovering gaseous zero-valent mercury and sulfur dioxide from non-ferrous metal smelting flue gas |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103341310A true CN103341310A (en) | 2013-10-09 |
CN103341310B CN103341310B (en) | 2015-07-08 |
Family
ID=49276163
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310277066.0A Active CN103341310B (en) | 2013-07-03 | 2013-07-03 | Method for recovering gaseous zero-valent mercury and sulfur dioxide from non-ferrous metal smelting flue gas |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103341310B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106669366A (en) * | 2016-12-29 | 2017-05-17 | 郴州丰越环保科技有限公司 | Clean efficient demercuration method for oxygen-enriched side-blown smelting gas |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110133186A (en) * | 2019-04-18 | 2019-08-16 | 贵州开磷集团矿肥有限责任公司 | A kind of diammonium phosphate exhaust washer pH measuring device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040219083A1 (en) * | 2003-05-01 | 2004-11-04 | Keith Schofield | Method and apparatus for mitigating mercury emissions in exhaust gases |
CN101590362A (en) * | 2009-06-12 | 2009-12-02 | 浙江大学 | A Flue Gas Mercury Absorbing Liquid with Simultaneous Oxidation and Fixation |
CN102688677A (en) * | 2012-06-12 | 2012-09-26 | 上海交通大学 | Method for enhancing total mercury recovery rate of metallurgical fume by reducing bivalent mercury |
CN103143252A (en) * | 2013-02-22 | 2013-06-12 | 广东电网公司电力科学研究院 | Additive capable of simultaneous desulphurization and demercuration and preparation method thereof |
-
2013
- 2013-07-03 CN CN201310277066.0A patent/CN103341310B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040219083A1 (en) * | 2003-05-01 | 2004-11-04 | Keith Schofield | Method and apparatus for mitigating mercury emissions in exhaust gases |
CN101590362A (en) * | 2009-06-12 | 2009-12-02 | 浙江大学 | A Flue Gas Mercury Absorbing Liquid with Simultaneous Oxidation and Fixation |
CN102688677A (en) * | 2012-06-12 | 2012-09-26 | 上海交通大学 | Method for enhancing total mercury recovery rate of metallurgical fume by reducing bivalent mercury |
CN103143252A (en) * | 2013-02-22 | 2013-06-12 | 广东电网公司电力科学研究院 | Additive capable of simultaneous desulphurization and demercuration and preparation method thereof |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106669366A (en) * | 2016-12-29 | 2017-05-17 | 郴州丰越环保科技有限公司 | Clean efficient demercuration method for oxygen-enriched side-blown smelting gas |
Also Published As
Publication number | Publication date |
---|---|
CN103341310B (en) | 2015-07-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105238933B (en) | A method for removing and recovering elemental mercury from flue gas containing sulfur dioxide | |
CN103230734B (en) | Combine the method removing sulfur dioxide in flue gas and nitrogen oxide | |
Wang et al. | Removal of gaseous hydrogen sulfide using ultraviolet/Oxone-induced oxidation scrubbing system | |
Liu et al. | Review on adsorbents in elemental mercury removal in coal combustion flue gas, smelting flue gas and natural gas | |
CN102516022B (en) | Comprehensive processing method of vinyl chloride synthetic gas | |
CN104084024B (en) | A kind of method of denitration of boiler smoke | |
CN103421566B (en) | A kind of natural gas deviates from sulfur recovery technology and device | |
CN105289261A (en) | Washing liquid for eluting mercury in mercury-containing flue gas and method for recovering mercury form mercury-containing flue gas | |
CN102921278A (en) | Method for collaboratively controlling multi-pollutants produced from waste incineration smokes | |
CN109850935B (en) | A method for preparing thallium chloride by using thallium-containing acidic wastewater from smelters as raw materials | |
CN103331094B (en) | Purification of non-ferrous metal smelting flue gas and simultaneous realization of multiple resource utilization methods | |
CN106669360B (en) | A kind of flue gas desulfurization and the method and apparatus for producing sulfuric acid | |
CN104383801A (en) | Method and system for treating electronic scrap smoke | |
CN102120658A (en) | Treatment and recycling method of ammonia nitrogen in electrolytic manganese production end wastewater | |
CN103341310B (en) | Method for recovering gaseous zero-valent mercury and sulfur dioxide from non-ferrous metal smelting flue gas | |
CN109364659B (en) | A method and device for purifying and recovering thallium in smelting flue gas | |
CN102688677B (en) | Method for enhancing total mercury recovery rate of metallurgical fume by reducing bivalent mercury | |
CN102858430A (en) | Process for the removal of heat stable salts from acid gas absorbents | |
CN106566930A (en) | Process for recovering cadmium from cadmium-contained incineration slag | |
CN106039972B (en) | A method of with phosphate ore pulp purified industrial tail gas | |
CN113457410A (en) | Method and device for desulfurizing, removing mercury and decarbonizing flue gas of lead-zinc smelting volatilization kiln | |
CN203648372U (en) | System for combined removal of SO2, NO and Hg from smoke based on heterogeneous Fenton | |
CN110846510A (en) | Method for efficiently and selectively adsorbing and recovering rhenium and mercury from copper smelting multi-element mixed waste acid | |
CN106966445B (en) | A kind of method for removing arsenic in nickel sulfate solution containing arsenic | |
CN205042351U (en) | Device of zeroth order mercury in degree of depth desorption mercury smelting flue gas |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |