CN103314292B - 使用花青染料用于检测分析物的方法 - Google Patents

使用花青染料用于检测分析物的方法 Download PDF

Info

Publication number
CN103314292B
CN103314292B CN201180064902.6A CN201180064902A CN103314292B CN 103314292 B CN103314292 B CN 103314292B CN 201180064902 A CN201180064902 A CN 201180064902A CN 103314292 B CN103314292 B CN 103314292B
Authority
CN
China
Prior art keywords
aqueous solution
concentration
detectability
thing
cyanine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201180064902.6A
Other languages
English (en)
Other versions
CN103314292A (zh
Inventor
B.陈
A.M.阿格里
C.肖
C.于
H.徐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of CN103314292A publication Critical patent/CN103314292A/zh
Application granted granted Critical
Publication of CN103314292B publication Critical patent/CN103314292B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/22Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N2021/7769Measurement method of reaction-produced change in sensor
    • G01N2021/7786Fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/274Calibration, base line adjustment, drift correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • G01N21/80Indicating pH value
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/19Halogen containing
    • Y10T436/193333In aqueous solution

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

本发明涉及一种测量水溶液中分析物的浓度的方法,所述方法包括以下步骤:得到含有分析物的水溶液,提供花青指示剂,放置水溶液与花青指示剂流体连通,测量花青指示剂的可检测性质变化,和将花青指示剂的可检测性质变化与含有已知浓度分析物的样品的可检测性质变化的校准曲线相比较,以确定分析物的浓度,其中所述可检测性质变化与所述水溶液中分析物的浓度成比例。

Description

使用花青染料用于检测分析物的方法
发明背景
相关申请
本申请涉及2007年5月31日提交的受让于General Electric Company的美国申请11/809,345,其通过引用结合到本文中。
发明领域
本发明涉及使用花青染料检测工业水系统中的分析物。
相关技术描述
水用于多种工业水系统,例如冷却和锅炉水系统。市政或未经处理的水含有可影响传热、流体流动或引起系统设备腐蚀的物质。这些物质的存在和任何产生的结垢、生物污损和腐蚀不利地影响传热的速率,因此影响系统的效率。因此,在水用于冷却或蒸汽目的之前,期望使用适当的化学品处理。
水的化学处理得到充分开发和广泛使用。例如,已知向水中加入聚电解质以降低结垢。一种特别有用的聚电解质为Coag139D (PMA,聚甲基丙烯酸);但是同样使用其它聚电解质,例如AEC、APES和HPS-I。然而,因为必须仔细监测水中聚电解质的浓度,工业水系统中采用聚电解质呈现其自身的问题。例如,如果采用太少的聚电解质,将出现结垢。与此相反,如果采用太高浓度的聚电解质,则不利地影响系统的成本/性能效率。对于化学处理含水系统的其它方法,存在应保持的处理化学品的最优浓度。
可利用用于测定含水系统中聚电解质的浓度的若干方法。例如,存在使用染料用于测定聚电解质的若干比色方法。一个实例为授予Ciota等人的美国专利号6,214,627,其通过引用结合到本文中。此外,存在Hach聚丙烯酸方法,其使用硫氰酸铁螯合来检测基于聚丙烯酸的校准。通常,这些方法需要复杂的多步操作程序并且难以在野外进行。其它方法,例如在授予Johnson等人的美国专利号5,958,778(其通过引用结合到本文中)中公开的一种方法,使用氨基苯二酰一肼标记的聚合物与荧光或化学发光检测技术组合来监测工业水。另外,存在依靠形成不溶性化合物以测定水溶性聚合物的浓度的浊度方法。该方法冗长并且易受误差影响。
因此,强烈需要可容易用于测定工业水源中分析物的浓度的简化测试方法。
发明概述
本发明涉及一种测量水溶液中分析物的浓度的方法,所述方法包括以下步骤:得到含有分析物的水溶液,提供花青指示剂,放置水溶液与花青指示剂流体连通,测量花青指示剂的可检测性质变化,和将花青指示剂的可检测性质变化与含有已知浓度分析物的样品的可检测性质变化的校准曲线相比较,以确定分析物的浓度,其中所述可检测性质变化与所述水溶液中分析物的浓度成比例。
参考附图,在阅读以下详细说明和所附权利要求之后,本发明及其比起现有技术的优点将变得显而易见。
附图简述
与显示结构细节和说明性实施方案的附图一起结合,由本文说明和权利要求可以理解本发明的这些和其它方面,其中:
图1a描述在不同的pH值下具有不同量的游离氯的水溶液的光谱;
图1b描述使用含水IR-783对游离氯得到的校准曲线;
图2描述使用pHEMA膜中的IR-783对游离氯得到的校准曲线;
图3a描述具有不同量的总氯的水溶液的光谱;
图3b描述使用IR-783对总氯得到的校准曲线;
图4a描述具有不同量三价铁的水溶液的光谱;
图4b描述使用IR-783对三价铁得到的校准曲线;
图4c描述具有不同量三价铁的水溶液的光谱;
图4d描述使用IR-783对三价铁得到的校准曲线;
图4e描述在HIDCI存在下具有不同量三价铁的水溶液的光谱;
图4f描述使用HIDCI对三价铁得到的校准曲线;
图5a描述具有不同量的Coag139D的水溶液的光谱;
图5b描述使用IR-775和DMMB对Coag139D得到的校准曲线;
图6a描述具有不同量Coag139D的水溶液的光谱;
图6b描述使用IR-780对Coag139D得到的校准曲线;
图7a描述具有不同量的聚DADMAC的水溶液的光谱;
图7b描述使用IR-780对聚DADMAC得到的校准曲线;
图8a描述具有不同量的聚DADMAC的水溶液的光谱;和
图8b描述使用IR-783对聚DADMAC得到的校准曲线。
发明详述
在整个说明书和权利要求中,本文使用的近似用语可用于修饰可允许变化但是不导致其相关的基本功能变化的任何数量表示。因此,被术语例如“约”修饰的值不局限于指定的精确值。在至少一些情况下,近似用语可相应于用于测量该值的仪器的精度。范围限度可组合和/或互换,除非上下文或用语另有表示,否则这些范围被确定,并且包括本文声明的所有子范围。除了在操作实施例以外或在另作说明时,说明书和权利要求中使用的涉及成分的量、反应条件等的所有数字或表述应理解为在所有情况下被术语“约”修饰。
“任选的”或“任选地”是指随后描述的事件或情况可能发生或者可能不发生,或者随后指定的材料可能存在或者可能不存在,并且该描述包括事件或情况发生或者材料存在的情形,以及事件或情况不发生或者材料不存在的情形。
本文使用的术语“包含”、“包括”、“具有”或它们的任何其它变体旨在涵盖非排他性包含。例如,包含要素列的过程、方法、制品或设备不必局限于仅那些要素,而是可包括未明确列举或为所述过程、方法、制品或设备固有的其它要素。
除非上下文另有明确说明,否则单数形式“一个”和“该”包括复数对象。
公开了使用花青染料作为指示剂用于检测水溶液中分析物的浓度的改进方法。所述水溶液为取自工业水源的水的样品,所述水源包括但不限于冷却水、锅炉水、废水、海水、雨水。能使用该方法检测的分析物包括但不限于游离氯、总氯、铁(例如,三价铁和/或亚铁)、总铁或聚电解质(例如,聚阴离子、聚阳离子,例如COAg139D、聚DADMAC)中的一种或多种。优选地,用于该方法的花青指示剂具有长波长吸光度,例如IR-783、IR-780、IR-775和IR-746。预期可使用摩尔消光系数高于100,000 (mol-1.cm-1)并且具有足够的稳定性和选择性的任何花青指示剂。当花青染料存在于溶液中时,花青指示剂足够稳定,并且在约20分钟的时间段,在最大峰处的吸光度稳定(小于约1%变化)。由以下实施例,花青指示剂所需的选择性将变得显而易见。
申请人发现,当暴露于水溶液中的分析物时,花青指示剂经历可检测的物理性质变化。物理性质变化与在水溶液中分析物的浓度成比例。当与本文讨论的分析物反应时,花青指示剂的主要性质变化为颜色,但是可使用任何其它可检测的物理或化学性质变化,例如发光或电化学。预期花青指示剂可为水性的,或者可包含在膜中。
可通过以下测量水溶液中分析物的浓度:提供花青指示剂,放置含有分析物的水溶液与花青指示剂流体连通,测量花青指示剂的可检测性质变化,和将测量的可检测性质变化与校准曲线相比较。可检测性质变化与水溶液中分析物的浓度成比例。在使用颜色作为可检测性质变化的实施方案中,将花青指示剂的吸光度与含有已知浓度分析物的样品的吸光度的校准曲线相比较,以确定分析物的浓度。
为了确定水溶液中分析物的浓度,首先必需对关注的每一种分析物产生校准曲线。此外,如果花青指示剂的响应取决于pH,还必需在与关注的水溶液相同的pH水平下,对关注的每一种分析物产生校准曲线。通过以下产生校准曲线:制备含有已知量的分析物的各种水溶液,放置水溶液与花青指示剂流体连通,和测量可检测性质变化。在一个实施方案中,可检测性质变化为颜色,其中测量吸光度。出于该实施方案的目的,按吸光度差异报道吸光度。吸光度差异为花青指示剂本身的吸光度与在放置水溶液的样品与花青指示剂流体连通之后花青指示剂的吸光度之间的差异。则校准曲线为该吸光度差异相对分析物的已知浓度对于已知pH的图。
一旦产生,通过比较花青指示剂的测量的可检测响应与校准曲线,并且从曲线读取出存在的分析物的量,校准曲线可用于确定有多少分析物存在于水溶液中。为了使用校准曲线,用于测量可检测的响应的装置必须与用于产生校准曲线的装置相同或者在类似的条件下操作。如果颜色用作可检测的响应,则可使用本领域已知的用于测量吸光度的任何合适的装置来测量吸光性。这些合适的装置包括但不限于比色计、分光光度计、色轮和其它类型的已知的颜色比较器测量工具。在一个实施方案中,可使用TrueSense 装置(得自GE Betz of Trevose,PA)进行吸光度测量,例如TrueSense PWA或TrueSense Online。
在一个实施方案中,为了使用该方法测定存在于水溶液中的分析物的浓度,将约2000μl-约5μl,期望约60μl的含有分析物的水溶液放置与花青指示剂流体连通。使用约70μl-约1μl,优选约20μl的花青指示剂。然而,在不偏离本发明的范围下,预期其它量的水溶液和花青指示剂。
随后使水溶液中的分析物与花青指示剂反应约30秒-约10分钟的时间段,优选约1分钟-8分钟,最优选约5分钟。已发现反应通常在约5分钟内完成,使得在约5分钟和之后进行的任何可检测性质变化测量精确。已发现在约5分钟时进行的这种精确的可检测性质变化测量在约最初20分钟保持基本上稳定(随着时间小于约1%变化),在约最初20分钟之后出现较小波动。
一旦测量可检测性质变化(通常为上述吸光度差异),将其与显示含有已知量的分析物的水溶液的标准可检测性质变化的校准曲线相比较。采用这种方式,可确定存在于样品中的分析物的量。在又一个实施方案中,在暴露于水溶液之前、暴露于水溶液期间和暴露于水溶液之后,连续进行可检测性质变化测量。
现在参考以下实施例来更具体地描述本公开。注意到本文呈现的以下实施例是为了说明和描述的目的;它们不旨在将本公开穷尽或限制为所公开的精确形式。
实施例1 花青染料用于F-Cl检测,使用含水IR-783
存在许多必需在非常低浓度下监测游离氯(F-Cl)和/或总氯的情形。例如,反渗透(R.O.)为用于从经过滤的原料水除去溶解的固体(盐)的技术。其用于多种工业以调节水用于设备使用,或者用作脱矿质过程中的步骤。反渗透系统的持续性能取决于半透性膜的状态。当游离氯浓度高于约0.02ppm时,其可劣化许多膜材料,因此在进入R.O.系统之前,通常将原料水脱氯。
由于原料水可含有游离氯或总氯,重要的是确定存在哪种形式的氯,并且选择正确的氯监测设备。因此,高度期望超灵敏检测方法用于保护反渗透膜。
转到图1a和图1b,公开了本方法的一个实施方案,申请人已发现,如果反阴离子不是碘化物,则pH在6-11范围的若干花青指示剂(例如IR-783、IR-780、IR-775、IR-746)与游离氯(F-Cl)选择性反应。F-Cl浓度与在长波长(例如约780 nm波长)下花青指示剂的吸光度下降成比例。这些花青指示剂允许检测超低范围(约<0.1ppm/100ppb)下的F-Cl。DPD的摩尔消光系数(为用于F-Cl检测的标准比色方法)为约9000L.mol-1cm-1。因此,理论DPD检测限度为约0.02ppm。另一方面,具有高摩尔消光系数(约230,000 L.mol-1cm-1)的IR染料在理论上可检测低至0.001ppm (1ppb)。图1a显示在不同的pH值下具有不同量F-Cl的水溶液的光谱。更具体地,在pH 5.6、8.5和9.0下,IR-783对0-270 ppb游离氯的响应。图1b显示在不同的pH值下在777nm通过IR-783对于F-Cl得到的校准曲线。通过从不含游离氯的样品的吸光度减去含有已知浓度的游离氯的样品的吸光度,得到图1b。示于图1a的响应与示于图1b的校准曲线结合使用,以确定水溶液样品中F-Cl的浓度。
另外,当使用含有仅氯胺的样品(例如自来水)时,在780nm下的吸光度即使延长反应时间也不受氯胺的影响。这证明IR-783对游离氯的选择性。也可使用呈现与IR-783类似的性能的其它花青染料(例如IR-780、IR-755和IR-746)。如所预期的,花青指示剂对游离氯的响应取决于水溶液的pH。因此,校准曲线用于解释该相关性。
实施例2 花青染料用于F-Cl检测,使用固体pHEMA膜中的IR-783
申请人还发现,当IR-783加入到膜中时,对游离氯的响应与含水IR-783相同。在该实施例中,由含有IR-783 (5mg-20mg/克pHEMA原料)的2-甲氧基乙醇(或DM,或DM/PM混合物)中的pHEMA原料通过流动涂布制备膜。DM为二(乙二醇)单甲基醚,PM为1-甲氧基-2-丙醇。干膜厚度可为约1μm-约20μm。将膜装配并暴露于标准F-Cl溶液,并使用TrueSense PWA读取器以获取响应。图2显示在780nm下对于pHEMA膜中的IR-783得到的校准曲线。通过从不含游离氯的样品的吸光度减去含有已知浓度的游离氯的样品的吸光度,得到图2。在图2中,染料浓度水平1为10mg/10g油墨,而染料浓度水平2为20mg/10g油墨。这证明IR-783足够敏感以测量低至0.2 ppm水平的F-Cl。可见,该水平的灵敏度对于固体膜传感器是突出的。也可使用呈现与IR-783类似性能的其它花青染料(例如IR-780、IR-755和IR-746)。
实施例3 花青染料用于T-Cl,通过带有KI的IR-783
在该实施例中,在水相中使用花青指示剂染料(更具体地IR-783)计算总氯(T-Cl)。在向水溶液样品中加入催化量的碘化钾(KI)之后,通过DPD方法可测定T-Cl,其为游离氯和组合的氯两者的总和。在DPD方法中,DPD (N,N-二乙基-对亚苯基二胺)被氯氧化,引起品红(红色)颜色。颜色的强度与氯浓度直接成比例。对于总氯,将碘化钾加入到反应中,以测定组合的可得的氯形式和总氯。氯胺将碘化物氧化为碘;随后释放的碘与DPD反应,以形成品红色。
在接近中性pH下,单氯胺和二氯胺与花青染料非常缓慢地反应。为了量化这些物类,使用碘化物作为催化剂进行该实施例中的测试。碘化物与氯胺反应,以形成作为三碘化物离子(I3 -)的碘:
NH2Cl + 3I- + H+ + H2O → NH4OH + Cl- + I3 -
NHCl2 + 3I- + 2H+ + H2O → NH4OH + 2Cl- + I3 -
三碘化物进而与花青反应,形成具有独特的粉色或无色分解物类的氧化自由基产物。在实践中,需要仅痕量的碘化物来分辨单氯胺。通过加入过量的碘化物,包括二氯胺。如果反离子为碘化物,则碘化物可直接来自花青本身。也可引入碘化物,例如碘化钾、四甲基碘化铵等。
2染料+ 2I3 - → 2染料· + 3I2
观察到,由于KI的存在,IR-783对游离氯和组合的氯的响应产生紫色,其具有带三个肩峰的约555nm的最大峰。因此,T-Cl的浓度与产生的紫色成比例。图3a显示具有不同量T-Cl的水溶液的光谱。更具体地,在KI的存在下,IR-783对T-Cl的响应。图3b分别显示对于555nm和774nm通过IR-783对T-Cl得到的校准曲线。示于图3a的响应与示于图3b的校准曲线结合使用,以确定水溶液样品中T-Cl的浓度。
还使用IR-780和IR-775进行该实验,产生类似的结果。还预期也可使用呈现与IR-780、IR-755和IR-783类似性能的其它花青染料,例如IR-746。
实施例4 花青染料用于铁(三价铁)检测,通过IR-783
可溶性和不溶性铁二者可存在于锅炉进料水和锅炉水中。锅炉水铁将在锅炉的蒸汽发生表面上沉积并且引起沉积物下的腐蚀和过热问题。因此,应连续监测进料水中的铁浓度。通常,在锅炉进料水中建议的铁浓度在10ppb-100ppb范围,取决于锅炉压力。该方法也可用于检测铁(三价铁和总铁两者),尤其是在低的铁浓度(约<1ppm)下。
在酸性条件下,三价铁(FeIII)为相对强的氧化剂。例如,其可将碘化物氧化为碘。花青染料为一类在技术上重要的氧化还原分子,其常用作相片卤化银材料所用的光谱敏化剂。花青染料可在酸性条件下被三价铁氧化成为其自由基形式或分解的化合物。如果产生自由基形式,典型的红移带将在约550nm显现,带有一个或多个肩峰。通常,当提高三价铁浓度时,溶液将从浅绿色转为深粉色。由于吸光度带强度与三价铁浓度成比例,在某些波长下的吸光度可用来反算未知样品中的三价铁浓度。以下方程描述当花青染料被三价铁氧化为自由基形式时的反应。与染料的初始电荷相比,花青染料的自由基形式总是多带一个正电荷。
染料+ FeIII →染料· + FeII
在该实施例中,图4a显示具有不同量三价铁的水溶液的光谱。更具体地,在pH=3.6下,IR-783对具有不同浓度三价铁的多个水溶液样品的响应。图4b显示对于pH=3.6在555nm下通过IR-783对三价铁得到的校准曲线。示于图4a的响应与示于图4b的校准曲线结合使用,以确定水溶液样品中三价铁的浓度。以下为含有示于图4a的原始数据的表。
水溶液中Fe3+的浓度(ppm) 在775nm的吸收 在650nm的吸收 在555nm的吸收 在555nm-775nm的吸收
0.87 1.2249 0.17763 0.73094 -0.49396
0.435 1.9115 0.26243 0.36368 -1.54782
0.217 2.4412 0.33198 0.13295 -2.30825
0-去离子水 2.659 0.35413 0.0366 -2.62242
其它缓冲剂也可用于三价铁(Fe3+)检测。例如,0.5ml的对甲苯磺酸(0.1M)和2.0ml的三价铁标准溶液与25ul的IR-783染料(1mg/g在乙二醇和甲醇溶剂中)在pH=1.2下将提供快速反应。原始数据和光谱变化示于下图。将0.05ppm重复5次,以算出.00495的标准偏差(SD)。随后通过检测限(DL)的定义,在给定的实验条件下,检测限为3.7ppb (3*SD/斜率)。在本发明的一个实施方案中,通过使用自动取样和检测系统,进一步改进检测限度。图4d显示对于pH-1.2,在对甲苯磺酸缓冲剂存在下,在555nm和777nm下,通过IR-783对三价铁得到的校准曲线。示于图4c的响应与示于图4d的校准曲线结合使用,以确定水溶液样品中三价铁的浓度。可见,该方法可在低至约0.05ppm的浓度下检测三价铁的存在。以下为含有示于图4c的原始数据的表。
水溶液中三价铁的浓度(ppm) 在777nm的吸收 在555nm的吸收 在777nm-555nm的吸收
0-去离子水 1.1684 .0924 1.08
0.05 .99882 .14587 .853
.1 .87892 .23052 .648
.2 .62502 .34983 .275
.3 .27622 .45262 -.176
.4 .0463 .58365 -.537
.05 .99485 .13912 .856
.05 .99569 .15246 .843
.05 .97208 .12531 .847
.05 .99456 .14398 .851
为了进一步证明花青染料对三价铁(Fe (III))响应的通用性质,测试另一种染料,HIDCI (1,1,3,3,3′,3′-六甲基吲哚二羰花青碘)。在该测试中,0.5ml的对甲苯磺酸(0.1M)用作缓冲剂,以提供1.2的pH。随后与2ml的不同浓度的三价铁标准溶液、25ul 的HIDCI染料在乙二醇和甲醇中混合。图4f显示对于pH-1.2,在对甲苯磺酸存在下,在480nm和636nm下,通过HIDCI对三价铁得到的校准曲线。示于图4e的响应与示于图4f的校准曲线结合使用,以确定水溶液样品中三价铁的浓度。可见,提高三价铁的浓度漂白染料HIDCI,使得仅弱峰在约480nm产生。可见,该方法可在低至约0.05ppm的浓度下检测三价铁的存在。
水溶液中三价铁的浓度(ppm) 在480nm的吸收 在636nm的吸收 在636nm-480nm的吸收
1.05 .16872 .48106 .31234
.5 .12224 1.0854 .96316
.26 .073261 1.3303 1.257039
.7 .1472 .88657 .73937
.05 .065492 1.5688 1.503308
.05 .056511 1.5621 1.505589
.05 .058116 1.5689 1.510784
此外,IR-783也可用于检测水溶液样品中的总铁。总铁为亚铁和三价铁两者的总和。通过将亚铁氧化为三价铁并且测量三价铁而检测总铁。可见,该实施例显示花青染料可用于检测水溶液中低至ppb水平的三价铁和总铁两者。还预期也可使用呈现与IR-783类似性能的其它花青染料,例如HIDCI、IR-780、IR-755和IR-746。
在另一种实施方案中,预期除了使用IR-783(其在780nm和550nm两者下对三价铁响应)以外,也可使用在约550nm专门响应于亚铁的另一种指示剂,例如Ferrozine,TPTZ (2,4,6-三(2-吡啶基)-均三嗪)。这将使得同时获得水溶液样品中亚铁和三价铁离子浓度二者。
实施例5 花青染料用于聚电解质检测
该方法也可用于检测聚电解质,包括但不限于聚阴离子和聚阳离子聚电解质。聚电解质广泛用于水处理,用于冷却水、锅炉水和废水处理。聚电解质检测是令人关注的,因为当用作污垢抑制剂时,聚电解质的浓度必须保持超过一定水平。可用作污垢抑制剂的聚合物包括但不限于HPS-1和Coag139D。
此外,聚电解质检测是令人关注的,因为必须监测毒性聚电解质排放到水系统中,尤其是当水系统为天然的时。另外,聚电解质检测是令人关注的,因为高聚电解质浓度可在废水处理期间妨碍膜的功能。此外,对于某些应用(例如锅炉进料水),极其期望需要低聚合物浓度(ppb水平)检测。
使用IR-783、IR-780和IR-775进行这些实验,它们产生类似的结果。还预期也可使用呈现与IR-780、IR-755和IR-783类似性能的其它花青染料,例如IR-746。
在pH=7下IR-775用于Coag139D。
图5a显示具有不同量Coag139D的水溶液的光谱。更具体地,IR-775对Coag139D的含水样品溶液的响应。Coag139D也称为PMA。在该实施例中,将一份0.5ppm IR-775和一份缓冲剂(pH=7)加入到3份Coag139D样品溶液中。图5b分别显示对于768nm-648nm通过IR-775和对于525nnm-648nm通过DMMB,对Coag139D得到的校准曲线。示于图5a的响应与示于图5b的校准曲线结合使用,以确定水溶液中Coag139D的浓度。出于比较目的,在图5a和图5b上还显示DMMB (二甲基亚甲基蓝)对Coag139D的响应。可见,IR-775的灵敏度远高于DMBB。IR-775的这种高灵敏度允许在ppb水平下检测Coag139D和其它聚阴离子。
在pH=7下IR-780用于Coag139D。
图6a显示具有不同量的Coag139D的水溶液的光谱。更具体地,IR-780对Coag139D的响应。在该实施例中,将一份0.5ppm和一份缓冲剂(pH=7)加入到3份Coag139D水溶液中。图6b显示对于775nm-634nm对Coag139D得到的校准曲线。示于图6a的响应与示于图6b的校准曲线结合使用,以确定水溶液中Coag139D的浓度。以下为含有示于图6a的原始数据的表。
水溶液(ppm) 在467nm的吸收 在525nm的吸收 在634nm的吸收 在775nm的吸收 在900nm的吸收 Coag 130D活性聚合物浓度(ppm) 775nm-634nm
0 ppm 去离子 0.011 0.0108 0.14493 1.2551 0.00537 0 1.11017
20m ppm 0.0108 0.00663 0.33137 0.62108 0.0104 4 0.28971
10 ppm 0.00870 0.00703 0.23372 0.92677 0.00611 2 0.69305
3.33 ppm 0.0104 0.00941 0.17522 1.1675 0.00389 0.667 0.99228
6.67 ppm 0.00711 0.00604 0.2001 1.0467 0.00394 1.34 0.8466
IR-780 + HPS-I用于聚DADMAC。
聚DADMAC (聚二烯丙基二甲基氯化铵)具有多种应用。聚DADMAC作为主要有机凝结剂用于废水处理,其中和带负电荷的胶体材料,并且与无机凝结剂相比,降低淤渣体积。在纸浆和造纸工业,聚DADMAC用于在造纸过程中控制扰乱物质。此外,其可用于改进圆盘过滤器和浮选机的效率,并且用于填料的阳离子化,以提供最大填料保留率。聚DADMAC也可用作絮凝剂,以在牛皮纸浆磨机的蒸发设备中改善皂分离过程,从而有助于较高的浮油收率。在水纯化中,聚DADMAC用作絮凝物。其在絮凝、脱色、杀灭藻类和除去有机物(例如腐殖质)中非常有效。仅必需少量的聚DADMAC来生产大絮状物、快速沉淀和低浊度残余。
然而,认为聚DADMAC对水生生物体具有不利作用。因此,高度管制聚DADMAC的排放。例如,在对于网纹水蚤(ceriodaphnia)48小时静态再生生物测定的水生毒理学中,GE水过程和技术数据显示LC50=0.34ppm、无影响水平=0.25ppm,因此需要检测这样低的或甚至更低的浓度的方法。因此,期望无影响水平的1/10或0.025ppm的检测限。使用具有相对低摩尔消光系数的常用染料通常非常难以得到0.025ppm的检测限。
图7a显示具有不同量的聚DADMAC的水溶液的光谱。机制如本文所描述。IR-780为阳离子染料,HPS-I为带负电荷的聚合物,IR-780与HPS-I之间的相互作用显著抑制在780nm处的吸光度峰,并且使最大峰偏移至630nm。然而,通过向溶液混合物中加入聚DADMAC,聚DADMAC竞争地与HPS-I相互作用,随后释放IR-780至游离状态并且重新得到吸光度光谱。更具体地,IR-780与HPS-I (得自GE Betz of Trevose,PA)对聚DADMAC的水溶液的响应。可见,IR-780和HPS-I的产物具有约630nm的最大峰。最大峰从780nm到630nm的蓝移由IR-780通过HPS-I骨架经电相互作用的聚集而引起。因此,由于聚DADMAC带正电荷,当聚DADMAC放置与IR-780和HPS-I的混合物流体连通时,聚DADMAC与HPS-I的较强的相互作用释放染料IR-780,因此重新得到IR-780的光谱,如图7a所示。
图7b显示对于780nm-950nm通过IR-780对聚DADMAC得到的校准曲线。示于图7a的响应与示于图7b的校准曲线结合使用,以确定水溶液中聚DADMAC的浓度。以下为含有示于图7a的原始数据的表。可见,该方法可在低至约0.048ppm的浓度下检测聚DADMAC的存在。
IR-783用于聚DADMAC。
IR-783具有两个硫酸基,其可与聚DADMAC电缔合,因此导致光谱变化。光谱的变化与聚DADMAC的浓度成比例。因此,对于未知样品,聚DADMAC的浓度可由光谱变化来计算。图8b显示对于650nm通过IR-783对聚DADMAC得到的校准曲线。示于图8a的响应与示于图8b的校准曲线结合使用,以确定水溶液中聚DADMAC的浓度。可见,该方法可在低至约0.05ppm的浓度下检测聚DADMAC的存在。
虽然已结合上述具体实施方案描述了本发明,显然许多备选、组合、修改和变化对于本领域技术人员显而易见。因此,如上所述,本发明的优选实施方案旨在仅为说明性,并且不是限制的含义。在不偏离本发明的精神和范围下,可以进行各种变化。因此,本发明的技术范围不仅包括上述那些实施方案,而且还包括落入所附权利要求范围内的全部。
该书面说明使用实施例来公开本发明,包括最佳方式,并且使得本领域任何技术人员能实践本发明,包括制备和使用任何装置或系统和实施任何结合的过程。本发明的可专利范围由权利要求限定,并且可包括本领域技术人员想到的其它实例。如果这些其它实例具有与权利要求的字面用语无差异的结构要素,或者如果它们包括与权利要求的字面用语无实质差异的等价结构要素,则预期这些其它实例在权利要求的范围内。

Claims (16)

1.一种测量水溶液中分析物的浓度的方法,所述方法包括以下步骤:
得到含有分析物的水溶液,其中所述分析物为三价铁、亚铁、总铁或聚电解质中的一种或多种;
提供花青指示剂,其中所述花青指示剂选自HIDCI、IR-783、 IR-780、IR-775和IR-746;
放置所述水溶液与所述花青指示剂流体连通;
测量所述花青指示剂的可检测性质变化;和
将所述花青指示剂的可检测性质变化与含有已知浓度分析物的样品的可检测性质变化的校准曲线相比较,以确定所述分析物的浓度;
其中所述可检测性质变化与所述水溶液中所述分析物的浓度成比例。
2. 权利要求1的方法,其中所述花青指示剂具有长波长吸光度。
3. 权利要求1的方法,其中所述可检测性质变化为物理的。
4. 权利要求3的方法,其中所述可检测物理性质变化为颜色。
5. 权利要求3的方法,其中所述可检测物理性质变化为发光。
6. 权利要求1的方法,其中所述可检测性质变化为化学的。
7. 权利要求6的方法,其中所述可检测化学性质变化为电化学。
8. 权利要求1的方法,其中所述花青指示剂为水性的。
9. 权利要求1的方法,其中所述花青指示剂包含在膜中。
10. 权利要求9的方法,其中所述膜的干膜厚度为1μm-20μm。
11. 权利要求1的方法,其中所述方法测量低至约0.2 ppm水平的所述分析物。
12. 权利要求1的方法,所述方法还包括当所述分析物为总铁时,向所述水溶液加入氧化剂。
13. 权利要求1的方法,所述方法还包括当所述分析物为亚铁和三价铁时,向所述水溶液加入在约550nm响应于亚铁的指示剂。
14. 权利要求1的方法,所述方法还包括当所述分析物为聚电解质时,向所述水溶液加入缓冲剂。
15. 权利要求14的方法,所述方法还包括当所述分析物为聚电解质时,向所述水溶液加入HPS-I。
16. 权利要求14的方法,其中所述缓冲剂的pH为约7。
CN201180064902.6A 2011-01-12 2011-12-06 使用花青染料用于检测分析物的方法 Expired - Fee Related CN103314292B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US13/005,134 US8343771B2 (en) 2011-01-12 2011-01-12 Methods of using cyanine dyes for the detection of analytes
US13/005134 2011-01-12
US13/005,134 2011-01-12
PCT/US2011/063371 WO2012096724A1 (en) 2011-01-12 2011-12-06 Methods of using cyanine dyes for the detection of analytes

Publications (2)

Publication Number Publication Date
CN103314292A CN103314292A (zh) 2013-09-18
CN103314292B true CN103314292B (zh) 2015-10-21

Family

ID=45446180

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180064902.6A Expired - Fee Related CN103314292B (zh) 2011-01-12 2011-12-06 使用花青染料用于检测分析物的方法

Country Status (6)

Country Link
US (1) US8343771B2 (zh)
EP (1) EP2663858A1 (zh)
CN (1) CN103314292B (zh)
BR (1) BR112013017683A2 (zh)
CA (1) CA2823022A1 (zh)
WO (1) WO2012096724A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103409132B (zh) * 2013-07-05 2016-03-30 北京化工大学 含有水溶性吲哚菁衍生物的pH指示剂及其应用
CN103387830B (zh) * 2013-07-30 2015-01-14 湘潭大学 一种铬离子比率型荧光探针及其制备方法和应用
CN107110837A (zh) * 2014-11-18 2017-08-29 巴斯夫欧洲公司 测定水性介质中聚丙烯酸浓度的方法
CN105954274A (zh) * 2016-05-09 2016-09-21 常州钇金环保科技有限公司 一种快速检测镀锌液中亚铁离子含量的比色方法
US10782241B2 (en) 2017-07-27 2020-09-22 Ecolab Usa Inc. Method of determining residual flocculant in effluent of an industrial clarification process

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1701228A (zh) * 2002-09-30 2005-11-23 香港大学 用于测量分析物浓度的、玻璃表面共价连接的发光指示物的敏感单层传感装置
CN101297197A (zh) * 2005-10-26 2008-10-29 通用电气公司 测量痕量浓度化学物种的传感器的材料成分和使用传感器的方法
CN101449159A (zh) * 2006-05-23 2009-06-03 伊斯曼柯达公司 检测含银抗微生物剂的存在
CN101595386A (zh) * 2007-01-30 2009-12-02 爱科来株式会社 吩噻嗪衍生物色素的检测方法及用于该方法的显色剂试剂
EP1416271B1 (en) * 2001-05-29 2010-01-20 Nihon Trim Co. Limited Detection method and quantitative analysis method for hydrogen radicals
CN101702935A (zh) * 2007-05-31 2010-05-05 通用电气公司 测定水系统中含水聚合物浓度的方法
CN101765772A (zh) * 2007-05-31 2010-06-30 通用电气公司 确定水体系中聚合物浓度的方法
WO2012016350A1 (en) * 2010-08-03 2012-02-09 General Electric Company Simultaneous determination of multiple analytes in industrial water system

Family Cites Families (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3770735A (en) 1970-06-24 1973-11-06 Hach Chemical Co Ferroin reagent and method of making same
US3709662A (en) 1970-07-20 1973-01-09 Hach Chemical Co Iron analysis reagent formulation
JPS506397A (zh) 1972-12-11 1975-01-23
US4092115A (en) 1974-04-11 1978-05-30 Miles Laboratories, Inc. Method, device and test reagent for detecting free available chlorine in aqueous fluids
CA1116065A (en) 1978-06-24 1982-01-12 Isao Isa Method and apparatus for automatically determining chlorine and chlorine dioxide concentrations
IT1100475B (it) 1978-11-08 1985-09-28 R C O Ricerche Di Chimica Clin Metodo e composizioni per la determinazione diretta del ferro mel stero ematico
JPS56104248A (en) 1980-01-25 1981-08-19 Kurita Water Ind Ltd Method and apparatus for measuring anionic polymer concentration
US4391775A (en) 1980-10-23 1983-07-05 Wisconsin Alumni Research Foundation Method of and system for determining particular species of chlorine in a water sample
US4514504A (en) 1983-07-22 1985-04-30 Rohm And Haas Company Monitoring method for polyacrylic acids in aqueous systems
US5032526A (en) 1983-10-11 1991-07-16 Calgon Corporation Method for the colorimetric determination of sulfonates in aqueous systems
US4894346A (en) 1983-10-11 1990-01-16 Calgon Corporation Method for the colorimetric determination of polycarboxylates in aqueous systems
US5120661A (en) 1987-12-11 1992-06-09 Diversey Corporation Method for detection and quantitative analysis for water treatment chemicals
IT1219848B (it) 1988-03-03 1990-05-24 Miles Italiana Composti indicatori,metodo per la loro preparazione e loro impiego in un sistema di saggio della sideremia
US4938926A (en) 1989-01-23 1990-07-03 Andre Reiss Test device for chlorine measurement and method of making and using same
GB8920571D0 (en) 1989-09-12 1989-10-25 Carr Robert J G Examination of objects of macromolecular size
US5128419A (en) 1990-08-20 1992-07-07 Nalco Chemical Company Synthesis of tagged polymers by post-polymerization (trans) amidation reaction
US5155048A (en) 1991-03-20 1992-10-13 Center For Innovative Technology Organic reagent for the colorimetric detection of chlorine and ozone in drinking water
US5171450A (en) 1991-03-20 1992-12-15 Nalco Chemical Company Monitoring and dosage control of tagged polymers in cooling water systems
US5300442A (en) 1991-05-09 1994-04-05 Orion Research, Inc. Method and device for measuring chlorine concentrations with enhanced sensitivity
US5593850A (en) 1991-08-30 1997-01-14 Nalco Chemical Company Monitoring of industrial water quality using monoclonal antibodies to polymers
US5242602A (en) 1992-03-04 1993-09-07 W. R. Grace & Co.-Conn. Spectrophotometric monitoring of multiple water treatment performance indicators using chemometrics
US5236845A (en) 1992-10-22 1993-08-17 Nalco Chemical Company On-line iron (II) concentration monitoring to continuously determine corrosion in boiler systems
US5342787A (en) 1993-03-24 1994-08-30 Rohm And Haas Company Method for solubilizing silica
US5925318A (en) 1993-08-26 1999-07-20 Ferro Sensor, Inc. Iron detecting sensors
US5389548A (en) 1994-03-29 1995-02-14 Nalco Chemical Company Monitoring and in-system concentration control of polyelectrolytes using fluorochromatic dyes
US5491094A (en) 1994-06-03 1996-02-13 Industrial Test Systems, Inc. Test strip for free chlorine analysis
US5645799A (en) 1995-03-06 1997-07-08 Nalco Chemical Company Apparatus for a continuous polymer dosage optimization and waste water analysis system
US5705394A (en) 1995-04-17 1998-01-06 Nalco Chemical Company Tagged epichlorohydrin-dimethylamine copolymers for use in wastewater treatment
JPH08307012A (ja) 1995-05-01 1996-11-22 Mitsubishi Electric Corp 選択成長用マスク,半導体光装置の製造方法,および半導体光装置
US5654198A (en) 1995-06-05 1997-08-05 National Starch And Chemical Investment Holding Corporation Detectable water-treatment polymers and methods for monitoring the concentration thereof
ES2112763B1 (es) 1995-07-27 1999-05-16 Univ Valencia Estudi General Kit para la determinacion de cloro libre y combinado en aguas.
US5972713A (en) 1995-09-05 1999-10-26 Konica Corporation Method for determining total chlorine amount and a kit for determining total chlorine amount
EP0854911B1 (en) 1995-09-22 2004-11-24 GOVERNMENT OF THE UNITED STATES OF AMERICA, as represented by THE SECRETARY OF THE DEPARTMENT OF HEALTH AND HUMAN SERVICES Container for drying biological samples, method of making such container, and method of using same
US5736405A (en) 1996-03-21 1998-04-07 Nalco Chemical Company Monitoring boiler internal treatment with fluorescent-tagged polymers
US5772894A (en) 1996-07-17 1998-06-30 Nalco Chemical Company Derivatized rhodamine dye and its copolymers
US5976823A (en) 1997-03-19 1999-11-02 Integrated Biomedical Technology, Inc. Low range total available chlorine test strip
US6355489B1 (en) 1997-03-21 2002-03-12 Diacron S.R.L. Method for the determination of oxygen-centered free radicals
US5958788A (en) 1997-05-28 1999-09-28 Nalco Chemical Company Luminol tagged polymers for treatment of industrial systems
WO1999001737A2 (en) 1997-06-10 1999-01-14 Calspan Corporation Detection of chemical agent materials using a sorbent polymer and fluorescent probe
US6030842A (en) 1997-07-21 2000-02-29 Environmental Test Systems, Inc. Method, composition and device for the determination of free halogens in aqueous fluids
DE19817963A1 (de) 1998-04-22 1999-10-28 Roche Diagnostics Gmbh Verfahren und Reagenz zur störungsfreien Bestimmung von Eisen
US6051437A (en) 1998-05-04 2000-04-18 American Research Corporation Of Virginia Optical chemical sensor based on multilayer self-assembled thin film sensors for aquaculture process control
FR2783050B1 (fr) 1998-09-09 2000-12-08 Atochem Elf Sa Solution aqueuse a base d'un colorant azoique, son procede de fabrication et son utilisation
US6214627B1 (en) 1999-03-26 2001-04-10 Nalco Chemical Company Rapid colorimetric method for measuring polymers in aqueous systems
US6180412B1 (en) 1999-03-26 2001-01-30 Hach Company Test for chlorine in water
US6241788B1 (en) 1999-11-16 2001-06-05 Betzdearborn Inc. Method of stabilizing dye solutions and stabilized dye compositions
US6331438B1 (en) 1999-11-24 2001-12-18 Iowa State University Research Foundation, Inc. Optical sensors and multisensor arrays containing thin film electroluminescent devices
US6627450B1 (en) 2000-02-11 2003-09-30 Severn Trent Water Purifications, Inc. Method of measuring chlorine content in aqueous solution
US6689618B1 (en) 2000-04-03 2004-02-10 Shuenn Tzong Chen Method and test strip of detecting oxidizing adulterant in urine
US7087150B2 (en) 2002-05-03 2006-08-08 Rosemount Analytical Inc. Chloramine amperometric sensor
US20060029516A1 (en) 2004-08-09 2006-02-09 General Electric Company Sensor films and systems and methods of detection using sensor films
US7723120B2 (en) 2005-10-26 2010-05-25 General Electric Company Optical sensor array system and method for parallel processing of chemical and biochemical information
US20070092972A1 (en) 2005-10-26 2007-04-26 General Electric Company Self-contained phosphate sensors and method for using same
US7977660B2 (en) * 2007-08-14 2011-07-12 General Electric Company Article, device, and method
JP5542745B2 (ja) * 2010-06-07 2014-07-09 キリンビバレッジ株式会社 高甘味度甘味料含有飲料およびその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1416271B1 (en) * 2001-05-29 2010-01-20 Nihon Trim Co. Limited Detection method and quantitative analysis method for hydrogen radicals
CN1701228A (zh) * 2002-09-30 2005-11-23 香港大学 用于测量分析物浓度的、玻璃表面共价连接的发光指示物的敏感单层传感装置
CN101297197A (zh) * 2005-10-26 2008-10-29 通用电气公司 测量痕量浓度化学物种的传感器的材料成分和使用传感器的方法
CN101449159A (zh) * 2006-05-23 2009-06-03 伊斯曼柯达公司 检测含银抗微生物剂的存在
CN101595386A (zh) * 2007-01-30 2009-12-02 爱科来株式会社 吩噻嗪衍生物色素的检测方法及用于该方法的显色剂试剂
CN101702935A (zh) * 2007-05-31 2010-05-05 通用电气公司 测定水系统中含水聚合物浓度的方法
CN101765772A (zh) * 2007-05-31 2010-06-30 通用电气公司 确定水体系中聚合物浓度的方法
WO2012016350A1 (en) * 2010-08-03 2012-02-09 General Electric Company Simultaneous determination of multiple analytes in industrial water system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
利用花青染料转化DNA杂交信号的研究;周桂萍;《分析测试学报》;20101031;第29卷(第10期);第1059页第1-6段 *

Also Published As

Publication number Publication date
CA2823022A1 (en) 2012-07-19
EP2663858A1 (en) 2013-11-20
CN103314292A (zh) 2013-09-18
US8343771B2 (en) 2013-01-01
US20120178171A1 (en) 2012-07-12
WO2012096724A1 (en) 2012-07-19
BR112013017683A2 (pt) 2016-10-11

Similar Documents

Publication Publication Date Title
Berg et al. The role of dissolved organic matter composition in determining photochemical reactivity at the molecular level
CN103314292B (zh) 使用花青染料用于检测分析物的方法
Ma et al. Bioassay based luminescent bacteria: interferences, improvements, and applications
Kothawala et al. Inner filter correction of dissolved organic matter fluorescence
Bridgeman et al. The application of fluorescence spectroscopy to organic matter characterisation in drinking water treatment
JP5570975B2 (ja) 水系でのポリマー濃度の測定方法
El Kaoutit et al. Sub-ppm quantification of Hg (II) in aqueous media using both the naked eye and digital information from pictures of a colorimetric sensory polymer membrane taken with the digital camera of a conventional mobile phone
Khamis et al. Continuous field estimation of dissolved organic carbon concentration and biochemical oxygen demand using dual‐wavelength fluorescence, turbidity and temperature
Xu-Jing et al. The structure and origin of dissolved organic matter studied by UV-vis spectroscopy and fluorescence spectroscopy in lake in arid and semi-arid region
WO1992013272A1 (en) Assay of water pollutants
Zhu et al. Application of 3-D fluorescence: characterization of natural organic matter in natural water and water purification systems
Sikder et al. Vulnerability assessment of surface water quality with an innovative integrated multi-parameter water quality index (IMWQI)
Il'ina Kh et al. Express-techniques in study of polluted suburban streams
Gumbi et al. Gold nanoparticles for the quantification of very low levels of poly-diallyldimethylammonium chloride in river water
Moldovan Spectrophotometric determination of nitrite by its catalytic effect on the oxidation of congo red with bromate
Low et al. Environmental monitoring of trace metal pollutants using cellulosic-paper incorporating color change of azo-chromophore
Kinani et al. A Critical Review on Chemical Speciation of Chlorine-Produced Oxidants (CPOs) in Seawater. Part 2: Sampling, Sample Preparation and Non-Chromatographic and Mass Spectrometric-Based Methods
Rico-Martínez et al. The use of aquatic invertebrate toxicity tests and invertebrate enzyme biomarkers to assess toxicity in the states of Aguascalientes and Jalisco, Mexico
US20050025660A1 (en) Method of tracing corrosive materials
Hedjazi et al. Rapid, highly sensitive and selective spectrophotometric determination of cadmium (II) as an ion associate of tetraiodocadmiate (II) with Astra Phloxine
Wang et al. Citrate-based fluorometric sensor for multi-halide sensing
Emeka et al. Effects of solid wastes on Ukwaka Stream, Nnewi, Nigeria
Sahin Determining the Trace Amounts of Zinc by Membrane Filtration-Sensitized Flame Atomic Absorption Spectrometry in Water Samples. Rom
Zhang et al. A study on fluorescence properties of carboxymethyl-quaternary ammonium oligochitosan and its performances as a tracing agent
Heibati New applications of fluorescence spectroscopy for monitoring drinking water disinfection and distribution

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20151021

Termination date: 20161206