CN103331647A - 面向切削过程监控的无线数据采集系统 - Google Patents

面向切削过程监控的无线数据采集系统 Download PDF

Info

Publication number
CN103331647A
CN103331647A CN2013102801442A CN201310280144A CN103331647A CN 103331647 A CN103331647 A CN 103331647A CN 2013102801442 A CN2013102801442 A CN 2013102801442A CN 201310280144 A CN201310280144 A CN 201310280144A CN 103331647 A CN103331647 A CN 103331647A
Authority
CN
China
Prior art keywords
module
amplification
sensor
input
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013102801442A
Other languages
English (en)
Other versions
CN103331647B (zh
Inventor
张海峰
刘晓为
陈伟平
毛剑飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201310280144.2A priority Critical patent/CN103331647B/zh
Publication of CN103331647A publication Critical patent/CN103331647A/zh
Application granted granted Critical
Publication of CN103331647B publication Critical patent/CN103331647B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

面向切削过程监控的无线数据采集系统,它属于属于机床状态监控技术领域。它是为了克服传统有线式传感系统的安装不便、不能贴近加工位置获取物理参数等缺点。它的无线数据采集节点中模拟信号调理与采集模块的多路信号输入端连接有第二传感器、第三传感器和多个第一传感器,无线数据采集节点的第一微型天线通过无线高频载波信号与数据汇聚节点的外置天线数据连通,数据汇聚节点的接口保护模块与中心控制计算机数据信号连通。所述无线数据采集节点和第二传感器、第三传感器和多个第一传感器都镶嵌在旋转刀具内部。本发明实现了贴近切削加工位置的旋转刀具中的多物理参数传感器数据的采集与无线传输,该数据采集和传输过程具有高数据吞吐率的特征。

Description

面向切削过程监控的无线数据采集系统
技术领域
本发明属于机床状态监控技术领域。
背景技术
近年来,在全球制造业竞争日益剧烈的背景下,提高生产效率和降低成本成为企业的重要追求目标,机械加工的高速、高效和高可靠性是提高企业生产效率的重要手段。切削制造技术正朝着智能化、集成化和网络化的方向发展。刀具切削状态监测技术作为先进制造技术的重要组成部分,是在现代传感器技术、信号处理技术、计算机技术和制造技术基础上发展起来的新兴技术,它对于推动加工过程自动化具有极其重要的作用。刀具切削状态监测通过检测各类传感器信号变化,实时预测刀具的磨损和破损状态,根据刀具状态检测结果,自动控制刀具进给以补偿刀具磨损导致零件尺寸和形状精度的变化。因此,对切削传感技术提出了更高的要求和新的挑战。 
目前,主要通过对切削过程中的切削力,切削扭矩以及振动检测实现对刀具切削状态的变化监测,并用来预测刀具磨损和对刀具破坏的监测。传统机床状态在线监测系统采用有线方式进行信号传递,不可能贴近加工位置获取切削参数,限制了使用范围。2009年,美国新罕布什尔大学的设计与制造实验室Suprock博士开发了一种无线智能刀柄(Smart Tool Holder)。该刀柄可由多种动态传感器(如基于驻极电介质的加速度计和应变计),以及可作为传感器界面、兼容“蓝牙技术”的数字发射器组成。该刀柄具有不影响刀具的切削刚性、可检测多物理参量、价格低廉的特点。但是由于蓝牙技术有功耗高、数据传输距离较近、工业环境下抗干扰能力差等缺点,该系统没有得到广泛应用。综上所述,目前还没有一种广泛实用的面向切削过程监控的数据采集系统可以实现高速旋转刀具内部多物理参数传感器信号的采集与无线发送。
发明内容
为了克服传统有线式传感系统的安装不便、不能贴近加工位置获取物理参数等缺点,本发明提供了一种面向切削过程监控的无线数据采集系统。
所述面向切削过程监控的无线数据采集系统由无线数据采集节点、数据汇聚节点、中心控制计算机组成;
所述无线数据采集节点由模拟信号调理与采集模块、第一微控制器、第一射频收发模块、第一巴伦模块、第一微型天线、第一电源管理模块组成;模拟信号调理与采集模块的多路信号输入端连接有第二传感器、第三传感器和多个第一传感器;模拟信号调理与采集模块的多路数字信号输出端都分别与第一微控制器的多路数字信号输入端连接,第一微控制器的数据输出输入端与第一射频收发模块的数据输入输出端连接,第一射频收发模块的高频载波信号输出输入端通过第一巴伦模块与第一微型天线连接,第一电源管理模块的电源输出端分别与模拟信号调理与采集模块的电源输入端、微控制器的电源输入端、第一射频收发模块的电源输入端连接;所述数据汇聚节点由外置天线、射频前端模块、第二巴伦模块、第二射频收发模块、第二微控制器、串行通信接口模块、接口保护模块、第二电源管理模块组成;所述射频前端模块由第一单刀双掷射频开关、功率放大器、低噪声放大器、射频滤波器、第二单刀双掷射频开关组成;第一单刀双掷射频开关的一个不动端通过功率放大器与第二单刀双掷射频开关的一个不动端连接,第一单刀双掷射频开关的另一个不动端通过低噪声放大器、射频滤波器与第二单刀双掷射频开关的另一个不动端连接;外置天线的高频载波信号输出输入端与第二单刀双掷射频开关的动端连接;第一单刀双掷射频开关的动端通过第二巴伦模块与第二射频收发模块的高频载波信号输出输入连接,第二射频收发模块的数据输入输出端与第二微控制器的数据输入输出端连接,第二微控制器串行数据输出输入端通过串行通信接口模块、接口保护模块与中心控制计算机数据信号连通;第一单刀双掷射频开关的控制端、第二单刀双掷射频开关的控制端与第二微控制器的控制输出端连接;第二电源管理模块的电源输出端分别与射频前端模块的电源输入端、第二射频收发模块的电源输入端、第二微控制器的电源输入端、串行通信接口模块的电源输入端、接口保护模块的电源输入端连接;无线数据采集节点的第一微型天线通过无线高频载波信号与数据汇聚节点的外置天线数据连通。
本发明实现了贴近切削加工位置的旋转刀具中的多物理参数传感器数据的采集与无线传输,该数据采集和传输过程具有高数据吞吐率、高可靠性、低误码率的特征。
附图说明
图1是的整体电路结构示意框图;
图2是图1中射频前端模块2-2的电路结构示意框图;
图3是图1中模拟信号调理与采集模块1-1连接第二传感器E2、第三传感器E3和多个第一传感器E1的电路结构示意框图。
具体实施方式
具体实施方式一:参见图1、图2进行说明,本具体实施方式是由无线数据采集节点1、数据汇聚节点2、中心控制计算机3组成;
所述无线数据采集节点1由模拟信号调理与采集模块1-1、第一微控制器1-2、第一射频收发模块1-3、第一巴伦模块1-4、第一微型天线1-5、第一电源管理模块1-6组成;模拟信号调理与采集模块1-1的多路信号输入端连接有第二传感器E2、第三传感器E3和多个第一传感器E1;模拟信号调理与采集模块1-1的多路数字信号输出端都分别与第一微控制器1-2的多路数字信号输入端连接,第一微控制器1-2的数据输出输入端与第一射频收发模块1-3的数据输入输出端连接,第一射频收发模块1-3的高频载波信号输出输入端通过第一巴伦模块1-4与第一微型天线1-5连接,第一电源管理模块1-6的电源输出端分别与模拟信号调理与采集模块1-1的电源输入端、微控制器1-2的电源输入端、第一射频收发模块1-3的电源输入端连接;所述数据汇聚节点2由外置天线2-1、射频前端模块2-2、第二巴伦模块2-3、第二射频收发模块2-4、第二微控制器2-5、串行通信接口模块2-6、接口保护模块2-7、第二电源管理模块2-8组成;所述射频前端模块2-2由第一单刀双掷射频开关2-2-1、功率放大器2-2-2、低噪声放大器2-2-3、射频滤波器2-2-4、第二单刀双掷射频开关2-2-5组成;第一单刀双掷射频开关2-2-1的一个不动端通过功率放大器2-2-2与第二单刀双掷射频开关2-2-5的一个不动端连接,第一单刀双掷射频开关2-2-1的另一个不动端通过低噪声放大器2-2-3、射频滤波器2-2-4与第二单刀双掷射频开关2-2-5的另一个不动端连接;外置天线2-1的高频载波信号输出输入端与第二单刀双掷射频开关2-2-5的动端连接;第一单刀双掷射频开关2-2-1的动端通过第二巴伦模块2-3与第二射频收发模块2-4的高频载波信号输出输入连接,第二射频收发模块2-4的数据输入输出端与第二微控制器2-5的数据输入输出端连接,第二微控制器2-5串行数据输出输入端通过串行通信接口模块2-6、接口保护模块2-7与中心控制计算机3数据信号连通;第一单刀双掷射频开关2-2-1的控制端、第二单刀双掷射频开关2-2-5的控制端与第二微控制器2-5的控制输出端连接;第二电源管理模块2-8的电源输出端分别与射频前端模块2-2的电源输入端、第二射频收发模块2-4的电源输入端、第二微控制器2-5的电源输入端、串行通信接口模块2-6的电源输入端、接口保护模块2-7的电源输入端连接;无线数据采集节点1的第一微型天线1-5通过无线高频载波信号与数据汇聚节点2的外置天线2-1数据连通。
所述无线数据采集节点1和第二传感器E2、第三传感器E3和多个第一传感器E1都镶嵌在旋转刀具内部,第一传感器E1可分别为位移检测传感器、扭矩检测传感器。
所述第一巴伦模块1-4、第二巴伦模块2-3采用Johanson Technology公司的集成巴伦滤波器模块0433BM15A0001。
第一微型天线1-5采用微带贴片天线或者LTCC陶瓷天线。使用的LTCC陶瓷天线为台湾RainSun公司生产的型号为AN1603-433的天线。
第一电源管理模块1-6的采用型号为BL8555的超低噪声射频专用LDO。
无线数据采集节点1的第一微控制器1-2、第一射频收发模块1-3集成在一片集成电路中,采用TI公司的集成了8051内核的单片WSN收发芯片CC1110实现;数据汇聚节点2的第二微控制器2-5、第二射频收发模块2-4集成在一片集成电路中,采用TI公司的集成了8051内核的单片WSN收发芯片CC1110实现。
第一单刀双掷射频开关2-2-1、第二单刀双掷射频开关2-2-5采用Skyworks公司的AS193-73LF单刀双掷射频开关。
功率放大器2-2-2采用瑞萨公司的射频功放管NESG270034为核心设计的中功率甲类线性功放。该功放采用有源偏置电路进行供电,并且具有偏置使能/禁能功能,以降低待机功耗。
低噪声放大器2-2-3采用Hittite Microwave公司的型号为HMC356LP3的集成低噪声放大器芯片。
射频滤波器2-2-4采用由射频电容和电感构成的二阶切比雪夫带通滤波器。
外置天线2-1采用中心频率为433MHz、增益达到10dBi的棒状天线。
串行通信接口模块2-6采用型号为MAX3232的RS232电平变换芯片。
接口保护模块2-7采用击穿电压为15V的双向瞬态抑制二极管构成。
第二电源管理模块2-8采用型号为BL8555的超低噪声LDO芯片构成。
具体实施方式二:参见图3进行说明,本实施方式与具体实施方式一的不同点在于所述模拟信号调理与采集模块1-1由多个调制放大通道A、放大滤波通道B、放大解调滤波通道C、多路AD采样电路D组成;所述每个调制放大通道A都由振荡器A-1、第一放大模块A-2、第一解调模块A-3、第一滤波模块A-4组成;振荡器A-1的基频信号输出端与第一传感器E1的一接线端连接,振荡器A-1的基频信号输出端还与第一解调模块A-3的基频信号输入端连接;第一传感器E1的另一接线端通过第一放大模块A-2后与第一解调模块A-3的输入端连接;第一解调模块A-3的输出端与第一滤波模块A-4的输入端连接,第一滤波模块A-4的输出端为调制放大通道A的模拟信号输出端;所述放大滤波通道B由第二放大模块B-1、第二解调模块B-2、第二滤波模块B-3组成;第二放大模块B-1的信号输入端接有第二传感器E2,所述第二传感器E2为声发射传感器,第二放大模块B-1的信号输出端通过第二解调模块B-2与第二滤波模块B-3的信号输入端连接,第二滤波模块B-3的信号输出端为放大滤波通道B的信号输出端;所述放大解调滤波通道C由第三放大模块C-1、第三滤波模块C-2组成;第三放大模块C-1的信号输入端接有第三传感器E3,所述第三传感器E3为振动传感器,第三放大模块C-1的信号输出端与第三滤波模块C-2的信号输入端连接,第三滤波模块C-3的信号输出端为放大解调滤波通道C的信号输出端;每个调制放大通道A的信号输出端、放大滤波通道B的信号输出端、放大解调滤波通道C的信号输出端都分别与多路AD采样电路D的多路信号输入端连接,多路AD采样电路D的多路数字信号输出端为模拟信号调理与采集模块1-1的多路数字信号输出端。其它组成和连接关系与具体实施方式一相同。
振荡器A-1采用文氏振荡器。第一放大模块A-2、第二放大模块B-1、第三放大模块C-1采用OP07运算放大器芯片构成的高速放大电路。第一解调模块A-3、第二解调模块B-2采用AD630芯片。第一滤波模块A-4、第二滤波模块B-3、第三滤波模块C-2采用由LM324高速高带宽运放组成的有源巴特沃斯滤波器。多路AD采样电路D采用CC1110芯片内部集成的8通道12位AD转换器。
工作原理:以第一传感器E1为轴向位移检测传感器为例进行说明,振荡器A-1采用文氏桥振荡器震荡出频率为100kHz的高频载波正弦信号,将传轴向位移检测感器输出的基片信号进行调制后,送入第一放大模块A-2中,第一放大模块A-2将传感器的高频载波信号与振荡器A-1输出的高频信号一起送入第一解调模块A-3进行相敏解调,项目解调后的信号经过有源第一滤波模块A-4进行低通滤波器,得到反映出轴向位移的直流信号,该直流信号由送入CC1110芯片AD转换器的0通道(CC1110芯片的P0.0管脚);第三传感器E3输出的信号经过第三放大模块C-1放大后,经过第三滤波模块C-2滤波后由CC1110内部的AD采样电路采样,得到反映刀柄切削过程中轴向振动信息。第二传感器E2输出的信号经过第二放大模块B-1后,经第二解调模块B-2进行检波后,送入第二滤波模块B-3,由CC1110内部的AD采样电路进行采样,得到刀柄的损伤信息。从而实现对传感器输出模拟信号的数据采集。

Claims (2)

1.面向切削过程监控的无线数据采集系统,其特征在于它是由无线数据采集节点(1)、数据汇聚节点(2)、中心控制计算机(3)组成;
所述无线数据采集节点(1)由模拟信号调理与采集模块(1-1)、第一微控制器(1-2)、第一射频收发模块(1-3)、第一巴伦模块(1-4)、第一微型天线(1-5)、第一电源管理模块(1-6)组成;模拟信号调理与采集模块(1-1)的多路信号输入端连接有第二传感器(E2)、第三传感器(E3)和多个第一传感器(E1);模拟信号调理与采集模块(1-1)的多路数字信号输出端都分别与第一微控制器(1-2)的多路数字信号输入端连接,第一微控制器(1-2)的数据输出输入端与第一射频收发模块(1-3)的数据输入输出端连接,第一射频收发模块(1-3)的高频载波信号输出输入端通过第一巴伦模块(1-4)与第一微型天线(1-5)连接,第一电源管理模块(1-6)的电源输出端分别与模拟信号调理与采集模块(1-1)的电源输入端、微控制器(1-2)的电源输入端、第一射频收发模块(1-3)的电源输入端连接;所述数据汇聚节点(2)由外置天线(2-1)、射频前端模块(2-2)、第二巴伦模块(2-3)、第二射频收发模块(2-4)、第二微控制器(2-5)、串行通信接口模块(2-6)、接口保护模块(2-7)、第二电源管理模块(2-8)组成;所述射频前端模块(2-2)由第一单刀双掷射频开关(2-2-1)、功率放大器(2-2-2)、低噪声放大器(2-2-3)、射频滤波器(2-2-4)、第二单刀双掷射频开关(2-2-5)组成;第一单刀双掷射频开关(2-2-1)的一个不动端通过功率放大器(2-2-2)与第二单刀双掷射频开关(2-2-5)的一个不动端连接,第一单刀双掷射频开关(2-2-1)的另一个不动端通过低噪声放大器(2-2-3)、射频滤波器(2-2-4)与第二单刀双掷射频开关(2-2-5)的另一个不动端连接;外置天线(2-1)的高频载波信号输出输入端与第二单刀双掷射频开关(2-2-5)的动端连接;第一单刀双掷射频开关(2-2-1)的动端通过第二巴伦模块(2-3)与第二射频收发模块(2-4)的高频载波信号输出输入连接,第二射频收发模块(2-4)的数据输入输出端与第二微控制器(2-5)的数据输入输出端连接,第二微控制器(2-5)串行数据输出输入端通过串行通信接口模块(2-6)、接口保护模块(2-7)与中心控制计算机(3)数据信号连通;第一单刀双掷射频开关(2-2-1)的控制端、第二单刀双掷射频开关(2-2-5)的控制端与第二微控制器(2-5)的控制输出端连接;第二电源管理模块(2-8)的电源输出端分别与射频前端模块(2-2)的电源输入端、第二射频收发模块(2-4)的电源输入端、第二微控制器(2-5)的电源输入端、串行通信接口模块(2-6)的电源输入端、接口保护模块(2-7)的电源输入端连接;无线数据采集节点(1)的第一微型天线(1-5)通过无线高频载波信号与数据汇聚节点(2)的外置天线(2-1)数据连通。
2.根据权利要求1所述的面向切削过程监控的无线数据采集系统,其特征在于所述模拟信号调理与采集模块(1-1)由多个调制放大通道(A)、放大滤波通道(B)、放大解调滤波通道(C)、多路AD采样电路(D)组成;所述每个调制放大通道(A)都由振荡器(A-1)、第一放大模块(A-2)、第一解调模块(A-3)、第一滤波模块(A-4)组成;振荡器(A-1)的基频信号输出端与第一传感器(E1)的一接线端连接,振荡器(A-1)的基频信号输出端还与第一解调模块(A-3)的基频信号输入端连接;第一传感器(E1)的另一接线端通过第一放大模块(A-2)后与第一解调模块(A-3)的输入端连接;第一解调模块(A-3)的输出端与第一滤波模块(A-4)的输入端连接,第一滤波模块(A-4)的输出端为调制放大通道(A)的模拟信号输出端;所述放大滤波通道(B)由第二放大模块(B-1)、第二解调模块(B-2)、第二滤波模块(B-3)组成;第二放大模块(B-1)的信号输入端接有第二传感器(E2),所述第二传感器(E2)为声发射传感器,第二放大模块(B-1)的信号输出端通过第二解调模块(B-2)与第二滤波模块(B-3)的信号输入端连接,第二滤波模块(B-3)的信号输出端为放大滤波通道(B)的信号输出端;所述放大解调滤波通道(C)由第三放大模块(C-1)、第三滤波模块(C-2)组成;第三放大模块(C-1)的信号输入端接有第三传感器(E3),所述第三传感器(E3)为振动传感器,第三放大模块(C-1)的信号输出端与第三滤波模块(C-2)的信号输入端连接,第三滤波模块(C-3)的信号输出端为放大解调滤波通道(C)的信号输出端;每个调制放大通道(A)的信号输出端、放大滤波通道(B)的信号输出端、放大解调滤波通道(C)的信号输出端都分别与多路AD采样电路(D)的多路信号输入端连接,多路AD采样电路(D)的多路数字信号输出端为模拟信号调理与采集模块(1-1)的多路数字信号输出端。
CN201310280144.2A 2013-07-05 2013-07-05 面向切削过程监控的无线数据采集系统 Active CN103331647B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310280144.2A CN103331647B (zh) 2013-07-05 2013-07-05 面向切削过程监控的无线数据采集系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310280144.2A CN103331647B (zh) 2013-07-05 2013-07-05 面向切削过程监控的无线数据采集系统

Publications (2)

Publication Number Publication Date
CN103331647A true CN103331647A (zh) 2013-10-02
CN103331647B CN103331647B (zh) 2015-08-05

Family

ID=49239888

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310280144.2A Active CN103331647B (zh) 2013-07-05 2013-07-05 面向切削过程监控的无线数据采集系统

Country Status (1)

Country Link
CN (1) CN103331647B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10363646B2 (en) 2016-05-05 2019-07-30 Caterpillar Inc. Manufacturing fixture system and associated process having a rest pad force sensor with closed loop feedback
CN111693134A (zh) * 2020-06-19 2020-09-22 哈尔滨工业大学 量程可变的振动信号无线传感系统
CN112571152A (zh) * 2019-09-30 2021-03-30 江苏西格数据科技有限公司 一种用于检测刀具状态的监控系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110144794A1 (en) * 2009-12-16 2011-06-16 Pro-Cut Licensing Company, Llc Tool bit monitoring for on-vehicle brake lathe
CN102601399A (zh) * 2012-03-30 2012-07-25 哈尔滨工业大学 多物理量实时监测加工状态的智能刀具
CN202411967U (zh) * 2011-12-13 2012-09-05 常州翰力信息科技有限公司 旋转刀具在线监测系统
CN102785127A (zh) * 2012-08-16 2012-11-21 北京理工大学 微小型机械加工切削力实时无线检测及控制系统
JP2013086196A (ja) * 2011-10-14 2013-05-13 Honda Motor Co Ltd 刃具診断装置
CN103111643A (zh) * 2013-03-12 2013-05-22 哈尔滨工业大学 一种无线感知切削状态的智能金刚石刀具

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110144794A1 (en) * 2009-12-16 2011-06-16 Pro-Cut Licensing Company, Llc Tool bit monitoring for on-vehicle brake lathe
JP2013086196A (ja) * 2011-10-14 2013-05-13 Honda Motor Co Ltd 刃具診断装置
CN202411967U (zh) * 2011-12-13 2012-09-05 常州翰力信息科技有限公司 旋转刀具在线监测系统
CN102601399A (zh) * 2012-03-30 2012-07-25 哈尔滨工业大学 多物理量实时监测加工状态的智能刀具
CN102785127A (zh) * 2012-08-16 2012-11-21 北京理工大学 微小型机械加工切削力实时无线检测及控制系统
CN103111643A (zh) * 2013-03-12 2013-05-22 哈尔滨工业大学 一种无线感知切削状态的智能金刚石刀具

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10363646B2 (en) 2016-05-05 2019-07-30 Caterpillar Inc. Manufacturing fixture system and associated process having a rest pad force sensor with closed loop feedback
CN112571152A (zh) * 2019-09-30 2021-03-30 江苏西格数据科技有限公司 一种用于检测刀具状态的监控系统
CN111693134A (zh) * 2020-06-19 2020-09-22 哈尔滨工业大学 量程可变的振动信号无线传感系统

Also Published As

Publication number Publication date
CN103331647B (zh) 2015-08-05

Similar Documents

Publication Publication Date Title
CN103331647B (zh) 面向切削过程监控的无线数据采集系统
CN202889340U (zh) 低功耗短距离无线数据传输模块
CN100357984C (zh) 一种无线抄表系统终端定量定时发送计量数据的方法
CN203503106U (zh) 一种家用智能机器人小车
CN103781196A (zh) 一种无线传感网监测数据收集系统
CN204761428U (zh) 一种基于wia-pa无线通信模块
CN207037377U (zh) 基于LoRa的农业大棚监测系统
CN203659188U (zh) 电动汽车远程监测装置
CN202178781U (zh) 一种无线Zigbee和工业以太网总线协议转换适配模块
CN202737861U (zh) 微功率无线通信装置
CN105206028A (zh) 基于物联网的信息采集装置及系统
CN203325188U (zh) 超低功耗温湿度无线采集终端
CN203590219U (zh) 电力线载波通信系统
Li et al. Research on robot network communication system in underground coal mine based on ZigBee
CN209543358U (zh) 一种射频识别读写器
CN202838663U (zh) 一种基于蓝牙的温度采集装置
CN211580132U (zh) 一种传感器采集信号的传输装置
CN205334509U (zh) 一种高频多通道读写器
CN206559656U (zh) 一种高精度无线传感器网络节点
CN205843914U (zh) 一种适用于无线测振的移动式点检仪
CN210348778U (zh) 一种力传感器采集信号的发送接收及监控装置
CN202854536U (zh) 无线传感数据采集系统
CN203942518U (zh) Mcu超再生接收芯片
CN204465547U (zh) 一种具有自检功能的无线电监测接收机
CN201196832Y (zh) 无线传输压力采集器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant