CN103323848A - Method and device for extracting height of ground artificial building/structure - Google Patents
Method and device for extracting height of ground artificial building/structure Download PDFInfo
- Publication number
- CN103323848A CN103323848A CN2013102431036A CN201310243103A CN103323848A CN 103323848 A CN103323848 A CN 103323848A CN 2013102431036 A CN2013102431036 A CN 2013102431036A CN 201310243103 A CN201310243103 A CN 201310243103A CN 103323848 A CN103323848 A CN 103323848A
- Authority
- CN
- China
- Prior art keywords
- phase
- coherence
- point
- caused
- candidate high
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 44
- 238000012937 correction Methods 0.000 claims abstract description 53
- 230000008569 process Effects 0.000 claims abstract description 15
- 230000002596 correlated effect Effects 0.000 claims description 40
- 238000012545 processing Methods 0.000 claims description 26
- 239000006185 dispersion Substances 0.000 claims description 22
- 230000002123 temporal effect Effects 0.000 claims description 22
- 230000001427 coherent effect Effects 0.000 claims description 20
- 238000001914 filtration Methods 0.000 claims description 9
- 230000003044 adaptive effect Effects 0.000 claims description 7
- 238000012876 topography Methods 0.000 claims description 7
- 239000000284 extract Substances 0.000 claims description 6
- 238000012216 screening Methods 0.000 claims description 5
- 238000005516 engineering process Methods 0.000 description 21
- 238000010586 diagram Methods 0.000 description 10
- 230000003287 optical effect Effects 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 5
- 238000005305 interferometry Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000000875 corresponding effect Effects 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000009897 systematic effect Effects 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000010835 comparative analysis Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Landscapes
- Radar Systems Or Details Thereof (AREA)
Abstract
本发明涉及一种提取地面人工建/构筑物高度的方法及装置,其中,方法包括:根据小基线原则组合干涉像对对覆盖同一地区的合成孔径雷达影像进行处理生成时间序列干涉图;根据合成孔径雷达影像的幅度信息筛选出候选高相干点;对时间序列干涉图进行处理获取时间序列差分干涉图,并提取出候选高相干点的差分干涉相位;滤除候选高相干点的差分干涉相位中的空间相关相位,获取候选高相干点的空间非相关相位;其中,空间非相关相位包括空间非相关DEM改正量和残差相位;对候选高相干点的差分干涉相位中的空间非相关相位进行处理,获取求解空间非相关DEM改正量,并从候选高相干点中选出最终高相干点;根据最终高相干点获取地面人工建/构筑物高度。
The invention relates to a method and device for extracting the height of artificial buildings/structures on the ground, wherein the method includes: combining interference image pairs according to the principle of small baseline to process synthetic aperture radar images covering the same area to generate a time series interferogram; The magnitude information of the radar image screens out candidate high-coherence points; the time-series interferogram is processed to obtain the time-series differential interferogram, and the differential interferometric phase of the candidate high-coherence points is extracted; Spatial correlation phase, to obtain the spatial non-correlation phase of the candidate high coherence point; wherein, the spatial non-correlation phase includes the spatial non-correlation DEM correction amount and the residual phase; process the spatial non-correlation phase in the differential interferometric phase of the candidate high coherence point , to obtain the correction value of the uncorrelated DEM in the solution space, and select the final high coherence point from the candidate high coherence points; obtain the height of the artificial building/structure on the ground according to the final high coherence point.
Description
技术领域technical field
本发明涉及合成孔径雷达影像领域,特别涉及一种利用时间序列InSAR技术提取地面人工建/构筑物高度的方法及装置。The invention relates to the field of synthetic aperture radar images, in particular to a method and device for extracting the height of artificial buildings/structures on the ground by using time series InSAR technology.
背景技术Background technique
人工建/构筑物的高度信息是进行城市规划、城市灾害风险预警与评估的重要数据,也是建设三维数字城市的重要基础数据。为获取建/构筑物的高度信息,可以采用全站仪、光学立体摄影测量或LiDAR技术。采用全站仪无法快速完成大范围的高度信息提取工作;光学立体摄影测量技术对数据获取的要求高,并且易受天气情况影响;LiDAR技术作为新兴的遥感技术能直接获取目标的高度信息,近年在获取城市区域的三维数字模型方面得到广泛应用,但成本较高。另外,采用光学立体摄影测量或LiDAR技术往往会漏掉具有较小投影面积地物(如路灯、电塔等)。The height information of artificial buildings/structures is important data for urban planning, early warning and assessment of urban disaster risks, and is also an important basic data for building a 3D digital city. In order to obtain the height information of buildings/structures, total stations, optical stereo photogrammetry or LiDAR technology can be used. The use of total stations cannot quickly complete large-scale height information extraction; optical stereo photogrammetry technology has high requirements for data acquisition and is easily affected by weather conditions; LiDAR technology, as an emerging remote sensing technology, can directly obtain the height information of targets. It is widely used in obtaining 3D digital models of urban areas, but the cost is relatively high. In addition, the use of optical stereo photogrammetry or LiDAR technology often misses objects with a small projected area (such as street lights, electric towers, etc.).
合成孔径雷达(SAR)技术是20世纪50年代发展起来的一项新的对地观测技术,它在距地表数百公里外的轨道上以一定的时间间隔发射电磁脉冲,并利用载体的运动在不同的位置上接收、记录地面物体的回波信号,从而形成高覆盖范围、高分辨率影像。SAR技术属于主动微波遥感技术,可以不受阳光、天气等影响,具有夜间成像与穿透云雾的能力。Synthetic Aperture Radar (SAR) technology is a new earth observation technology developed in the 1950s. It emits electromagnetic pulses at regular time intervals on an orbit hundreds of kilometers away from the earth's surface, and uses the movement of the carrier to The echo signals of ground objects are received and recorded at different positions to form high-coverage, high-resolution images. SAR technology belongs to active microwave remote sensing technology, which can not be affected by sunlight, weather, etc., and has the ability of imaging at night and penetrating clouds and fog.
20世纪70年代,合成孔径雷达干涉技术(Synthetic Aperture Radar Interferometry,InSAR)通过使用两景以略微不同的空间视角获取的同一地区的SAR影像形成干涉图,使得影像中包含的相位信息得到充分利用,为获取地面的数字高程模型(DEM,DigitalElevation Model)信息提供了一个全新思路。2000年,美国实施了航天飞机雷达地形测图(Shuttle Radar Topography Mapping,SRTM)计划,在主天线发射雷达波后,利用主天线和一根与其相距60米的副天线同时接收地表回波,获取具有固定基线的同时获取的两幅SAR影像形成干涉,实现了对全球数字高程模型的精确获取。现在,90米格网间隔的SRTMDEM可免费获取,在遥感及相关领域得到了广泛应用。利用InSAR技术获取的DEM反映的是地表连续的高程变化模型,而人工建/构筑物的高度是随机变化的,具有空间不连续性,因而难以采用传统的InSAR技术获取其高度信息。In the 1970s, Synthetic Aperture Radar Interferometry (InSAR) formed an interferogram by using two SAR images of the same area acquired with slightly different spatial perspectives, making full use of the phase information contained in the image. It provides a new idea for obtaining the digital elevation model (DEM, Digital Elevation Model) information of the ground. In 2000, the United States implemented the Shuttle Radar Topography Mapping (SRTM) program. After the main antenna transmits radar waves, it uses the main antenna and a secondary antenna 60 meters away from it to receive the surface echo at the same time. Two SAR images acquired at the same time with a fixed baseline form interference, which realizes the accurate acquisition of the global digital elevation model. Now, SRTMDEM with 90-meter grid spacing is freely available and has been widely used in remote sensing and related fields. The DEM obtained by using InSAR technology reflects the continuous elevation change model of the ground surface, while the height of artificial buildings/structures changes randomly and has spatial discontinuity, so it is difficult to obtain their height information by using traditional InSAR technology.
发明内容Contents of the invention
本发明的目的是针对上述问题,本发明提出一种提取地面人工建/构筑物高度的方法及装置,该技术方案克服了传统技术所产生的缺点,能够精确获取人工建/构筑物的随机变化的高度。The purpose of the present invention is to address the above problems. The present invention proposes a method and device for extracting the height of artificial buildings/structures on the ground. This technical solution overcomes the shortcomings of traditional techniques and can accurately obtain the height of random changes in artificial buildings/structures. .
为实现上述目的,本发明提出一种提取地面人工建/构筑物高度的方法,该方法包括:In order to achieve the above object, the present invention proposes a method for extracting the height of artificial buildings/structures on the ground, the method comprising:
根据小基线原则组合干涉像对对覆盖同一地区的合成孔径雷达影像进行处理生成时间序列干涉图;Combining interferometric image pairs according to the small baseline principle to process synthetic aperture radar images covering the same area to generate time series interferograms;
根据所述合成孔径雷达影像的幅度信息筛选出候选高相干点;Screening out candidate high-coherence points according to the amplitude information of the synthetic aperture radar image;
对所述时间序列干涉图进行处理获取时间序列差分干涉图,并提取出所述候选高相干点的差分干涉相位;Processing the time series interferogram to obtain a time series differential interferogram, and extracting the differential interferometric phase of the candidate high coherence point;
滤除所述候选高相干点的差分干涉相位中的空间相关相位,获取所述候选高相干点的差分干涉相位中的空间非相关相位;其中,所述空间非相关相位包括空间非相关DEM改正量和残差相位;Filter out the spatially correlated phase in the differential interferometric phase of the candidate high coherence point, and obtain the spatially uncorrelated phase in the differential interferometric phase of the candidate high coherence point; wherein, the spatially uncorrelated phase includes a spatially uncorrelated DEM correction amount and residual phase;
对所述候选高相干点的差分干涉相位中的空间非相关相位进行处理,获取求解空间非相关DEM改正量,并从所述候选高相干点中选出最终高相干点;Processing the spatially non-correlated phase in the differential interferometric phase of the candidate high-coherence points, obtaining the correction value of the spatially non-correlated DEM, and selecting the final high-coherence point from the candidate high-coherence points;
根据所述最终高相干点获取地面人工建/构筑物高度。The height of the artificial building/structure on the ground is obtained according to the final high coherence point.
可选的,在本发明一实施例中,所述根据所述合成孔径雷达影像的幅度信息筛选出候选高相干点的步骤包括:Optionally, in an embodiment of the present invention, the step of screening candidate high-coherence points according to the magnitude information of the synthetic aperture radar image includes:
根据合成孔径雷达影像幅度的均值与标准差,获取合成孔径雷达影像的幅度离差;Obtain the amplitude dispersion of the synthetic aperture radar image according to the mean value and standard deviation of the amplitude of the synthetic aperture radar image;
根据所述合成孔径雷达影像的幅度离差获取合成孔径雷达影像中的候选高相干点;其中,所述合成孔径雷达影像中一像素的幅度离差大于一设定阈值。则所述合成孔径雷达影像中一像素为候选高相干点。Acquiring candidate high coherence points in the synthetic aperture radar image according to the amplitude dispersion of the synthetic aperture radar image; wherein, the amplitude dispersion of a pixel in the synthetic aperture radar image is greater than a set threshold. Then a pixel in the SAR image is a candidate high coherence point.
可选的,在本发明一实施例中,所述对所述时间序列干涉图进行处理获取时间序列差分干涉图的步骤包括:Optionally, in an embodiment of the present invention, the step of processing the time-series interferogram to obtain a time-series differential interferogram includes:
获取所述合成孔径雷达影像覆盖的同一地区的数字高程模型;obtaining a digital elevation model of the same area covered by the synthetic aperture radar imagery;
根据所述数字高程模型,所述时间序列干涉图的干涉相位减去地形引起的干涉相位,得到时间序列差分干涉图。According to the digital elevation model, the interferometric phase of the time-series interferogram is subtracted from the interferometric phase caused by the topography to obtain a time-series differential interferogram.
可选的,在本发明一实施例中,所述候选高相干点的差分干涉相位包括地表变形引起的干涉相位、大气不均匀引起的干涉相位、轨道数据不精确造成的误差相位、空间非相关DEM改正量引起的相位和失相干噪音;其中,所述地表变形引起的干涉相位、大气不均匀引起的干涉相位、轨道数据不精确造成的误差相位、空间非相关DEM改正量引起的相位和失相干噪音均包括空间相关相位和空间非相关相位。Optionally, in an embodiment of the present invention, the differential interferometric phases of the candidate high coherence points include interferometric phases caused by surface deformation, interferometric phases caused by atmospheric inhomogeneity, error phases caused by inaccurate orbital data, spatial non-correlation Phase and decoherence noise caused by DEM corrections; among them, the interference phase caused by surface deformation, the interference phase caused by atmospheric inhomogeneity, the error phase caused by inaccurate orbital data, and the phase and loss caused by spatially non-correlated DEM corrections Coherent noise includes spatially correlated phase and spatially uncorrelated phase.
可选的,在本发明一实施例中,所述滤除所述候选高相干点的差分干涉相位中的空间相关相位的步骤进一步包括:Optionally, in an embodiment of the present invention, the step of filtering out the spatial correlation phase in the differential interferometric phase of the candidate high coherence point further includes:
根据所述地表变形引起的干涉相位、大气不均匀引起的干涉相位、轨道数据不精确造成的误差相位、空间非相关DEM改正量引起的相位和失相干噪音各自的特性,结合所述合成孔径雷达影像的分辨率进行自适应带通滤波,滤除所述候选高相干点的差分干涉相位中的空间相关相位。According to the respective characteristics of the interferometric phase caused by the surface deformation, the interferometric phase caused by atmospheric inhomogeneity, the error phase caused by the imprecise orbital data, the phase caused by the spatial non-correlated DEM correction and the decoherence noise, combined with the synthetic aperture radar Adaptive bandpass filtering is performed on the resolution of the image to filter out the spatial correlation phase in the differential interferometric phase of the candidate high coherence points.
可选的,在本发明一实施例中,所述对所述候选高相干点的差分干涉相位中的空间非相关相位进行处理的步骤包括:Optionally, in an embodiment of the present invention, the step of processing the spatially uncorrelated phase in the differential interferometric phase of the candidate high coherence point includes:
根据所述候选高相干点在N个时间序列干涉图中的干涉相位、所述候选高相干点的差分干涉相位空间相关项的估值以及所述残差相位得到时态相干因子;Obtain a temporal coherence factor according to the interferometric phases of the candidate high coherence points in the N time-series interferograms, the estimation of the spatial correlation items of the differential interferometric phases of the candidate high coherence points, and the residual phase;
根据所述时态相干因子判定出所述像素是否为最终高相干点;其中,当所述时态相干因子大于一阈值时,则所述像素为最终高相干点;Determine whether the pixel is the final high-coherence point according to the temporal coherence factor; wherein, when the temporal coherence factor is greater than a threshold, the pixel is the final high-coherence point;
通过空间搜索法获取所述最终高相干点的空间非相关DEM改正量。The spatial non-correlation DEM correction value of the final high coherence point is obtained through a space search method.
可选的,在本发明一实施例中,所述根据所述最终高相干点获取地面人工建/构筑物高度的步骤包括:Optionally, in an embodiment of the present invention, the step of obtaining the height of ground artificial buildings/structures according to the final high coherence point includes:
利用地理编码获取建/构筑物平面位置信息,再结合合成孔径雷达影像确定所述建/构筑物空间位置;Using geocoding to obtain the plane position information of the building/structure, and then combining the synthetic aperture radar image to determine the spatial position of the building/structure;
根据空间拓扑关系对所述建/构筑物的高相干点进行分类,识别出所述建/构筑物的顶部的高相干点,所述建/构筑物的顶部的高相干点的空间非相关DEM改正量即为所述建/构筑物的高度。According to the spatial topological relationship, the high coherence points of the building/structure are classified, and the high coherence points on the top of the building/structure are identified, and the spatially non-correlated DEM correction amount of the high coherence point on the top of the building/structure is is the height of the building/structure.
为实现上述目的,本发明还提出一种提取地面人工建/构筑物高度的装置,该装置包括:In order to achieve the above object, the present invention also proposes a device for extracting the height of artificial buildings/structures on the ground, which device includes:
时间序列干涉图获取单元,用于根据小基线原则组合干涉像对对覆盖同一地区的合成孔径雷达影像进行处理生成时间序列干涉图;The time series interferogram acquisition unit is used to combine the interference image pairs to process the synthetic aperture radar images covering the same area according to the small baseline principle to generate a time series interferogram;
候选高相干点获取单元,用于根据所述合成孔径雷达影像的幅度信息筛选出候选高相干点;A candidate high-coherence point acquisition unit, configured to filter out candidate high-coherence points according to the amplitude information of the synthetic aperture radar image;
时间序列干涉图处理单元,用于对所述时间序列干涉图进行处理获取时间序列差分干涉图,并提取出所述候选高相干点的干涉相位;A time-series interferogram processing unit, configured to process the time-series interferogram to obtain a time-series difference interferogram, and extract the interferometric phase of the candidate high-coherence point;
候选高相干点处理单元,用于滤除所述候选高相干点的差分干涉相位中的空间相关相位,获取所述候选高相干点的差分干涉相位中的空间非相关相位;其中,所述空间非相关相位包括空间非相关DEM改正量和残差相位;A candidate high-coherence point processing unit, configured to filter out a spatially correlated phase in the differential interferometric phase of the candidate high-coherence point, and obtain a spatially uncorrelated phase in the differential interferometric phase of the candidate high-coherence point; wherein, the spatial Non-correlated phase includes spatially non-correlated DEM corrections and residual phase;
最终高相干点确定单元,用于对所述候选高相干点的差分干涉相位中的空间非相关相位进行处理,获取求解空间非相关DEM改正量,并从所述候选高相干点中选出最终高相干点;The final high-coherence point determination unit is used to process the spatially non-correlated phase in the differential interferometric phase of the candidate high-coherence points, obtain and solve the spatially non-correlated DEM correction value, and select the final high-coherence point from the candidate High coherence points;
地面人工建/构筑物高度获取单元,用于根据所述最终高相干点获取地面人工建/构筑物高度。The ground artificial building/structure height acquiring unit is configured to acquire the ground artificial building/structure height according to the final high coherence point.
可选的,在本发明一实施例中,所述候选高相干点获取单元包括:Optionally, in an embodiment of the present invention, the candidate high coherence point acquisition unit includes:
幅度离差获取模块,用于根据合成孔径雷达影像幅度的均值与标准差,获取合成孔径雷达影像的幅度离差;The amplitude dispersion acquisition module is used to obtain the amplitude dispersion of the synthetic aperture radar image according to the mean value and standard deviation of the amplitude of the synthetic aperture radar image;
判断候选高相干点模块,用于根据所述合成孔径雷达影像的幅度离差获取合成孔径雷达影像中的候选高相干点;其中,所述合成孔径雷达影像中一像素的幅度离差大于一设定阈值。则该点为候选高相干点。The module for judging candidate high coherence points is used to obtain candidate high coherence points in the synthetic aperture radar image according to the amplitude dispersion of the synthetic aperture radar image; wherein, the amplitude dispersion of a pixel in the synthetic aperture radar image is greater than a set Set the threshold. Then this point is a candidate high coherence point.
可选的,在本发明一实施例中,所述时间序列干涉图处理单元包括:Optionally, in an embodiment of the present invention, the time series interferogram processing unit includes:
建立数字高程模型模块,用于获取所述合成孔径雷达影像覆盖的同一地区的数字高程模型;Establishing a digital elevation model module for obtaining a digital elevation model of the same area covered by the synthetic aperture radar image;
获取时间序列差分干涉图模块,用于根据所述数字高程模型,所述时间序列干涉图的干涉相位减去地形引起的干涉相位,得到时间序列差分干涉图。The module for obtaining a time-series differential interferogram is used to obtain a time-series differential interferogram by subtracting an interference phase caused by topography from the interferometric phase of the time-series interferogram according to the digital elevation model.
可选的,在本发明一实施例中,所述时间序列干涉图处理单元获取的候选高相干点的差分干涉相位包括地表变形引起的干涉相位、大气不均匀引起的干涉相位、轨道数据不精确造成的误差相位、DEM改正量引起的相位和失相干噪音;其中,所述地表变形引起的干涉相位、大气不均匀引起的干涉相位、轨道数据不精确造成的误差相位、DEM改正量引起的相位和失相干噪音均包括空间相关相位和空间非相关相位。Optionally, in an embodiment of the present invention, the differential interferometric phases of the candidate high-coherence points acquired by the time series interferogram processing unit include interferometric phases caused by surface deformation, interferometric phases caused by atmospheric inhomogeneity, and inaccurate orbital data. The phase error caused by DEM correction and decoherence noise; among them, the interference phase caused by surface deformation, the interference phase caused by atmospheric inhomogeneity, the error phase caused by inaccurate orbital data, and the phase caused by DEM correction and decoherent noise both include spatially correlated phase and spatially uncorrelated phase.
可选的,在本发明一实施例中,所述候选高相干点处理单元进一步用于根据所述地表变形引起的干涉相位、大气不均匀引起的干涉相位、轨道数据不精确造成的误差相位、DEM改正量引起的相位和失相干噪音各自的特性,结合所述合成孔径雷达影像的分辨率进行自适应带通滤波,滤除所述候选高相干点的差分干涉相位中的空间相关相位。Optionally, in an embodiment of the present invention, the candidate high coherence point processing unit is further configured to use the interferometric phase caused by the surface deformation, the interferometric phase caused by atmospheric inhomogeneity, the error phase caused by inaccurate orbit data, The respective characteristics of the phase and decoherence noise caused by the DEM correction amount are combined with the resolution of the synthetic aperture radar image to perform adaptive bandpass filtering to filter out the spatial correlation phase in the differential interferometric phase of the candidate high coherence point.
可选的,在本发明一实施例中,所述最终高相干点确定单元包括:Optionally, in an embodiment of the present invention, the final high coherence point determination unit includes:
时态相干因子获取模块,用于根据候选高相干点在N个时间序列干涉图中的干涉相位、所述候选高相干点的差分干涉相位空间相关项的估值以及残差相位得到时态相干因子;The temporal coherence factor acquisition module is used to obtain the temporal coherence according to the interference phase of the candidate high coherence point in the N time series interferograms, the estimation of the differential interferometric phase space correlation item of the candidate high coherence point and the residual phase factor;
最终高相干点判定模块,用于根据所述时态相干因子判定出所述候选高相干点是否为最终高相干点;其中,当所述时态相干因子大于一阈值时,则所述候选高相干点为最终高相干点;A final high-coherence point determination module, configured to determine whether the candidate high-coherence point is the final high-coherence point according to the temporal coherence factor; wherein, when the temporal coherence factor is greater than a threshold, the candidate high-coherence point The coherent point is the final high coherent point;
空间搜索模块,用于通过空间搜索法获取所述最终高相干点的空间非相关DEM改正量。A space search module, configured to obtain the spatially uncorrelated DEM correction value of the final highly coherent point through a space search method.
可选的,在本发明一实施例中,所述地面人工建/构筑物高度获取单元包括:Optionally, in an embodiment of the present invention, the acquisition unit for the height of artificial buildings/structures on the ground includes:
建/构筑物空间位置信息获取模块,用于利用地理编码获取建/构筑物平面位置信息,再结合合成孔径雷达影像确定所述建/构筑物空间位置;A building/structure spatial location information acquisition module, used to obtain the building/structure plane location information by using geocoding, and then combine the synthetic aperture radar image to determine the building/structure spatial location;
建/构筑物的高度获取模块,用于根据空间拓扑关系对所述建/构筑物的高相干点进行分类,识别出所述建/构筑物的顶部的高相干点,所述建/构筑物的顶部的高相干点的空间非相关DEM改正量即为所述建/构筑物的高度。The height acquisition module of the building/structure is used to classify the high coherence points of the building/structure according to the spatial topology relationship, identify the high coherence point on the top of the building/structure, and the height of the top of the building/structure The spatially uncorrelated DEM correction amount of the coherent point is the height of the building/structure.
上述技术方案具有如下有益效果:The above technical scheme has the following beneficial effects:
(1)本技术方案在提取地物高度的同时还可以获得其历史形变信息;(1) This technical solution can also obtain its historical deformation information while extracting the height of ground objects;
(2)本技术方案能提取某些具有较小投影面积地物(如路灯、电塔等)的高度信息,这些地物由于投影面积较小,采用光学立体摄影测量或LiDAR技术往往会漏掉这些地物;(2) This technical solution can extract the height information of some ground objects with small projection area (such as street lamps, electric towers, etc.), which are often missed by optical stereo photogrammetry or LiDAR technology due to their small projection area these features;
(3)本技术方案不受天气的影响,具有全天时、全天候、广覆盖等优势;(3) This technical solution is not affected by the weather, and has the advantages of all-day, all-weather, and wide coverage;
(4)本技术方案在精确获取人工建/构筑物的高度信息后,可以获取该区域的数字表面模型(Digital Surface Model,DSM)。(4) This technical solution can obtain the digital surface model (Digital Surface Model, DSM) of the area after accurately obtaining the height information of the artificial building/structure.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments of the present invention. Those skilled in the art can also obtain other drawings based on these drawings without creative work.
图1为本发明提出的一种提取地面人工建/构筑物高度的方法流程图;Fig. 1 is a kind of flow chart of the method for extracting ground artificial building/structure height that the present invention proposes;
图2为本发明提出的一种提取地面人工建/构筑物高度的装置结构图;Fig. 2 is a kind of device structural drawing that extracts the height of artificial building/structure on the ground that the present invention proposes;
图3为本发明提出的一种提取地面人工建/构筑物高度的装置中候选高相干点获取单元结构图;Fig. 3 is a structure diagram of a candidate high coherence point acquisition unit in a device for extracting the height of ground artificial buildings/structures proposed by the present invention;
图4为本发明提出的一种提取地面人工建/构筑物高度的装置中时间序列干涉图处理单元结构图;Fig. 4 is a structural diagram of a time-series interferogram processing unit in a device for extracting the height of ground artificial buildings/structures proposed by the present invention;
图5为本发明提出的一种提取地面人工建/构筑物高度的装置中最终高相干点确定单元结构图;Fig. 5 is a final high coherence point determination unit structure diagram in a device for extracting the height of ground artificial buildings/structures proposed by the present invention;
图6为本发明提出的一种提取地面人工建/构筑物高度的装置中地面人工建/构筑物高度获取单元结构图;Fig. 6 is a structure diagram of the acquisition unit for the height of ground artificial buildings/structures in a device for extracting the height of artificial buildings/structures proposed by the present invention;
图7为本发明技术方案的实施例流程图;Fig. 7 is the flow chart of the embodiment of the technical solution of the present invention;
图8为本发明实施例通过时间序列InSAR分析提取的高相干点目标;FIG. 8 is a high-coherence point target extracted through time series InSAR analysis according to an embodiment of the present invention;
图9为本发明实施例得到基于时间序列InSAR分析提取的全部高相干点目标高度图;FIG. 9 is a height map of all highly coherent point targets extracted based on time series InSAR analysis according to an embodiment of the present invention;
图10为本发明实施例得到的区域内京津线公路过永定新河大桥附近建筑物高度反演结果;Fig. 10 is the inversion result of the building height near the Beijing-Tianjin line highway passing the Yongding Xinhe Bridge in the region obtained by the embodiment of the present invention;
图11为本发明实施例得到的区域内局部天津地铁1号线沿线瑞景家园小区建筑物高度反演结果;Fig. 11 is the inversion result of the height of buildings in the Ruijingjiayuan community along the Tianjin Metro Line 1 in the region obtained by the embodiment of the present invention;
图12为本发明实施例在区域内选取的9个用于精度验证的局部区域分布;Fig. 12 is the distribution of 9 local regions selected for accuracy verification in the region according to the embodiment of the present invention;
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the drawings in the embodiments of the present invention. Apparently, the described embodiments are only some of the embodiments of the present invention, but not all of them. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.
在20世纪80年代,研究人员发现可以通过重复轨道的合成孔径雷达差分干涉测量技术(Differential Synthetic Aperture Radar Interferometry,DInSAR),即通过不同时间获取的同一地区的两幅SAR影像形成干涉,然后从干涉相位中减去地形所产生的相位,从而获取关于地表的形变信息。为了克服DInSAR技术易受时间失相干、空间失相干以及大气干扰等因素影响的限制,研究人员发展了时间序列InSAR技术,该技术通过对在时间序列上能够保持稳定散射特性的点目标进行分析,以此克服了DInSAR技术的一些限制因素。之后,研究人员基于稳定散射体的思想又陆续提出了多种时间序列InSAR技术分析方法,如:小基线集法(small baseline subsets,SBAS)、相干目标法(coherent target,CT)以及基于非线性形变模型的长时间序列DInSAR分析方法。由于城市区域拥有密集的天然点目标,该技术在城市的沉降监测方面已逐步实现工程化应用。In the 1980s, researchers discovered that the differential synthetic aperture radar interferometry (Differential Synthetic Aperture Radar Interferometry, DInSAR) of repeated orbits can be used, that is, two SAR images of the same area acquired at different times form interference, and then from the interference The phase generated by the terrain is subtracted from the phase to obtain deformation information about the surface. In order to overcome the limitation that DInSAR technology is susceptible to factors such as time decoherence, space decoherence, and atmospheric interference, researchers have developed time series InSAR technology, which analyzes point targets that can maintain stable scattering characteristics in time series, In this way, some limiting factors of DInSAR technology are overcome. Afterwards, based on the idea of stable scatterers, researchers successively proposed a variety of time series InSAR technical analysis methods, such as: small baseline subsets (SBAS), coherent target (CT) and based on nonlinear DInSAR analysis method for long time series of deformation models. Since urban areas have dense natural point targets, this technology has been gradually applied in engineering applications in urban settlement monitoring.
时间序列InSAR技术除了可应用于目标的形变监测外,还可根据分离出的地形误差相位对目标的高度进行精确估计。城市区域的点目标绝大部分分布于建筑物顶部及角边、桥梁、路灯、输电塔、通讯塔等处。这些点目标上的地形误差包含空间相关项与空间非相关项。其中空间相关项主要反映所用数字高程模型(DEM)的系统误差,而空间非相关项主要代表点目标本身相对于地面的高度,如建筑物的高度。因此,除了探测地面目标的形变信息之外,时间序列InSAR技术也可用于研究地面目标的高度信息。并且,现在合成孔径雷达卫星的空间分辨率愈来愈高,使得SAR影像对地物的刻画更为细致,同时也大大增加了提取的点目标的密度。因此,利用基于高分辨率SAR影像的时间序列InSAR技术可以精确地提取人工建/构筑物的高度信息。The time series InSAR technology can not only be applied to the deformation monitoring of the target, but also accurately estimate the height of the target according to the phase of the separated terrain error. Most of the point targets in urban areas are distributed on the tops and corners of buildings, bridges, street lights, transmission towers, communication towers, etc. Terrain errors on these point targets contain both spatially correlated and spatially uncorrelated terms. Among them, the space-related items mainly reflect the systematic error of the digital elevation model (DEM) used, while the space-independent items mainly represent the height of the point target itself relative to the ground, such as the height of buildings. Therefore, in addition to detecting the deformation information of ground targets, time series InSAR technology can also be used to study the height information of ground targets. Moreover, the spatial resolution of synthetic aperture radar satellites is getting higher and higher, which makes the SAR images more detailed in describing the ground objects, and also greatly increases the density of the extracted point targets. Therefore, the height information of artificial buildings/structures can be extracted accurately by using the time series InSAR technology based on high-resolution SAR images.
如图1所示,为本发明提出的一种提取地面人工建/构筑物高度的方法流程图之一。该方法包括:As shown in FIG. 1 , it is one of the flow charts of a method for extracting the height of ground artificial buildings/structures proposed by the present invention. The method includes:
步骤101):根据小基线原则组合干涉像对对覆盖同一地区的合成孔径雷达影像进行处理生成时间序列干涉图;Step 101): Combining the interferometric image pairs according to the small baseline principle to process the synthetic aperture radar images covering the same area to generate a time series interferogram;
步骤102):根据所述合成孔径雷达影像的幅度信息筛选出候选高相干点;Step 102): Screening out candidate high-coherence points according to the magnitude information of the SAR image;
步骤103):对所述时间序列干涉图进行处理获取时间序列差分干涉图,并提取出所述候选高相干点的差分干涉相位;Step 103): Process the time series interferogram to obtain a time series differential interferogram, and extract the differential interferometric phase of the candidate high coherence point;
步骤104):滤除所述候选高相干点的差分干涉相位中的空间相关相位,获取所述候选高相干点的差分干涉相位中的空间非相关相位;其中,所述空间非相关相位包括空间非相关DEM改正量和残差相位;Step 104): Filter out the spatially correlated phase in the differential interferometric phase of the candidate high coherence point, and obtain the spatially uncorrelated phase in the differential interferometric phase of the candidate high coherence point; wherein, the spatially uncorrelated phase includes spatial Uncorrelated DEM corrections and residual phases;
步骤105):对所述候选高相干点的差分干涉相位中的空间非相关相位进行处理,获取求解空间非相关DEM改正量,并从所述候选高相干点中选出最终高相干点;Step 105): Processing the spatially non-correlated phase in the differential interferometric phase of the candidate high-coherence points, obtaining the correction value of the spatially non-correlated DEM, and selecting the final high-coherence point from the candidate high-coherence points;
步骤106):根据所述最终高相干点获取地面人工建/构筑物高度。Step 106): Acquiring the height of the artificial building/structure on the ground according to the final high coherence point.
上述步骤101和步骤102可以不定性分先后顺序,依然能够解决现有技术存在的问题。The
优选地,所述步骤102进一步包括:Preferably, said
步骤1021):根据合成孔径雷达影像幅度的均值与标准差,获取合成孔径雷达影像的幅度离差;Step 1021): According to the mean value and standard deviation of the amplitude of the synthetic aperture radar image, obtain the amplitude dispersion of the synthetic aperture radar image;
步骤1022):根据所述合成孔径雷达影像的幅度离差获取合成孔径雷达影像中的候选高相干点;其中,所述合成孔径雷达影像中一像素的幅度离差大于一设定阈值。则所述合成孔径雷达影像中一像素为候选高相干点。Step 1022): Obtain candidate high-coherence points in the SAR image according to the amplitude dispersion of the SAR image; wherein, the amplitude dispersion of a pixel in the SAR image is greater than a set threshold. Then a pixel in the SAR image is a candidate high coherence point.
更进一步地,所述步骤103进一步包括:Furthermore, the
步骤1031):获取所述合成孔径雷达影像覆盖的同一地区的数字高程模型;Step 1031): Obtaining a digital elevation model of the same area covered by the SAR image;
步骤1032):根据所述数字高程模型,所述时间序列干涉图的干涉相位减去地形引起的干涉相位,得到时间序列差分干涉图。Step 1032): According to the digital elevation model, the interferometric phase of the time-series interferogram is subtracted from the interferometric phase caused by the topography to obtain a time-series differential interferogram.
具体地,所述时间序列干涉图中候选高相干点的差分干涉相位包括地表变形引起的干涉相位、大气不均匀引起的干涉相位、轨道数据不精确造成的误差相位、DEM改正量引起的相位和失相干噪音;其中,所述地表变形引起的干涉相位、大气不均匀引起的干涉相位、轨道数据不精确造成的误差相位、DEM改正量引起的相位和失相干噪音均包括空间相关相位和空间非相关相位。Specifically, the differential interferometric phases of candidate high-coherence points in the time series interferogram include interferometric phases caused by surface deformation, interferometric phases caused by atmospheric inhomogeneity, error phases caused by inaccurate orbital data, phases caused by DEM corrections, and Decoherence noise; wherein, the interferometric phase caused by surface deformation, the interferometric phase caused by atmospheric inhomogeneity, the error phase caused by inaccurate orbital data, the phase caused by DEM correction and the decoherent noise all include spatially correlated phase and spatially incoherent relative phase.
可选地,所述步骤104进一步包括:根据所述地表变形引起的干涉相位、大气不均匀引起的干涉相位、轨道数据不精确造成的误差相位、DEM改正量引起的相位和失相干噪音各自的特性,结合所述合成孔径雷达影像的分辨率进行自适应带通滤波,滤除所述候选高相干点的差分干涉相位中的空间相关相位。Optionally, the
优选地,所述步骤105)包括:Preferably, the step 105) includes:
步骤1051):根据所述候选高相干点在N个时间序列干涉图中的干涉相位、所述候选高相干点的差分干涉相位空间相关项的估值以及残差相位得到时态相干因子;Step 1051): Obtain the temporal coherence factor according to the interferometric phases of the candidate high coherence points in the N time series interferograms, the estimation of the spatial correlation items of the differential interferometric phases of the candidate high coherence points, and the residual phase;
步骤1052):根据所述时态相干因子判定出所述像素是否为最终高相干点;其中,当所述时态相干因子大于一阈值时,则所述像素为最终高相干点;Step 1052): Determine whether the pixel is the final high-coherence point according to the temporal coherence factor; wherein, when the temporal coherence factor is greater than a threshold, the pixel is the final high-coherence point;
步骤1053):通过空间搜索法获取所述最终高相干点的空间非相关DEM改正量。Step 1053): Obtain the spatially uncorrelated DEM correction value of the final highly coherent point through a space search method.
优选地,所述步骤106具体包括:Preferably, the
步骤1061):利用地理编码获取建/构筑物平面位置信息,再结合合成孔径雷达影像确定所述建/构筑物空间位置;Step 1061): Using geocoding to obtain the plane position information of the building/structure, and then combining the synthetic aperture radar image to determine the spatial position of the building/structure;
步骤1062):根据空间拓扑关系对所述建/构筑物的高相干点进行分类,识别出所述建/构筑物的顶部的高相干点,所述建/构筑物的顶部的高相干点的空间非相关DEM改正量即为所述建/构筑物的高度。Step 1062): Classify the high coherence points of the building/structure according to the spatial topological relationship, identify the high coherence points on the top of the building/structure, and the spatial non-correlation of the high coherence points on the top of the building/structure The DEM correction amount is the height of the building/structure.
如图2所示,为本发明提出的一种提取地面人工建/构筑物高度的装置结构图。该装置包括:As shown in FIG. 2 , it is a structural diagram of a device for extracting the height of ground artificial buildings/structures proposed by the present invention. The unit includes:
时间序列干涉图获取单元201,用于根据小基线原则组合干涉像对对覆盖同一地区的合成孔径雷达影像进行处理生成时间序列干涉图;The time series
候选高相干点获取单元202,用于根据所述合成孔径雷达影像的幅度信息筛选出候选高相干点;A candidate high coherence
时间序列干涉图处理单元203,用于对所述时间序列干涉图进行处理获取时间序列差分干涉图,并提取出所述候选高相干点的差分干涉相位;A time-series
候选高相干点处理单元204,用于滤除所述候选高相干点的差分干涉相位中的空间相关相位,获取所述候选高相干点的差分干涉相位中的空间非相关相位;其中,所述空间非相关相位包括空间非相关DEM改正量和残差相位;The candidate high coherence
最终高相干点确定单元205,用于对所述候选高相干点的差分干涉相位中的空间非相关相位进行处理,获取求解空间非相关DEM改正量,并从所述候选高相干点中选出最终高相干点;The final high-coherence
地面人工建/构筑物高度获取单元206,用于根据所述最终高相干点获取地面人工建/构筑物高度。The ground artificial building/structure
如图3所示,为本发明提出的一种提取地面人工建/构筑物高度的装置中候选高相干点获取单元结构图。所述候选高相干点获取单元202包括:As shown in FIG. 3 , it is a structure diagram of a candidate high coherence point acquisition unit in a device for extracting the height of ground artificial buildings/structures proposed by the present invention. The candidate high coherence
幅度离差获取模块2021,用于根据合成孔径雷达影像幅度的均值与标准差,获取合成孔径雷达影像的幅度离差;The amplitude
判断候选高相干点模块2022,用于根据所述合成孔径雷达影像的幅度离差获取合成孔径雷达影像中的候选高相干点;其中,所述合成孔径雷达影像中一像素的幅度离差大于一设定阈值。则该点为候选高相干点。The judging candidate high
如图4所示,为本发明提出的一种提取地面人工建/构筑物高度的装置中时间序列干涉图处理单元结构图。所述时间序列干涉图处理单元203包括:As shown in FIG. 4 , it is a structural diagram of a time-series interferogram processing unit in a device for extracting the height of artificial buildings/structures on the ground proposed by the present invention. The time series
建立数字高程模型模块2031,用于获取所述合成孔径雷达影像覆盖的同一地区的数字高程模型;Establish a digital
获取时间序列差分干涉图模块2032,用于根据所述数字高程模型,所述时间序列干涉图的干涉相位减去地形引起的干涉相位,得到时间序列差分干涉图。Obtaining a time-series
所述时间序列干涉图处理单元203获取的候选高相干点的差分干涉相位包括地表变形引起的干涉相位、大气不均匀引起的干涉相位、轨道数据不精确造成的误差相位、DEM改正量引起的相位和失相干噪音;其中,所述地表变形引起的干涉相位、大气不均匀引起的干涉相位、轨道数据不精确造成的误差相位、DEM改正量引起的相位和失相干噪音均包括空间相关相位和空间非相关相位。The differential interferometric phases of candidate high-coherence points acquired by the time series
更进一步地,所述候选高相干点处理单元204进一步用于根据所述地表变形引起的干涉相位、大气不均匀引起的干涉相位、轨道数据不精确造成的误差相位、DEM改正量引起的相位和失相干噪音各自的特性,结合所述合成孔径雷达影像的分辨率进行自适应带通滤波,滤除所述候选高相干点的差分干涉相位中的空间相关相位。Furthermore, the candidate high coherence
如图5所示,为本发明提出的一种提取地面人工建/构筑物高度的装置中最终高相干点确定单元结构图。所述最终高相干点确定单元205包括:As shown in FIG. 5 , it is a final high-coherence point determination unit structure diagram in a device for extracting the height of ground artificial buildings/structures proposed by the present invention. The final high coherence
时态相干因子获取模块2051,用于根据候选高相干点在N个时间序列干涉图中的干涉相位、所述候选高相干点的差分干涉相位空间相关项的估值以及残差相位得到时态相干因子;The temporal coherence
最终高相干点判定模块2052,用于根据所述时态相干因子判定出所述候选高相干点是否为最终高相干点;其中,当所述时态相干因子大于一阈值时,则所述候选高相干点为最终高相干点;The final high coherence
空间搜索模块2053,用于通过空间搜索法获取所述最终高相干点的空间非相关DEM改正量。The
如图6所示,为本发明提出的一种提取地面人工建/构筑物高度的装置中地面人工建/构筑物高度获取单元结构图。所述地面人工建/构筑物高度获取单元206包括:As shown in FIG. 6 , it is a structure diagram of the acquisition unit for the height of ground artificial buildings/structures in a device for extracting the height of artificial buildings/structures on the ground proposed by the present invention. The ground artificial building/structure
建/构筑物空间位置信息获取模块2061,用于利用地理编码获取建/构筑物平面位置信息,再结合合成孔径雷达影像确定所述建/构筑物空间位置;The building/structure spatial location
建/构筑物的高度获取模块2062,用于根据空间拓扑关系对所述建/构筑物的高相干点进行分类,识别出所述建/构筑物的顶部的高相干点,所述建/构筑物的顶部的高相干点的空间非相关DEM改正量即为所述建/构筑物的高度。The building/structure
实施例:Example:
如图7所示,为本发明技术方案的实施例流程图。技术方案步骤包括:As shown in Fig. 7, it is a flowchart of an embodiment of the technical solution of the present invention. The technical solution steps include:
步骤A:根据小基线原则组合干涉像对,生成差分干涉图。Step A: Combine the interference image pairs according to the small baseline principle to generate a differential interferogram.
获取覆盖同一地区的10景以上高分辨率SAR影像,根据小基线干涉对选取原则,即两景SAR影像的空间基线小于设定的阈值,同时获取的时间间隔小于设定的阈值。将所有满足这样条件的两景影像形成干涉图。然后利用已有DEM(通常可以利用免费获取的SRTM DEM)去除每一个干涉图中的地形相位得到差分干涉图,则第i个差分干涉图上第x个像素的差分干涉相位可表示为:Acquire more than 10 scenes of high-resolution SAR images covering the same area, according to the principle of small baseline interference pair selection, that is, the spatial baseline of the two SAR images is less than the set threshold, and the time interval of acquisition is less than the set threshold. All the images of the two scenes satisfying these conditions are formed into an interferogram. Then use the existing DEM (usually you can use the free SRTM DEM) to remove the topographic phase in each interferogram to obtain a differential interferogram, then the differential interferometric phase of the xth pixel on the ith differential interferogram Can be expressed as:
式中,φD,x,i为地表变形引起的干涉相位;φA,x,i为大气不均匀引起的干涉相位;ΔφS,x,i为轨道数据不精确造成的误差相位;Δφθ,x,i为DEM误差(即DEM改正量Δhx)引起的相位;φN,x,i为失相干噪音。In the formula, φ D,x,i is the interference phase caused by surface deformation; φ A,x,i is the interference phase caused by atmospheric inhomogeneity; Δφ S,x,i is the error phase caused by inaccurate orbit data; Δφ θ ,x,i is the phase caused by the DEM error (that is, the DEM correction Δh x ); φ N,x,i is the decoherence noise.
在一定的空间距离内,φD,x,i、φA,x,i与ΔφS,x,i具有较强的空间相关特性,φN,x,i表现为随机噪声。由DEM改正量Δhx引起的Δφθ,x,i可分为空间相关项与空间非相关项空间相关项反映DEM的系统误差空间非相关相位与空间非相关DEM改正量线性相关,反映的是像素x相对于参考DEM的高度。因此,公式(1)可改写为:Within a certain spatial distance, φ D,x,i , φ A,x,i and Δφ S,x,i have strong spatial correlation characteristics, and φ N,x,i behaves as random noise. Δφ θ,x,i caused by the DEM correction Δh x can be divided into spatially dependent terms unrelated to space Spatial related items Reflect the systematic error of DEM spatially uncorrelated phase Corrections for space-independent DEM Linear correlation, reflecting the height of pixel x relative to the reference DEM. Therefore, formula (1) can be rewritten as:
式中,表示的空间相关项。即差分干涉图中每个像素的差分干涉相位均为空间相关相位和空间非相关相位组成。In the formula, express space-related items. That is, the differential interferometric phase of each pixel in the differential interferogram is composed of a spatially correlated phase and a spatially uncorrelated phase.
步骤B:基于幅度信息筛选高相关候选点。Step B: Screen highly correlated candidate points based on amplitude information.
基于高分辨率SAR影像的振幅信息的算法快捷简单,因此可以通过设置宽松的阈值,尽可能多的选取出高相关候选点。这些高相关候选点可以在后续的步骤中利用相位信息进行精化处理。高分辨率SAR影像幅度离差DA定义为:The algorithm based on the amplitude information of high-resolution SAR images is fast and simple, so by setting a loose threshold, as many high-correlation candidate points as possible can be selected. These highly correlated candidate points can be refined using phase information in subsequent steps. The amplitude dispersion D A of high resolution SAR image is defined as:
DA≈σA/μA (3)D A ≈σ A /μ A (3)
式中,σA与μA分别表示高分辨率SAR影像的幅度的均值与标准差。In the formula, σ A and μ A represent the mean and standard deviation of the amplitude of the high-resolution SAR image, respectively.
步骤C:分离空间相关相位。Step C: Separating the spatially correlated phases.
根据式(1)中各相位的特性,结合SAR影像的分辨率设定空间格网大小,在每个格网中按照式(4)使用自适应带通滤波器滤除式(1)中的空间相关相位 According to the characteristics of each phase in formula (1), the size of the spatial grid is set in combination with the resolution of the SAR image, and in each grid, an adaptive bandpass filter is used to filter out the phases in formula (1) according to formula (4). spatial correlation phase
式中,表示带通滤波得到的空间相关项的估值,空间相关项残余相位δx,i很小,可以与φN,x,i并入为残差相位Δφres,x,i。并且与空间非相关DEM改正量的关系记为:In the formula, Indicates the spatial correlation term obtained by bandpass filtering The estimation of the spatial correlation term residual phase δ x,i is very small, and can be combined with φ N,x,i as the residual phase Δφ res,x,i . and Corrections for space-independent DEM The relationship is recorded as:
式中,系数a由该点的斜距、入射角以及雷达波长决定,是一个已知量。B⊥,x,i是第x个像素在第i幅干涉图中的垂直基线距。In the formula, the coefficient a is determined by the slant distance, incident angle and radar wavelength of the point, and is a known quantity. B ⊥,x,i is the vertical baseline distance of the xth pixel in the i-th interferogram.
步骤D:采用空间搜索法求解空间非相关DEM改正量,并确定最终的高相干点。Step D: Use the space search method to solve the correction value of the spatially non-correlated DEM, and determine the final high-coherence point.
对于高相干点目标,其需要在时间序列上保持相位稳定,也就是需要残差相位Δφres,x,i的绝对值不超过π,同时在时间序列干涉图上保持稳定。因此,以像素x为例,像素x为候选高相干点,可以通过分析像素x的残差相位来识别并提取最终的高相干点目标。定义时态相干因子γx作为像素x在N个时间序列干涉图上保持相位稳定性的指标,时态相干因子γx根据式(6)获取;For high-coherence point targets, it needs to maintain phase stability in time series, that is, the absolute value of the residual phase Δφ res,x,i needs not to exceed π, while maintaining stability in the time series interferogram. Therefore, taking pixel x as an example, pixel x is a candidate high coherence point, and the final high coherence point target can be identified and extracted by analyzing the residual phase of pixel x. The temporal coherence factor γ x is defined as an index for pixel x to maintain phase stability on N time series interferograms, and the temporal coherence factor γ x is obtained according to formula (6);
由于残差相位Δφres,x,i主要由噪声支配,所以γx可以反映像素x受噪声污染程度,并且γx越大,说明该像素的质量越高,因此可以定义γx作为判断像素x是否为高相干点目标的准则。由于相位的缠绕使得式(6)是一个不定方程,没有确定的解。但是当|Δφres,x,i|<π时,可以采用空间搜索法进行求解。同时考虑到与空间非相关DEM改正量线性相关,因此可以利用空间搜索法估计出同时使得时态相干因子γx取得最大值。当γx大于设定的阈值时,即可认为像素x为最终的高相干点目标,同时也获得了该高相干点目标对应的DEM空间非相关改正量的最优解。Since the residual phase Δφ res,x,i is mainly dominated by noise, γ x can reflect the degree of noise pollution of the pixel x, and the larger the γ x , the higher the quality of the pixel, so γ x can be defined as the judgment pixel x Criteria for whether the target is a highly coherent point. Due to the winding of the phase, the formula (6) is an indeterminate equation, and there is no definite solution. But when |Δφ res,x,i |<π, the space search method can be used to solve it. consider at the same time Corrections for space-independent DEM linear correlation, so the spatial search method can be used to estimate At the same time, the temporal coherence factor γ x is maximized. When γ x is greater than the set threshold, the pixel x can be considered as the final high-coherence point target, and the DEM spatial non-correlation correction corresponding to the high-coherence point target is also obtained the optimal solution of .
步骤E:高相干点目标空间位置分类,提取建筑物高度。Step E: Classify the spatial position of the highly coherent point target, and extract the height of the building.
在城市区域,高相干点目标主要分布在人工建/构筑物上。而时间序列InSAR技术去除地形是最常用的外部DEM数据如SRTM DEM、ASTER GDEM等,在城市区域大都不能体现建/构筑物高度,某一高相干点目标在参考DEM上的高程并非该点目标的实际高程。事实上,空间非相关DEM改正量反映的即是这些高相干点目标相对于参考DEM的高度。另外,得益于高分辨率影像数据使得高相干点目标密度大大增加,建/构筑物上细节结构可以被充分识别出来。通过时间序列InSAR技术得到各高相干点目标的空间非相关DEM改正量后,利用地理编码获取其平面位置信息,再结合高分辨率光学影像确定空间位置。根据空间拓扑关系对高相干点目标进行分类,识别出位于建筑顶部的高相干点目标,该处高相干点目标对应的空间非相关DEM改正量即为人工建/构筑物的高度提取。In urban areas, high-coherence point targets are mainly distributed on man-made buildings/structures. The time series InSAR technology is the most commonly used external DEM data such as SRTM DEM, ASTER GDEM, etc. to remove terrain. Most of them cannot reflect the height of buildings/structures in urban areas, and the elevation of a high-coherence point target on the reference DEM is not the point target. actual elevation. In fact, the spatially uncorrelated DEM corrections What is reflected is the height of these highly coherent point targets relative to the reference DEM. In addition, thanks to the high-resolution image data, the density of high-coherence point targets is greatly increased, and the detailed structures on buildings/structures can be fully identified. The spatially uncorrelated DEM corrections of each highly coherent point target are obtained by time series InSAR technology After that, geocoding is used to obtain its planar location information, and then combined with high-resolution optical images to determine its spatial location. Classify high-coherence point targets according to the spatial topological relationship, identify high-coherence point targets located on the top of the building, and the spatially non-correlated DEM corrections corresponding to the high-coherence point targets It is the height extraction of artificial buildings/structures.
为了更好地说明本发明技术方案的有效性和优越性,现对应用上述技术方案后本发明实施例如下对比分析:如图8所示,是本发明实施例通过时间序列InSAR分析提取的天津市西北部的北辰区境内高相干点目标,该区域实际长6.6km,宽8.5km,覆盖面积约为60km2,最终探测得到446176个高相干点,密度约为7500高相关/km2。如图9所示,为本发明实施例基于时间序列InSAR分析提取的全部高相干点目标高度图,单位m。如图10所示,是本发明实施例得到的局部区域,京津线公路过永定新河大桥附近部分建筑物高度反演成果展示。如图11所示,是本发明实施例得到的局部区域天津地铁1号线沿线瑞景家园小区附近部分建筑物高度反演成果展示。如图12所示,是本发明实施例在实施例区域内选取的9个用于精度验证的局部区域分布示意图。为了验证发明实施例反演结果的精度,利用免棱镜全站仪实地测量实施例区域内选取22个地物的高度数据做为真值对InSAR反演建筑物高度结果进行精度验证,如表1所示,反演结果的误差标准差为2.1m,均值0.8m。结果表明,本发明实施例的建筑物高度反演结果精度较高。In order to better illustrate the effectiveness and superiority of the technical solution of the present invention, the following comparative analysis of the embodiment of the present invention after applying the above-mentioned technical solution is as follows: The high-coherence point targets in Beichen District in the northwest of the city are actually 6.6km long and 8.5km wide, covering an area of about 60km 2 . Finally, 446,176 high-coherence points were detected with a density of about 7,500 high-coherence points/km 2 . As shown in FIG. 9 , it is a height map of all highly coherent point targets extracted based on time series InSAR analysis in the embodiment of the present invention, and the unit is m. As shown in FIG. 10 , it is a local area obtained by the embodiment of the present invention, and the height inversion results of some buildings near the Yongding Xinhe Bridge on the Beijing-Tianjin Line are displayed. As shown in FIG. 11 , it is a display of the height inversion results of some buildings near Ruijingjiayuan Community along Tianjin Metro Line 1 in a local area obtained by the embodiment of the present invention. As shown in FIG. 12 , it is a schematic diagram of the distribution of nine local areas selected for accuracy verification in the embodiment area of the embodiment of the present invention. In order to verify the accuracy of the inversion results of the embodiment of the invention, the height data of 22 ground objects were selected as the true value to verify the accuracy of the results of the InSAR inversion of building heights in the region of the embodiment by using the mirror-free total station, as shown in Table 1. As shown, the error standard deviation of the inversion results is 2.1m, and the mean is 0.8m. The results show that the accuracy of the building height inversion result of the embodiment of the present invention is relatively high.
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分步骤是可以通过程序来指令相关硬件来完成,所述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,包括上述全部或部分步骤,所述的存储介质,如:ROM/RAM、磁盘、光盘等。Those of ordinary skill in the art can understand that all or part of the steps in the methods of the above embodiments can be completed by instructing related hardware through a program, and the program can be stored in a computer-readable storage medium, and the program can be executed when executed , including all or part of the steps above, the storage medium, such as: ROM/RAM, magnetic disk, optical disk, etc.
表1单位/mTable 1 Unit/m
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments described above have further described the purpose, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above descriptions are only specific embodiments of the present invention and are not intended to limit the scope of the present invention. Protection scope, within the spirit and principles of the present invention, any modification, equivalent replacement, improvement, etc., shall be included in the protection scope of the present invention.
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310243103.6A CN103323848B (en) | 2013-06-19 | 2013-06-19 | A kind of method and device extracting height of ground artificial building/structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310243103.6A CN103323848B (en) | 2013-06-19 | 2013-06-19 | A kind of method and device extracting height of ground artificial building/structure |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103323848A true CN103323848A (en) | 2013-09-25 |
CN103323848B CN103323848B (en) | 2015-07-29 |
Family
ID=49192700
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310243103.6A Expired - Fee Related CN103323848B (en) | 2013-06-19 | 2013-06-19 | A kind of method and device extracting height of ground artificial building/structure |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103323848B (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104123464A (en) * | 2014-07-23 | 2014-10-29 | 中国国土资源航空物探遥感中心 | Method for inversion of ground feature high elevation and number of land subsidence through high resolution InSAR timing sequence analysis |
CN106204539A (en) * | 2016-06-29 | 2016-12-07 | 南京大学 | A kind of method of inverting urban architecture thing based on Morphological Gradient sedimentation |
CN108549080A (en) * | 2018-02-28 | 2018-09-18 | 中国电力科学研究院有限公司 | A kind of transmission tower position extracting method and system |
CN109358339A (en) * | 2018-08-31 | 2019-02-19 | 北京理工大学 | A Grassland Height Measurement Method Based on Solid State Area Array Lidar |
CN110441767A (en) * | 2019-09-06 | 2019-11-12 | 云南电网有限责任公司电力科学研究院 | The measurement method and system of power transmission line corridor screen of trees head room |
CN110554382A (en) * | 2019-09-09 | 2019-12-10 | 厦门精益远达智能科技有限公司 | surface feature detection method, device and equipment based on radar and unmanned aerial vehicle |
CN111323768A (en) * | 2020-02-26 | 2020-06-23 | 北京佳格天地科技有限公司 | Building change identification method, device, terminal and storage medium |
CN111487622A (en) * | 2020-06-15 | 2020-08-04 | 中国南方电网有限责任公司 | Transmission tower deformation monitoring method and device, computer equipment and storage medium |
CN111860158A (en) * | 2020-06-15 | 2020-10-30 | 中国测绘科学研究院 | A time-series InSAR high-coherence point extraction method integrating 1D-CNN and BiLSTM neural network |
CN111998766A (en) * | 2020-08-31 | 2020-11-27 | 同济大学 | Surface deformation inversion method based on time sequence InSAR technology |
US11269072B2 (en) | 2017-06-15 | 2022-03-08 | The University Of Nottingham | Land deformation measurement |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101551455A (en) * | 2009-05-13 | 2009-10-07 | 西安电子科技大学 | 3D terrain imaging system of interferometric synthetic aperture radar and elevation mapping method thereof |
EP2413158A1 (en) * | 2010-07-26 | 2012-02-01 | Consorci Institut de Geomatica | A method for monitoring terrain and man-made feature displacements using ground-based synthetic aperture radar (GBSAR) data |
CN102608584A (en) * | 2012-03-19 | 2012-07-25 | 中国测绘科学研究院 | Time sequence InSAR (Interferometric Synthetic Aperture Radar) deformation monitoring method and device based on polynomial inversion model |
CN102680972A (en) * | 2012-06-04 | 2012-09-19 | 中国神华能源股份有限公司 | Method and device for monitoring surface deformation and data processing equipment |
CN102865852A (en) * | 2012-09-10 | 2013-01-09 | 中国测绘科学研究院 | Elevation calibration method and device for digital elevation model data |
-
2013
- 2013-06-19 CN CN201310243103.6A patent/CN103323848B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101551455A (en) * | 2009-05-13 | 2009-10-07 | 西安电子科技大学 | 3D terrain imaging system of interferometric synthetic aperture radar and elevation mapping method thereof |
EP2413158A1 (en) * | 2010-07-26 | 2012-02-01 | Consorci Institut de Geomatica | A method for monitoring terrain and man-made feature displacements using ground-based synthetic aperture radar (GBSAR) data |
CN102608584A (en) * | 2012-03-19 | 2012-07-25 | 中国测绘科学研究院 | Time sequence InSAR (Interferometric Synthetic Aperture Radar) deformation monitoring method and device based on polynomial inversion model |
CN102680972A (en) * | 2012-06-04 | 2012-09-19 | 中国神华能源股份有限公司 | Method and device for monitoring surface deformation and data processing equipment |
CN102865852A (en) * | 2012-09-10 | 2013-01-09 | 中国测绘科学研究院 | Elevation calibration method and device for digital elevation model data |
Non-Patent Citations (1)
Title |
---|
张永红等: "基于SAR干涉点目标分析技术的城市地表形变监测", 《测绘学报》 * |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104123464B (en) * | 2014-07-23 | 2017-02-22 | 中国国土资源航空物探遥感中心 | Method for inversion of ground feature high elevation and number of land subsidence through high resolution InSAR timing sequence analysis |
CN104123464A (en) * | 2014-07-23 | 2014-10-29 | 中国国土资源航空物探遥感中心 | Method for inversion of ground feature high elevation and number of land subsidence through high resolution InSAR timing sequence analysis |
CN106204539A (en) * | 2016-06-29 | 2016-12-07 | 南京大学 | A kind of method of inverting urban architecture thing based on Morphological Gradient sedimentation |
CN106204539B (en) * | 2016-06-29 | 2019-01-11 | 南京大学 | A method of the inverting urban architecture object sedimentation based on Morphological Gradient |
US11269072B2 (en) | 2017-06-15 | 2022-03-08 | The University Of Nottingham | Land deformation measurement |
CN108549080A (en) * | 2018-02-28 | 2018-09-18 | 中国电力科学研究院有限公司 | A kind of transmission tower position extracting method and system |
CN109358339A (en) * | 2018-08-31 | 2019-02-19 | 北京理工大学 | A Grassland Height Measurement Method Based on Solid State Area Array Lidar |
CN110441767A (en) * | 2019-09-06 | 2019-11-12 | 云南电网有限责任公司电力科学研究院 | The measurement method and system of power transmission line corridor screen of trees head room |
CN110554382A (en) * | 2019-09-09 | 2019-12-10 | 厦门精益远达智能科技有限公司 | surface feature detection method, device and equipment based on radar and unmanned aerial vehicle |
CN111323768A (en) * | 2020-02-26 | 2020-06-23 | 北京佳格天地科技有限公司 | Building change identification method, device, terminal and storage medium |
CN111323768B (en) * | 2020-02-26 | 2023-12-12 | 北京佳格天地科技有限公司 | Building change identification method, device, terminal and storage medium |
CN111860158A (en) * | 2020-06-15 | 2020-10-30 | 中国测绘科学研究院 | A time-series InSAR high-coherence point extraction method integrating 1D-CNN and BiLSTM neural network |
CN111487622A (en) * | 2020-06-15 | 2020-08-04 | 中国南方电网有限责任公司 | Transmission tower deformation monitoring method and device, computer equipment and storage medium |
CN111860158B (en) * | 2020-06-15 | 2024-02-20 | 中国测绘科学研究院 | Time sequence InSAR high coherence point extraction method fusing 1D-CNN and BiLSTM neural network |
CN111998766A (en) * | 2020-08-31 | 2020-11-27 | 同济大学 | Surface deformation inversion method based on time sequence InSAR technology |
CN111998766B (en) * | 2020-08-31 | 2021-10-15 | 同济大学 | A Surface Deformation Inversion Method Based on Time Series InSAR Technology |
Also Published As
Publication number | Publication date |
---|---|
CN103323848B (en) | 2015-07-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103323848B (en) | A kind of method and device extracting height of ground artificial building/structure | |
CN102608584B (en) | Time sequence InSAR (Interferometric Synthetic Aperture Radar) deformation monitoring method and device based on polynomial inversion model | |
CN101706577B (en) | Method for monitoring roadbed subsidence of express way by InSAR | |
CN107389029B (en) | A kind of surface subsidence integrated monitor method based on the fusion of multi-source monitoring technology | |
Manconi et al. | Brief communication: Rapid mapping of landslide events: The 3 December 2013 Montescaglioso landslide, Italy | |
CN110888130A (en) | A method for monitoring surface deformation in coal mining area based on ascending and descending orbit time series InSAR | |
CN105954747A (en) | Tower foundation stability analyzing method based on three-dimensional deformation monitoring of unfavorable geologic body of power grid | |
CN106772342A (en) | A kind of Timing Difference radar interference method suitable for big gradient surface subsidence monitoring | |
CN112284332B (en) | High-rise building settlement monitoring result three-dimensional positioning method based on high-resolution INSAR | |
CN108627832A (en) | A method of passway for transmitting electricity Ground Deformation is extracted based on multiple timings SAR image | |
CN105824022A (en) | Method for monitoring three-dimensional deformation of unfavorable geologic body under power grid | |
CN105785369B (en) | SAR image snow and ice cover information extracting method based on InSAR technologies | |
CN108549080A (en) | A kind of transmission tower position extracting method and system | |
CN113238228A (en) | Level constraint-based InSAR three-dimensional surface deformation acquisition method, system and device | |
CN113008202B (en) | Ground settlement monitoring method integrating different synthetic aperture radar interferometry | |
Vassilakis et al. | Post-event surface deformation of Amyntaio slide (Greece) by complementary analysis of Remotely Piloted Airborne System imagery and SAR interferometry | |
CN109118520A (en) | A kind of minery power grid shaft tower displacement monitoring method and system | |
Castaneda et al. | Dedicated SAR interferometric analysis to detect subtle deformation in evaporite areas around Zaragoza, NE Spain | |
CN118746808A (en) | A landslide deformation prediction method, device, medium and product | |
CN117541929A (en) | A deformation risk assessment method for large-area power transmission channels using InSAR in complex environments | |
Deo et al. | Evaluation of interferometric SAR DEMs generated using TanDEM-X data | |
Wang et al. | Deformation monitoring by long term D-InSAR analysis in Three Gorges area, China | |
Li et al. | Research on methods of high coherent target extraction in urban area based on PSINSAR technology | |
Awasthi et al. | Psinsar based land deformation based disaster monitoring using Sentinel-1 datasets | |
CN107202985B (en) | A Method of InSAR Unwrapping Error Detection Based on Interferogram Closed Loop |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150729 Termination date: 20180619 |