CN103305738A - Silicon-containing heat-resistant rare earth magnesium alloy and preparation method thereof - Google Patents
Silicon-containing heat-resistant rare earth magnesium alloy and preparation method thereof Download PDFInfo
- Publication number
- CN103305738A CN103305738A CN2013102573840A CN201310257384A CN103305738A CN 103305738 A CN103305738 A CN 103305738A CN 2013102573840 A CN2013102573840 A CN 2013102573840A CN 201310257384 A CN201310257384 A CN 201310257384A CN 103305738 A CN103305738 A CN 103305738A
- Authority
- CN
- China
- Prior art keywords
- rare earth
- alloy
- silicon
- magnesium
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000861 Mg alloy Inorganic materials 0.000 title claims abstract description 60
- 229910052761 rare earth metal Inorganic materials 0.000 title claims abstract description 53
- 150000002910 rare earth metals Chemical class 0.000 title claims abstract description 48
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 47
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims abstract description 42
- 239000010703 silicon Substances 0.000 title claims abstract description 42
- 238000002360 preparation method Methods 0.000 title claims abstract description 14
- 239000011777 magnesium Substances 0.000 claims abstract description 65
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 63
- 239000000956 alloy Substances 0.000 claims abstract description 63
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical group [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims abstract description 58
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 58
- 238000000034 method Methods 0.000 claims abstract description 32
- 229910052688 Gadolinium Inorganic materials 0.000 claims abstract description 23
- 238000003723 Smelting Methods 0.000 claims abstract description 23
- 238000010438 heat treatment Methods 0.000 claims abstract description 22
- 239000002994 raw material Substances 0.000 claims abstract description 22
- 239000012535 impurity Substances 0.000 claims abstract description 15
- 230000032683 aging Effects 0.000 claims abstract description 14
- 230000008569 process Effects 0.000 claims abstract description 12
- 230000004907 flux Effects 0.000 claims abstract description 8
- 239000007788 liquid Substances 0.000 claims description 23
- 229910052727 yttrium Inorganic materials 0.000 claims description 22
- 238000007670 refining Methods 0.000 claims description 20
- 229910019064 Mg-Si Inorganic materials 0.000 claims description 16
- 229910019406 Mg—Si Inorganic materials 0.000 claims description 16
- 238000005266 casting Methods 0.000 claims description 14
- 238000003756 stirring Methods 0.000 claims description 11
- 229910052791 calcium Inorganic materials 0.000 claims description 9
- 229910052802 copper Inorganic materials 0.000 claims description 8
- 229910052759 nickel Inorganic materials 0.000 claims description 7
- 239000003795 chemical substances by application Substances 0.000 claims description 4
- 239000002893 slag Substances 0.000 claims description 4
- 229910004261 CaF 2 Inorganic materials 0.000 claims description 3
- 229910000946 Y alloy Inorganic materials 0.000 claims description 3
- 230000008018 melting Effects 0.000 claims description 3
- 238000002844 melting Methods 0.000 claims description 3
- 230000000284 resting effect Effects 0.000 claims 1
- 239000000203 mixture Substances 0.000 abstract description 3
- 239000000243 solution Substances 0.000 description 10
- 230000000694 effects Effects 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 229910052726 zirconium Inorganic materials 0.000 description 6
- 229910000831 Steel Inorganic materials 0.000 description 5
- 239000010959 steel Substances 0.000 description 5
- 238000005728 strengthening Methods 0.000 description 5
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- 230000007547 defect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052712 strontium Inorganic materials 0.000 description 2
- 229910018125 Al-Si Inorganic materials 0.000 description 1
- 229910018520 Al—Si Inorganic materials 0.000 description 1
- 229910019018 Mg 2 Si Inorganic materials 0.000 description 1
- 229910000691 Re alloy Inorganic materials 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 238000013332 literature search Methods 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Landscapes
- Manufacture And Refinement Of Metals (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
本发明公开了一种含硅耐热稀土镁合金及其制备方法;所述合金包含如下重量百分比的各组分:Gd5~10%,Y2~8%,Si0.3~2%,Zr0.35~0.8%,Gd+Y11~13%,杂质小于0.02%,余量为镁;本发明还涉及前述的含硅耐热稀土镁合金的制备方法,所述方法包括:原料预热、熔炼和后续热处理;所述熔炼在熔剂或SF6和CO2混合气体保护下进行;所述后续热处理为将所述含硅耐热稀土镁合金进行固溶处理,时效处理。本发明工艺简单,稀土含量较低,在提高合金强度的同时保证了优良的塑性,通过调整合金成分和热处理工艺,得高强高韧耐热耐磨的镁合金,可应用于汽车航空航天军工等多领域,满足多种应用场合的需要。The invention discloses a silicon-containing heat-resistant rare earth magnesium alloy and a preparation method thereof; the alloy comprises the following components in weight percent: Gd5-10%, Y2-8%, Si0.3-2%, Zr0.35 ~0.8%, Gd+Y11~13%, impurity is less than 0.02%, and the balance is magnesium; the present invention also relates to the preparation method of the aforementioned silicon-containing heat-resistant rare earth magnesium alloy, the method comprising: raw material preheating, smelting and subsequent Heat treatment; the smelting is carried out under the protection of a flux or a mixed gas of SF 6 and CO 2 ; the subsequent heat treatment is to perform solution treatment and aging treatment on the silicon-containing heat-resistant rare earth magnesium alloy. The invention has a simple process, low rare earth content, and ensures excellent plasticity while increasing the strength of the alloy. By adjusting the alloy composition and heat treatment process, a high-strength, high-toughness, heat-resistant and wear-resistant magnesium alloy can be obtained, which can be applied to automotive, aerospace, military, etc. Multi-field, to meet the needs of a variety of applications.
Description
技术领域technical field
本发明涉及一种金属结构材料领域的镁合金及其制备方法,具体地说,涉及的是一种含硅耐热稀土镁合金及其制备方法。The invention relates to a magnesium alloy in the field of metal structural materials and a preparation method thereof, in particular to a silicon-containing heat-resistant rare earth magnesium alloy and a preparation method thereof.
背景技术Background technique
镁合金是目前应用的最轻的金属结构材料,具有高比强度、比刚度,良好的导热、导电和电磁屏蔽性能,在汽车、电子、家电、通信、仪表以及航天航空等领域有着广阔的应用前景。尤其是能够满足汽车产业在轻量化、低能耗、高环保方面的要求,因此受到了广泛的关注。然而,普通镁合金在高温下强度低和塑性差的缺陷制约了其在发动机和动力系统零件上的应用。所以提高镁合金的力学性能,包括高温强度、塑性,抗蠕变性及耐磨性等是扩大其工业应用的基础。因此,需要开发出高性能的耐热镁合金。近年来,研究发现稀土元素的加入可以很大程度地提高合金的高温性能和抗蠕变性,因此开发出一系列能够在200~250℃条件长时使用的耐热镁合金,如Mg-Y-RE系列合金WE54和WE43合金,这些合金已经获得了商业化应用。铸态WE54合金经T6处理后,室温抗拉强度为280MPa,屈服强度为172MPa,延伸率为2%;200℃时抗拉强度为240MPa,屈服强度150MPa,延伸率为7%;200℃/80MPa蠕变100h变形量为0.1%。Magnesium alloy is the lightest metal structure material currently used. It has high specific strength, specific stiffness, good thermal conductivity, electrical conductivity and electromagnetic shielding performance. It has a wide range of applications in the fields of automobiles, electronics, home appliances, communications, instruments, and aerospace. prospect. In particular, it can meet the requirements of the automotive industry in terms of light weight, low energy consumption, and high environmental protection, so it has received extensive attention. However, the defects of low strength and poor plasticity of common magnesium alloys at high temperature restrict their application in engine and power system parts. Therefore, improving the mechanical properties of magnesium alloys, including high temperature strength, plasticity, creep resistance and wear resistance, is the basis for expanding its industrial applications. Therefore, it is necessary to develop high-performance heat-resistant magnesium alloys. In recent years, studies have found that the addition of rare earth elements can greatly improve the high-temperature performance and creep resistance of the alloy, so a series of heat-resistant magnesium alloys that can be used for a long time at 200-250 ° C have been developed, such as Mg-Y -RE series alloys WE54 and WE43 alloys, which have been commercialized. After the as-cast WE54 alloy is treated with T6, the tensile strength at room temperature is 280MPa, the yield strength is 172MPa, and the elongation is 2%; the tensile strength is 240MPa, the yield strength is 150MPa, and the elongation is 7% at 200°C; 200°C/80MPa The creep deformation is 0.1% in 100h.
针对现有技术的文献检索发现,Gd和Y元素在镁合金中具有良好的固溶强化和时效强化作用,能够显著提高镁合金的性能,从而得到Mg-Gd-Y系合金。在专利文献,中国专利,其公开号为CN1804083A中记载了一种高强耐热稀土镁合金,其组分及重量百分比为:Gd2~10%,Y3~12%,Gd和Y的重量之和为13~14%,Zr0.3~0.7%和不大于0.3%的活化元素(Zn、Ag、Cu、Sr、Sr、Ca、Ti、Bi、Cd中任一种),或0.6~1.5%的Mn和不大于0.3%的活化元素(Sn,Si,Sb,Ca任一种),其余为镁。这种稀土镁合金通过析出物构成网状相结构,具有高的强度和抗蠕变力,在300℃条件下极限抗拉强度为180MPa。然而该专利中稀土成分较高且并不是最优化的,一方面带来成本的增加,另一方面高稀土含量导致塑性和其他性能稍差制约了其在动力系统零件中全面需求的应用;并且,Si元素仅和Mn一起加入且很微量,不是作为专门的强化元素。结合目前专利中关于活塞应用型含Si的Mg-Al-Si及Mg-Al-Si-RE(如中国专利,其公开号为CN1796024A)和Mg-Zn-Si-RE类合金(如中国专利:申请号为200410102511,公开号为CN1886528A和公开号为CN101027420A)具有较好的耐热性能及耐磨性能,本发明旨在综合含Si和稀土元素的镁合金所具有的综合优异性能,优化合理的RE含量及后续热处理工艺,得到一种高强高韧耐热耐磨的高性能镁合金。According to the literature search of the prior art, it is found that Gd and Y elements have good solid solution strengthening and aging strengthening effects in magnesium alloys, and can significantly improve the performance of magnesium alloys, thereby obtaining Mg-Gd-Y alloys. In the patent literature, Chinese Patent, whose publication number is CN1804083A, a kind of high-strength heat-resistant rare earth magnesium alloy is recorded, its composition and weight percentage are: Gd2~10%, Y3~12%, the weight sum of Gd and Y is 13-14%, Zr0.3-0.7% and not more than 0.3% of active elements (any one of Zn, Ag, Cu, Sr, Sr, Ca, Ti, Bi, Cd), or 0.6-1.5% of Mn And not more than 0.3% of the activation element (Sn, Si, Sb, Ca any one), the rest is magnesium. This rare earth magnesium alloy forms a network phase structure through precipitates, has high strength and creep resistance, and the ultimate tensile strength is 180MPa at 300°C. However, the rare earth content in this patent is relatively high and not optimized. On the one hand, it brings about an increase in cost; , Si element is only added together with Mn in a very small amount, not as a special strengthening element. Combined with the current patent about Si-containing Mg-Al-Si and Mg-Al-Si-RE (such as Chinese patent, its publication number is CN1796024A) and Mg-Zn-Si-RE alloys (such as Chinese patent: The application number is 200410102511, the publication number is CN1886528A and the publication number is CN101027420A) has good heat resistance and wear resistance. The present invention aims to synthesize the comprehensive excellent properties of magnesium alloys containing Si and rare earth elements, and optimize the reasonable RE content and subsequent heat treatment process, a high-performance magnesium alloy with high strength, high toughness, heat resistance and wear resistance is obtained.
发明内容Contents of the invention
针对现有技术中的缺陷,本发明的目的是提供一种含硅耐热稀土镁合金及其制备方法。通过向Mg中加入Gd,Y,Zr及少量的Si元素,并优化固溶和时效工艺参数,实现在合理的稀土元素总量下,获得优异的室温和高温强度及塑性,并且在保持合金的耐热性能的同时提高合金的耐磨性,获得综合性能优异的耐热镁合金。Aiming at the defects in the prior art, the object of the present invention is to provide a silicon-containing heat-resistant rare earth magnesium alloy and a preparation method thereof. By adding Gd, Y, Zr and a small amount of Si elements to Mg, and optimizing the solid solution and aging process parameters, under a reasonable total amount of rare earth elements, excellent room temperature and high temperature strength and plasticity can be obtained, and the alloy can be maintained. Improve the wear resistance of the alloy while improving the heat resistance, and obtain a heat-resistant magnesium alloy with excellent comprehensive properties.
本发明是通过以下技术方案实现的:The present invention is achieved through the following technical solutions:
第一方面,本发明涉及一种含硅耐热稀土镁合金,所述合金包含如下重量百分比的各组分:In the first aspect, the present invention relates to a heat-resistant rare earth magnesium alloy containing silicon, said alloy comprising the following components in weight percentage:
Gd 5~10%,Gd 5~10%,
Y 2~8%,Y 2~8%,
Si 0.3~2%,Si 0.3~2%,
Zr 0.35~0.8%,Zr 0.35~0.8%,
Gd+Y 11~13%,Gd+Y 11~13%,
杂质小于0.02%,Impurities are less than 0.02%,
余量为镁。The balance is magnesium.
优选地,所述杂质的各成分的重量百分比为:Fe<0.005%,Cu<0.005%,Ni<0.002%,Ca<0.01%。Preferably, the weight percentage of each component of the impurities is: Fe<0.005%, Cu<0.005%, Ni<0.002%, Ca<0.01%.
第二方面,本发明还涉及前述的含硅耐热稀土镁合金的制备方法,所述方法包括:原料预热、熔炼和后续热处理:In the second aspect, the present invention also relates to a method for preparing the aforementioned silicon-containing heat-resistant rare earth magnesium alloy, the method comprising: raw material preheating, smelting and subsequent heat treatment:
步骤1,原料预热:将原料镁锭、Mg-Si、Mg-Gd、Mg-Y和Mg-Zr中间合金进行预热;Step 1, raw material preheating: preheating raw material magnesium ingot, Mg-Si, Mg-Gd, Mg-Y and Mg-Zr master alloy;
步骤2,熔炼:所述熔炼在熔剂或SF6和CO2混合气体保护下进行,包括如下步骤:Step 2, smelting: the smelting is carried out under the protection of flux or SF 6 and CO 2 mixed gas, including the following steps:
步骤2.1,将镁锭加热熔炼;Step 2.1, heating and melting the magnesium ingot;
步骤2.2,待镁锭完全熔化后,加入Mg-Si中间合金并搅拌,再依次加入Mg-Gd中间合金、Mg-Y中间合金、Mg-Zr中间合金,保温,加精炼剂精炼,静置,扒渣,浇包浇铸或低压铸造,得含硅耐热稀土镁合金;Step 2.2, after the magnesium ingot is completely melted, add Mg-Si master alloy and stir, then add Mg-Gd master alloy, Mg-Y master alloy, Mg-Zr master alloy in turn, keep warm, add refining agent to refine, let stand, Slag removal, ladle casting or low pressure casting to obtain silicon-containing heat-resistant rare earth magnesium alloy;
步骤3,后续热处理包括如下步骤:Step 3, subsequent heat treatment includes the following steps:
将所述含硅耐热稀土镁合金进行固溶处理,时效处理。The heat-resistant rare earth magnesium alloy containing silicon is subjected to solution treatment and aging treatment.
优选地,步骤1中,所述预热温度为180~220℃。Preferably, in step 1, the preheating temperature is 180-220°C.
优选地,步骤2.2中,待镁液温度为660~680℃时加入Mg-Si中间合金,搅拌时间为3~5分钟;待镁液温度为730~750℃时加入Mg-Gd中间合金,待镁液温度回升至730~750℃并稳定后加入Mg-Y合金,待镁液温度为780~790℃时加入Mg-Zr中间合金,所述保温温度为780℃,保温时间为5~15min。Preferably, in step 2.2, the Mg-Si master alloy is added when the temperature of the magnesium liquid is 660-680°C, and the stirring time is 3-5 minutes; the Mg-Gd master alloy is added when the temperature of the magnesium liquid is 730-750°C, and the After the temperature of the magnesium liquid rises to 730-750°C and stabilizes, add the Mg-Y alloy. When the temperature of the magnesium liquid is 780-790°C, add the Mg-Zr master alloy. The holding temperature is 780°C and the holding time is 5-15 minutes.
优选地,步骤2.2中,所述精炼时间为5~15分钟,所述静置温度为760~780℃,所述静置时间为20~30分钟,所述扒渣温度为700~720℃。Preferably, in step 2.2, the refining time is 5-15 minutes, the standing temperature is 760-780°C, the standing time is 20-30 minutes, and the slag removal temperature is 700-720°C.
优选地,所述步骤3中,所述固溶处理的温度为480~520℃,时间为4~20h;所述时效处理的温度为200~250℃,时间为8~50h。Preferably, in the step 3, the temperature of the solution treatment is 480-520° C., and the time is 4-20 hours; the temperature of the aging treatment is 200-250° C., and the time is 8-50 hours.
优选地,所述镁锭中镁的质量分数﹥99.9%,所述熔剂和精炼剂为含MgCl2、KCl、CaF2的镁合金熔剂。Preferably, the mass fraction of magnesium in the magnesium ingot is >99.9%, and the flux and refining agent are magnesium alloy fluxes containing MgCl 2 , KCl, and CaF 2 .
优选地,所述SF6和CO2混合气体中SF6体积百分数为0.2%。Preferably, the volume percentage of SF 6 in the mixed gas of SF 6 and CO 2 is 0.2%.
优选地,所述精炼过程中伴随搅拌。Preferably, the refining process is accompanied by stirring.
本发明具有如下有益效果:The present invention has following beneficial effects:
(1)本发明合金通过添加少量Si,并将Gd和Y的含量进一步优化,使得合金具有较高的强度及良好的塑性;在保证足够强化效果的前提下,控制稀土元素总量,加入的Si形成Mg2Si及(RExSiy)硬质相,其熔点高,比刚度高,可有效提高合金的耐磨性;加入Zr通过异质形核显著细化晶粒,增强细晶强化效果并改善合金塑性;(1) The alloy of the present invention adds a small amount of Si and further optimizes the content of Gd and Y, so that the alloy has higher strength and good plasticity; on the premise of ensuring sufficient strengthening effect, the total amount of rare earth elements is controlled, and the added Si forms Mg 2 Si and (RE x Si y ) hard phase, which has a high melting point and high specific stiffness, which can effectively improve the wear resistance of the alloy; adding Zr can significantly refine the grains through heterogeneous nucleation, and enhance fine-grain strengthening effect and improve alloy plasticity;
(2)本发明结合优化固溶和时效工艺参数,增加时效析出相数量并使其细化。通过以上原理和方法,使本发明合金具有稀土含量较低,强度高,塑性好和耐热耐磨等优异特性。(2) The present invention combines optimization of solid solution and aging process parameters to increase and refine the number of aging precipitated phases. Through the above principles and methods, the alloy of the present invention has excellent properties such as low rare earth content, high strength, good plasticity, heat resistance and wear resistance.
(3)本发明工艺简单,稀土含量较低,在提高合金强度的同时保证了优良的塑性,并可通过调整合金成分和热处理工艺,获得不同优良性能组合的高强高韧耐热耐磨的镁合金。适合大规模生产,可应用于汽车航空航天军工等多领域,满足多种应用场合的需要。(3) The invention has a simple process and low rare earth content, which ensures excellent plasticity while increasing the strength of the alloy, and can obtain high-strength, high-toughness, heat-resistant and wear-resistant magnesium with different excellent performance combinations by adjusting the alloy composition and heat treatment process alloy. It is suitable for large-scale production and can be used in many fields such as automobile, aerospace and military industry to meet the needs of various application occasions.
具体实施方式Detailed ways
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。The present invention will be described in detail below in conjunction with specific embodiments. The following examples will help those skilled in the art to further understand the present invention, but do not limit the present invention in any form. It should be noted that those skilled in the art can make several modifications and improvements without departing from the concept of the present invention. These all belong to the protection scope of the present invention.
实施例1Example 1
本实施例涉及一种含硅耐热稀土镁合金,所述合金包含如下重量百分比的各组分:This embodiment relates to a silicon-containing heat-resistant rare earth magnesium alloy, which contains the following components by weight percentage:
9%Gd,2%Y,0.5%Si和0.35%Zr,其余为Mg和不可避免的杂质(重量百分比小于0.02%)。其中杂质元素含量为:Fe<0.005%,Cu<0.005%,Ni<0.002%,Ca<0.01%。9%Gd, 2%Y, 0.5%Si and 0.35%Zr, the rest is Mg and unavoidable impurities (less than 0.02% by weight). Among them, the content of impurity elements is: Fe<0.005%, Cu<0.005%, Ni<0.002%, Ca<0.01%.
本实施例还涉及前述含硅耐热稀土镁合金该合金的制备方法,所述方法包括:原料预热、熔炼和后续热处理:This embodiment also relates to the preparation method of the aforementioned silicon-containing heat-resistant rare earth magnesium alloy. The method includes: raw material preheating, smelting and subsequent heat treatment:
步骤1,原料预热:将原料镁锭、Mg-Si、Mg-Gd、Mg-Y和Mg-Zr中间合金进行预热至200℃;Step 1, raw material preheating: preheating the raw material magnesium ingot, Mg-Si, Mg-Gd, Mg-Y and Mg-Zr master alloy to 200°C;
步骤2,熔炼:在SF6和CO2混合气体(SF6体积百分数为0.2%)保护下进行,包括如下步骤:(1)加镁:在电阻坩埚炉中加入纯镁,进行熔炼;(2)加Si:待镁完全熔化后,在680℃时加入Mg-Si中间合金并搅拌5分钟;(3)加Gd和Y:升温至730℃后加入Mg-Gd中间合金,待镁液温度回升至730℃时加入Mg-Y中间合金;(4)加Zr:升高镁液温度至780℃加入Mg-Zr中间合金;(5)精炼:在780℃保温约15分钟后,不断电精炼15分钟,精炼过程需充分搅拌;(6)铸造:精炼后在760℃静置30分钟,待镁液冷却至700℃撇去浮渣,用金属型模具浇铸,浇铸用钢模具预热至250℃,之后得含硅耐热稀土镁合金;Step 2, smelting: under the protection of SF 6 and CO 2 mixed gas (SF 6 volume percentage is 0.2%), including the following steps: (1) Adding magnesium: adding pure magnesium to a resistance crucible furnace for smelting; (2 ) Add Si: After the magnesium is completely melted, add the Mg-Si master alloy at 680°C and stir for 5 minutes; (3) Add Gd and Y: Add the Mg-Gd master alloy after the temperature rises to 730°C, and wait for the temperature of the magnesium liquid to rise Add Mg-Y master alloy at 730°C; (4) Add Zr: increase the temperature of magnesium liquid to 780°C and add Mg-Zr master alloy; Minutes, the refining process needs to be fully stirred; (6) Casting: After refining, stand at 760°C for 30 minutes, wait for the magnesium liquid to cool to 700°C to skim off the scum, cast with a metal mold, and preheat the steel mold for casting to 250°C , and then get silicon-containing heat-resistant rare earth magnesium alloy;
步骤3,后续热处理:在温度为500℃条件下,进行6h固溶处理,然后在温度为250℃的条件下,进行8h时效处理即可。Step 3, subsequent heat treatment: at a temperature of 500° C., solution treatment for 6 hours, and then at a temperature of 250° C., for 8 hours of aging treatment.
实施效果:本实施例制备的含硅耐热稀土镁合金在室温抗拉强度330MPa,屈服强度210MPa,延伸率10%;200℃抗拉强度310MPa,屈服强度190MPa,延伸率16%;200℃/80MPa条件下蠕变100小时变形量为0.065%。Implementation effect: the silicon-containing heat-resistant rare earth magnesium alloy prepared in this example has a tensile strength of 330MPa at room temperature, a yield strength of 210MPa, and an elongation of 10%; a tensile strength of 310MPa at 200°C, a yield strength of 190MPa, and an elongation of 16%; Under the condition of 80MPa, the creep deformation after 100 hours is 0.065%.
实施例2Example 2
本实施例涉及一种含硅耐热稀土镁合金,所述合金包含如下重量百分比的各组分:8%Gd,3%Y,1%Si和0.6%Zr,其余为Mg和不可避免的杂质(重量百分比小于0.02%),其中杂质元素含量为:Fe<0.005%,Cu<0.005%,Ni<0.002%,Ca<0.01%。This embodiment relates to a silicon-containing heat-resistant rare earth magnesium alloy, which contains the following components by weight percentage: 8% Gd, 3% Y, 1% Si and 0.6% Zr, and the rest is Mg and unavoidable impurities (weight percentage is less than 0.02%), wherein the content of impurity elements is: Fe<0.005%, Cu<0.005%, Ni<0.002%, Ca<0.01%.
本实施例还涉及前述含硅耐热稀土镁合金该合金的制备方法,所述方法包括:所述方法包括:原料预热、熔炼和后续热处理:This embodiment also relates to the preparation method of the aforementioned silicon-containing heat-resistant rare earth magnesium alloy. The method includes: the method includes: raw material preheating, smelting and subsequent heat treatment:
步骤1,原料预热:将原料镁锭、Mg-Si、Mg-Gd、Mg-Y和Mg-Zr中间合金进行预热至220℃;Step 1, raw material preheating: preheat raw material magnesium ingot, Mg-Si, Mg-Gd, Mg-Y and Mg-Zr master alloy to 220°C;
步骤2,熔炼:在SF6和CO2混合气体(SF6体积百分数为0.2%)保护下进行,包括如下步骤:(1)加镁:在电阻坩埚炉中加入纯镁,进行熔炼;(2)加Si:待镁完全熔化后,在660℃时加入Mg-Si中间合金并搅拌4分钟;(3)加Gd和Y:升温至740℃后加入Mg-Gd中间合金,待镁液温度回升至740℃时加入Mg-Y中间合金;(4)加Zr:升高镁液温度至790℃加入Mg-Zr中间合金;(5)精炼:在780℃保温约10分钟后,不断电精炼10分钟,精炼过程需充分搅拌;(6)铸造:精炼后在770℃静置25分钟,待镁液冷却至710℃撇去浮渣,用金属型模具浇铸,浇铸用钢模具预热至240℃,之后得含硅耐热稀土镁合金;Step 2, smelting: under the protection of SF 6 and CO 2 mixed gas (SF 6 volume percentage is 0.2%), including the following steps: (1) Adding magnesium: adding pure magnesium to a resistance crucible furnace for smelting; (2 ) Add Si: After the magnesium is completely melted, add the Mg-Si master alloy at 660°C and stir for 4 minutes; (3) Add Gd and Y: Add the Mg-Gd master alloy after the temperature rises to 740°C, and wait for the temperature of the magnesium liquid to rise Add Mg-Y master alloy when it reaches 740°C; (4) Add Zr: raise the temperature of magnesium liquid to 790°C and add Mg-Zr master alloy; Minutes, the refining process needs to be fully stirred; (6) Casting: After refining, stand at 770°C for 25 minutes, wait for the magnesium liquid to cool to 710°C to skim off the scum, cast with a metal mold, and preheat the steel mold for casting to 240°C , and then get silicon-containing heat-resistant rare earth magnesium alloy;
步骤3,后续热处理:在温度为500℃条件下,进行8h固溶处理,然后在温度为225℃条件下,进行16h时效处理,即可。Step 3, subsequent heat treatment: at a temperature of 500° C., solution treatment for 8 hours, and then at a temperature of 225° C., for 16 hours of aging treatment.
实施效果:本实施例制备的含硅耐热稀土镁合金在室温抗拉强度350MPa,屈服强度220MPa,延伸率8%;200℃抗拉强度320MPa,屈服强度205MPa,延伸率14%;200℃/80MPa条件下蠕变100小时变形量为0.052%。Implementation effect: the silicon-containing heat-resistant rare earth magnesium alloy prepared in this example has a tensile strength of 350MPa at room temperature, a yield strength of 220MPa, and an elongation of 8%; a tensile strength of 320MPa at 200°C, a yield strength of 205MPa, and an elongation of 14%; Under the condition of 80MPa, the creep deformation after 100 hours is 0.052%.
实施例3Example 3
本实施例涉及一种含硅耐热稀土镁合金,所述合金包含如下重量百分比的各组分:10%Gd,3%Y,2%Si和0.5%Zr,其余为Mg和不可避免的杂质(重量百分比小于0.02%),其中杂质元素含量为:Fe<0.005%,Cu<0.005%,Ni<0.002%,Ca<0.01%。This embodiment relates to a silicon-containing heat-resistant rare earth magnesium alloy, which contains the following components by weight percentage: 10% Gd, 3% Y, 2% Si and 0.5% Zr, and the rest is Mg and unavoidable impurities (weight percentage is less than 0.02%), wherein the content of impurity elements is: Fe<0.005%, Cu<0.005%, Ni<0.002%, Ca<0.01%.
本实施例还涉及前述含硅耐热稀土镁合金该合金的制备方法,所述方法包括:所述方法包括:原料预热、熔炼和后续热处理:This embodiment also relates to the preparation method of the aforementioned silicon-containing heat-resistant rare earth magnesium alloy. The method includes: the method includes: raw material preheating, smelting and subsequent heat treatment:
步骤1,原料预热:将原料镁锭、Mg-Si、Mg-Gd、Mg-Y和Mg-Zr中间合金进行预热至210℃;Step 1, raw material preheating: preheat raw material magnesium ingot, Mg-Si, Mg-Gd, Mg-Y and Mg-Zr master alloy to 210°C;
步骤2,熔炼:在SF6和CO2混合气体(SF6体积百分数为0.2%)保护下进行,包括如下步骤:(1)加镁:在电阻坩埚炉中加入纯镁,进行熔炼;(2)加Si:待镁完全熔化后,在670℃时加入Mg-Si中间合金并搅拌3分钟;(3)加Gd和Y:升温至750℃后加入Mg-Gd中间合金,待镁液温度回升至750℃时加入Mg-Y中间合金;(4)加Zr:升高镁液温度至790℃加入Mg-Zr中间合金;(5)精炼:在780℃保温约5分钟后,不断电精炼5分钟,精炼过程需充分搅拌;(6)铸造:精炼后在780℃静置20分钟,待镁液冷却至720℃撇去浮渣,用金属型模具浇铸,浇铸用钢模具预热至260℃,之后得含硅耐热稀土镁合金;Step 2, smelting: under the protection of SF 6 and CO 2 mixed gas (SF 6 volume percentage is 0.2%), including the following steps: (1) Adding magnesium: adding pure magnesium to a resistance crucible furnace for smelting; (2 ) Add Si: After the magnesium is completely melted, add the Mg-Si master alloy at 670°C and stir for 3 minutes; (3) Add Gd and Y: Add the Mg-Gd master alloy after the temperature rises to 750°C, and wait for the temperature of the magnesium liquid to rise Add Mg-Y master alloy at 750°C; (4) Add Zr: raise the temperature of magnesium liquid to 790°C and add Mg-Zr master alloy; Minutes, the refining process needs to be fully stirred; (6) Casting: After refining, stand at 780°C for 20 minutes, wait for the magnesium liquid to cool to 720°C to skim off the scum, cast with a metal mold, and preheat the steel mold for casting to 260°C , and then get silicon-containing heat-resistant rare earth magnesium alloy;
步骤3,后续热处理:在温度为490℃条件下,进行10h固溶处理,然后在温度为200℃条件下,进行50h时效处理,即可。Step 3, subsequent heat treatment: at a temperature of 490°C, perform a solution treatment for 10 hours, and then at a temperature of 200°C, perform an aging treatment for 50 hours.
实施效果:本实施例制备的含硅耐热稀土镁合金在室温抗拉强度360MPa,屈服强度230MPa,延伸率6%;200℃抗拉强度340MPa,屈服强度215MPa,延伸率12%;200℃/80MPa条件下蠕变100小时变形量为0.042%。Implementation effect: the silicon-containing heat-resistant rare earth magnesium alloy prepared in this example has a tensile strength of 360MPa at room temperature, a yield strength of 230MPa, and an elongation of 6%; a tensile strength of 340MPa at 200°C, a yield strength of 215MPa, and an elongation of 12%; Under the condition of 80MPa, the creep deformation after 100 hours is 0.042%.
实施例4Example 4
本实施例涉及一种含硅耐热稀土镁合金,所述合金包含如下重量百分比的各组分:5%Gd,8%Y,1.5%Si和0.4%Zr,其余为Mg和不可避免的杂质,其中杂质元素含量为:Fe<0.005%,Cu<0.005%,Ni<0.002%,Ca<0.01%。This embodiment relates to a silicon-containing heat-resistant rare earth magnesium alloy, which contains the following components by weight percentage: 5%Gd, 8%Y, 1.5%Si and 0.4%Zr, and the rest is Mg and unavoidable impurities , wherein the content of impurity elements is: Fe<0.005%, Cu<0.005%, Ni<0.002%, Ca<0.01%.
本实施例还涉及前述含硅耐热稀土镁合金该合金的制备方法,所述方法包括:所述方法包括:原料预热、熔炼和后续热处理:This embodiment also relates to the preparation method of the aforementioned silicon-containing heat-resistant rare earth magnesium alloy. The method includes: the method includes: raw material preheating, smelting and subsequent heat treatment:
步骤1,原料预热:将原料镁锭、Mg-Si、Mg-Gd、Mg-Y和Mg-Zr中间合金进行预热至180℃;Step 1, raw material preheating: preheating the raw material magnesium ingot, Mg-Si, Mg-Gd, Mg-Y and Mg-Zr master alloy to 180°C;
步骤2,熔炼:在SF6和CO2混合气体(SF6体积百分数为0.2%)保护下进行,包括如下步骤:(1)加镁:在电阻坩埚炉中加入纯镁,进行熔炼;(2)加Si:待镁完全熔化后,在670℃时加入Mg-Si中间合金并搅拌4分钟;(3)加Gd和Y:升温至730℃后加入Mg-Gd中间合金,待镁液温度回升至730℃时加入Mg-Y中间合金;(4)加Zr:升高镁液温度至785℃加入Mg-Zr中间合金;(5)精炼:在780℃保温约10分钟后,不断电精炼10分钟,精炼过程需充分搅拌;(6)铸造:精炼后在760℃静置25分钟,待镁液冷却至700℃撇去浮渣,用金属型模具浇铸,浇铸用钢模具预热至250℃,之后得含硅耐热稀土镁合金;Step 2, smelting: under the protection of SF 6 and CO 2 mixed gas (SF 6 volume percentage is 0.2%), including the following steps: (1) Adding magnesium: adding pure magnesium to a resistance crucible furnace for smelting; (2 ) Add Si: After the magnesium is completely melted, add the Mg-Si master alloy at 670°C and stir for 4 minutes; (3) Add Gd and Y: Add the Mg-Gd master alloy after the temperature rises to 730°C, and wait for the temperature of the magnesium liquid to rise Add Mg-Y master alloy when it reaches 730°C; (4) Add Zr: raise the temperature of magnesium liquid to 785°C and add Mg-Zr master alloy; Minutes, the refining process needs to be fully stirred; (6) Casting: After refining, stand at 760 ° C for 25 minutes, wait for the magnesium liquid to cool to 700 ° C to skim off the scum, cast with a metal mold, and the steel mold for casting is preheated to 250 ° C , and then get silicon-containing heat-resistant rare earth magnesium alloy;
步骤3,后续热处理:在温度为480℃条件下,进行20h固溶处理,然后在温度为200℃条件下,进行50h时效处理后,即可。Step 3, subsequent heat treatment: solution treatment for 20 hours at a temperature of 480°C, and aging treatment for 50 hours at a temperature of 200°C.
实施效果:本实施例制备的含硅耐热稀土镁合金在室温抗拉强度320MPa,屈服强度215MPa,延伸率7%;200℃抗拉强度295MPa,屈服强度205MPa,延伸率15%;200℃/80MPa条件下蠕变100小时变形量为0.067%。Implementation effect: the silicon-containing heat-resistant rare earth magnesium alloy prepared in this example has a tensile strength of 320MPa at room temperature, a yield strength of 215MPa, and an elongation of 7%; a tensile strength of 295MPa at 200°C, a yield strength of 205MPa, and an elongation of 15%; Under the condition of 80MPa, the creep deformation after 100 hours is 0.067%.
实施例5Example 5
本实施例涉及一种含硅耐热稀土镁合金,所述合金包含如下重量百分比的各组分:6%Gd,6%Y,0.3%Si和0.8%Zr,其余为Mg和不可避免的杂质,其中杂质元素含量为:Fe<0.005%,Cu<0.005%,Ni<0.002%,Ca<0.01%。This embodiment relates to a silicon-containing heat-resistant rare earth magnesium alloy, which contains the following components by weight percentage: 6%Gd, 6%Y, 0.3%Si and 0.8%Zr, and the rest is Mg and unavoidable impurities , wherein the content of impurity elements is: Fe<0.005%, Cu<0.005%, Ni<0.002%, Ca<0.01%.
本实施例还涉及前述含硅耐热稀土镁合金该合金的制备方法,所述方法包括:所述方法包括:原料预热、熔炼和后续热处理:This embodiment also relates to the preparation method of the aforementioned silicon-containing heat-resistant rare earth magnesium alloy. The method includes: the method includes: raw material preheating, smelting and subsequent heat treatment:
步骤1,原料预热:将原料镁锭、Mg-Si、Mg-Gd、Mg-Y和Mg-Zr中间合金进行预热至220℃;Step 1, raw material preheating: preheat raw material magnesium ingot, Mg-Si, Mg-Gd, Mg-Y and Mg-Zr master alloy to 220°C;
步骤2,熔炼:在含MgCl2、KCl、CaF2的镁合金熔剂保护下进行,包括如下步骤:Step 2, smelting: carried out under the protection of magnesium alloy flux containing MgCl 2 , KCl, CaF 2 , including the following steps:
(1)加镁:在电阻坩埚炉中加入纯镁,进行熔炼;(2)加Si:待镁完全熔化后,在680℃时加入Mg-Si中间合金并搅拌5分钟;(3)加Gd和Y:升温至740℃后加入Mg-Gd中间合金,待镁液温度回升至740℃时加入Mg-Y中间合金;(4)加Zr:升高镁液温度至790℃加入Mg-Zr中间合金;(5)精炼:在780℃保温约10分钟后,不断电精炼10分钟,精炼过程需充分搅拌;(6)铸造:精炼后在770℃静置25分钟,待镁液冷却至710℃撇去浮渣,用金属型模具浇铸,浇铸用钢模具预热至240℃,之后得含硅耐热稀土镁合金;(1) Magnesium addition: Add pure magnesium to the resistance crucible furnace for smelting; (2) Add Si: After magnesium is completely melted, add Mg-Si master alloy at 680°C and stir for 5 minutes; (3) Add Gd And Y: add Mg-Gd master alloy after heating up to 740°C, add Mg-Y master alloy when the temperature of magnesium liquid rises to 740°C; (4) Add Zr: raise the temperature of magnesium liquid to 790°C and add Mg-Zr intermediate Alloys; (5) Refining: After holding at 780°C for about 10 minutes, continue electric refining for 10 minutes, and the refining process needs to be fully stirred; (6) Casting: After refining, stand at 770°C for 25 minutes, and wait for the magnesium liquid to cool to 710°C Skim off the dross, cast with a metal mold, and preheat the steel mold for casting to 240°C, and then get a silicon-containing heat-resistant rare earth magnesium alloy;
步骤3,后续热处理:在温度为520℃条件下,进行4h固溶处理,然后在温度为200℃条件下,进行48h时效处理,即可。Step 3, subsequent heat treatment: at a temperature of 520°C, perform solution treatment for 4 hours, and then at a temperature of 200°C, perform aging treatment for 48 hours.
实施效果:本实施例制备的含硅耐热稀土镁合金在室温抗拉强度310MPa,屈服强度210MPa,延伸率8%;200℃抗拉强度290MPa,屈服强度200MPa,延伸率14%;200℃/80MPa条件下蠕变100小时变形量为0.07%。Implementation effect: the silicon-containing heat-resistant rare earth magnesium alloy prepared in this example has a tensile strength of 310MPa at room temperature, a yield strength of 210MPa, and an elongation of 8%; a tensile strength of 290MPa at 200°C, a yield strength of 200MPa, and an elongation of 14%; Under the condition of 80MPa, the creep deformation after 100 hours is 0.07%.
综上所述,本发明实现在合理的稀土元素总量下,获得优异的室温和高温强度及塑性,并且在保持合金的耐热性能的同时提高合金的耐磨性,获得综合性能优异的耐热镁合金。In summary, the present invention achieves excellent room temperature and high temperature strength and plasticity under a reasonable total amount of rare earth elements, and improves the wear resistance of the alloy while maintaining the heat resistance of the alloy, and obtains an excellent comprehensive performance of the alloy. hot magnesium alloy.
以上所述,仅是本发明的较佳实施例而已,并非对本发明做任何形式上的限制,任何未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均属于本发明技术方案的范围。The above are only preferred embodiments of the present invention, and are not intended to limit the present invention in any form. Any simple modifications made to the above embodiments according to the technical essence of the present invention are not deviated from the content of the technical solution of the present invention. , equivalent changes and modifications all belong to the scope of the technical solution of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310257384.0A CN103305738B (en) | 2013-06-25 | 2013-06-25 | Siliceous heat resisting magnesium-rare earth alloy and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310257384.0A CN103305738B (en) | 2013-06-25 | 2013-06-25 | Siliceous heat resisting magnesium-rare earth alloy and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103305738A true CN103305738A (en) | 2013-09-18 |
CN103305738B CN103305738B (en) | 2016-04-13 |
Family
ID=49131452
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310257384.0A Active CN103305738B (en) | 2013-06-25 | 2013-06-25 | Siliceous heat resisting magnesium-rare earth alloy and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103305738B (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104195396A (en) * | 2014-08-04 | 2014-12-10 | 上海交通大学 | Heat-resistant rare-earth magnesium alloy containing silicon, zinc and Gd(-Y) and preparation method thereof |
CN104928549A (en) * | 2015-06-16 | 2015-09-23 | 上海交通大学 | High-strength and high-elasticity-modulus casting Mg-RE alloy and preparation method thereof |
CN105483485A (en) * | 2015-12-08 | 2016-04-13 | 上海交通大学 | High-strength cast magnesium alloy containing Zn and heavy rare-earth Gd and preparation method of high-strength cast magnesium alloy |
CN105886815A (en) * | 2016-06-23 | 2016-08-24 | 陕西友力实业有限公司 | Method for preparing silicon-magnesium alloy by means of vacuum sintering |
CN106119582A (en) * | 2016-06-23 | 2016-11-16 | 陕西友力实业有限公司 | Utilize the method that microwave sintering prepares Si-Mg alloy |
CN109811224A (en) * | 2019-03-29 | 2019-05-28 | 南京航空航天大学 | High strength, toughness and heat resistance die-casting Mg-Y-Er alloy and preparation method thereof |
CN114525421A (en) * | 2022-01-25 | 2022-05-24 | 台山市中镁科技有限公司 | Magnesium alloy and preparation method and application thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101191168A (en) * | 2006-11-23 | 2008-06-04 | 北京有色金属研究总院 | Magnesium alloy and preparation method thereof |
US20130144290A1 (en) * | 2010-07-06 | 2013-06-06 | Ait Austrian Institute Of Technology Gmbh | Magnesium alloy |
-
2013
- 2013-06-25 CN CN201310257384.0A patent/CN103305738B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101191168A (en) * | 2006-11-23 | 2008-06-04 | 北京有色金属研究总院 | Magnesium alloy and preparation method thereof |
US20130144290A1 (en) * | 2010-07-06 | 2013-06-06 | Ait Austrian Institute Of Technology Gmbh | Magnesium alloy |
Non-Patent Citations (1)
Title |
---|
V.JANIK,ET AL.: "The elevated-temperature mechanical behavior of peak-aged Mg-10Gd-3Y-0.4Zr-Alloy", 《MATERIALS SCIENCE AND ENGINEERING A》 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104195396A (en) * | 2014-08-04 | 2014-12-10 | 上海交通大学 | Heat-resistant rare-earth magnesium alloy containing silicon, zinc and Gd(-Y) and preparation method thereof |
CN104928549A (en) * | 2015-06-16 | 2015-09-23 | 上海交通大学 | High-strength and high-elasticity-modulus casting Mg-RE alloy and preparation method thereof |
CN105483485A (en) * | 2015-12-08 | 2016-04-13 | 上海交通大学 | High-strength cast magnesium alloy containing Zn and heavy rare-earth Gd and preparation method of high-strength cast magnesium alloy |
CN105886815A (en) * | 2016-06-23 | 2016-08-24 | 陕西友力实业有限公司 | Method for preparing silicon-magnesium alloy by means of vacuum sintering |
CN106119582A (en) * | 2016-06-23 | 2016-11-16 | 陕西友力实业有限公司 | Utilize the method that microwave sintering prepares Si-Mg alloy |
CN109811224A (en) * | 2019-03-29 | 2019-05-28 | 南京航空航天大学 | High strength, toughness and heat resistance die-casting Mg-Y-Er alloy and preparation method thereof |
CN114525421A (en) * | 2022-01-25 | 2022-05-24 | 台山市中镁科技有限公司 | Magnesium alloy and preparation method and application thereof |
CN114525421B (en) * | 2022-01-25 | 2023-03-14 | 台山市中镁科技有限公司 | Magnesium alloy and preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
CN103305738B (en) | 2016-04-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103305738B (en) | Siliceous heat resisting magnesium-rare earth alloy and preparation method thereof | |
CN102978497B (en) | Casting magnesium alloy with high strength and toughness and preparation method thereof | |
CN101353747B (en) | Die-cast heat-resistant magnesium alloy and preparation method thereof | |
CN104694805B (en) | Low-cost multi-component heat-resistant magnesium alloy and preparation method of magnesium alloy | |
CN104928546B (en) | A kind of high strength and modulus casting magnesium-rare earth alloy and preparation method thereof | |
CN105018812B (en) | A kind of heat resistance magnesium alloy and preparation method thereof | |
CN102242298A (en) | Al and Zn strengthened Mg-Sn-RE-based high-toughness heat-resistant magnesium alloy | |
CN103421999A (en) | Rare earth-contained heat-resistant magnesium alloy and preparation method thereof | |
CN108385007A (en) | A kind of high performance heat resistant deformed magnesium alloy material of low cost and preparation method thereof | |
CN104630586B (en) | Flame-retardant and heat-resistant magnesium alloy and preparation method | |
CN104928550B (en) | A kind of high-strength high-elasticity modulus cast magnesium alloy and preparation method thereof | |
CN106834846A (en) | A kind of multicomponent heat-resistant corrosion-resistant magnesium alloy and preparation method | |
CN109957687A (en) | A kind of die-casting aluminum-silicon alloy and preparation method thereof | |
CN101012524A (en) | Compression casting heat-stable magnesium alloy | |
CN103266247B (en) | Superplastic high-strength heatproof magnesium alloy and preparation method thereof | |
CN102242299A (en) | Bi and Nd composite reinforced high-strength cast magnesium alloy and preparation method thereof | |
CN111254333B (en) | A kind of multi-element high-strength corrosion-resistant deformed magnesium alloy and preparation method thereof | |
CN103160721A (en) | High-hardness heat-resistant magnesium alloy | |
CN102071345A (en) | Mg-Zn-Cu-Zr alloy | |
CN109609824B (en) | A kind of high plasticity casting magnesium alloy and preparation method thereof | |
CN103469039B (en) | The magnesium-aluminum-zinc wrought magnesium alloys of a kind of calcic and rare earth samarium | |
CN105220046A (en) | A kind of Mg-Al-Zn alloy of Sn, Mn composite strengthening | |
CN102094125B (en) | Process method for preparing magnesium alloy through electro-slag remelting | |
CN103225031B (en) | A kind of Magnesium-zinc-mangaalloytin-neodymium alloytin-neodymium and preparation method thereof | |
CN104313426B (en) | Alkaline-earth element modified heat-resistant magnesium alloy and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |