CN103296205A - Low power consumption resistive random access memory and manufacturing method thereof - Google Patents

Low power consumption resistive random access memory and manufacturing method thereof Download PDF

Info

Publication number
CN103296205A
CN103296205A CN2013102730381A CN201310273038A CN103296205A CN 103296205 A CN103296205 A CN 103296205A CN 2013102730381 A CN2013102730381 A CN 2013102730381A CN 201310273038 A CN201310273038 A CN 201310273038A CN 103296205 A CN103296205 A CN 103296205A
Authority
CN
China
Prior art keywords
silicon dioxide
layer
resistive
power
sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2013102730381A
Other languages
Chinese (zh)
Inventor
张楷亮
孙阔
王芳
王宝林
冯玉林
赵金石
程文可
关雪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University of Technology
Original Assignee
Tianjin University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University of Technology filed Critical Tianjin University of Technology
Priority to CN2013102730381A priority Critical patent/CN103296205A/en
Publication of CN103296205A publication Critical patent/CN103296205A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Memories (AREA)

Abstract

一种低功耗阻变存储器,由下电极、阻变层和上电极组成并构成叠层结构,其中阻变层为氧化钒薄膜和二氧化硅薄膜叠层结构,各层的厚度分别为:下电极50-200nm、氧化钒薄膜5-100nm、二氧化硅薄膜1-50nm、上电极50-200nm;其制备方法是分别通过磁控溅射、离子束溅射或电子束蒸发方法依次制备各层薄膜。本发明的优点是:该阻变存储器通过在电极和氧化钒薄膜间插入一层二氧化硅,可有效降低了阻变存储器件的reset电流,降低器件的功耗,相对于单层的氧化钒薄膜的阻变器件,功耗能可降低一个数量级。

Figure 201310273038

A low-power resistive variable memory, which is composed of a lower electrode, a resistive layer and an upper electrode and forms a laminated structure, wherein the resistive layer is a laminated structure of a vanadium oxide film and a silicon dioxide film, and the thicknesses of each layer are: The lower electrode is 50-200nm, the vanadium oxide film is 5-100nm, the silicon dioxide film is 1-50nm, and the upper electrode is 50-200nm; the preparation method is to sequentially prepare each layer film. The advantages of the present invention are: the resistive memory can effectively reduce the reset current of the resistive memory device by inserting a layer of silicon dioxide between the electrode and the vanadium oxide film, and reduce the power consumption of the device. Compared with a single layer of vanadium oxide Thin-film resistive switching devices can reduce power consumption by an order of magnitude.

Figure 201310273038

Description

一种低功耗阻变存储器及其制备方法A low-power resistive memory and its preparation method

技术领域 technical field

 本发明属于微电子技术领域,特别是一种低功耗阻变存储器及其制备方法。 The invention belongs to the technical field of microelectronics, in particular to a low-power resistive variable memory and a preparation method thereof.

背景技术 Background technique

近年来计算机技术、互联网技术飞速发展,非挥发性存储器件在半导体行业中扮演越来越重要的角色。而目前市场上非挥发性存储器仍以闪存(Flash)为主流,但随着半导体技术节点的不断向前推进,在22nm以下的特征尺寸,基于传统浮栅结构的Flash技术正遭受到严重的技术瓶颈。阻变存储器(RRAM)由于其阻变特性发生在几个纳米的区域,所以阻变存储器可以高密度集成;高密度集成的基本条件是器件必须满足低功耗的要求,才能解决器件高密度局部散热的问题。 In recent years, with the rapid development of computer technology and Internet technology, non-volatile memory devices play an increasingly important role in the semiconductor industry. At present, flash memory (Flash) is still the mainstream of non-volatile memory in the market, but with the continuous advancement of semiconductor technology nodes, the feature size below 22nm, the Flash technology based on the traditional floating gate structure is suffering serious technical challenges. bottleneck. Resistive RAM (RRAM) can be integrated at a high density because its resistive characteristics occur in a region of a few nanometers; the basic condition for high-density integration is that the device must meet the requirements of low power consumption in order to solve the high-density partial The problem of heat dissipation.

因此,研究人员在探索改进阻变存储器中,都在追求较低的操作电流(主要由reset电流来评判)、较低的功耗。L. Goux等人在文献:Ultralow sub-500nA operating current high-performance TiN\Al2O3\HfO2\Hf\TiN bipolar RRAM achieved through understanding-based stack-engineering 中通过在界面处插入Al2O3层获得了500nA的reset操作电流。H.Y.Lee等人在文献:Low Power and High Speed Bipolar Switching with A Thin Reactive Ti Buffer Layer in Robust HfO2 Based RRAM中通过在TiN和HfOx的界面插入一层Ti层实现了100uA左右的reset电流和较高的擦洗次数。  Therefore, researchers are pursuing lower operating current (mainly judged by the reset current) and lower power consumption when exploring and improving RRAM. L. Goux et al. In the literature: Ultralow sub-500nA operating current high-performance TiN\Al 2 O 3 \HfO 2 \Hf\TiN bipolar RRAM achieved through understanding-based stack-engineering by inserting Al 2 O 3 at the interface layer has a reset operating current of 500nA. HYLee et al . in the literature: Low Power and High Speed Bipolar Switching with A Thin Reactive Ti Buffer Layer in Robust HfO 2 Based RRAM achieved a reset current of about 100uA and a higher of scrubbing times.

二氧化硅作为一种与CMOS兼容的材料,有廉价、容易制备的优点。但是到目前为止仍然没有文献和专利报道通过界面处插入一层二氧化硅能降低器件的功耗。 As a material compatible with CMOS, silicon dioxide has the advantages of being cheap and easy to prepare. But so far there are still no literature and patent reports that inserting a layer of silicon dioxide at the interface can reduce the power consumption of the device.

发明内容 Contents of the invention

本发明的目的是针对阻变存储器在高密度集成时存在的功耗问题,提供一种低功耗阻变存储器及其制备方法,该阻变存储器通过使用在电极和氧化钒和之间插入一层二氧化硅介质层,可以有效地降低阻变存储器件的功耗,同时提高了高阻态的一致性。 The object of the present invention is to provide a low power consumption resistive memory and its preparation method for the power consumption problem of resistive memory in high-density integration. The resistive memory is inserted between the electrode and vanadium oxide A silicon dioxide dielectric layer can effectively reduce the power consumption of the resistive memory device, and at the same time improve the consistency of the high-resistance state.

本发明的技术方案: Technical scheme of the present invention:

一种低功耗阻变存储器,由下电极、阻变层和上电极组成并构成叠层结构,其中阻变层为氧化钒薄膜和二氧化硅薄膜叠层结构,各层的厚度分别为:下电极50-200 nm、氧化钒薄膜5-100nm、二氧化硅薄膜1-50nm、上电极50-200 nm。 A low-power resistive variable memory, which is composed of a lower electrode, a resistive layer and an upper electrode and forms a laminated structure, wherein the resistive layer is a laminated structure of a vanadium oxide film and a silicon dioxide film, and the thicknesses of each layer are: The lower electrode is 50-200 nm, the vanadium oxide film is 5-100 nm, the silicon dioxide film is 1-50 nm, and the upper electrode is 50-200 nm.

所述上、下电极的材料为导电金属、金属合金和导电金属化合物,其中导电金属为Al、Ti、Ni、Cu、Ag、W、Au或Pt;金属合金为Pt/Ti、、Cu/Ti、Cu/Au、或Cu/Al且比例任意;导电金属化合物为TiN、TaN、ITO或AZO。 The materials of the upper and lower electrodes are conductive metals, metal alloys and conductive metal compounds, wherein the conductive metals are Al, Ti, Ni, Cu, Ag, W, Au or Pt; the metal alloys are Pt/Ti, Cu/Ti , Cu/Au, or Cu/Al in any ratio; the conductive metal compound is TiN, TaN, ITO or AZO.

一种所述低功耗阻变存储器的制备方法,以硅片为衬底,利用热氧化的方法首先制备二氧化硅绝缘层,再在二氧化硅绝缘层上利用离子束溅射的方法制备Ti粘附层,然后在Ti粘附层上制备低功耗阻变存储器,步骤如下: A method for preparing the low-power resistive variable memory, using a silicon wafer as a substrate, first preparing a silicon dioxide insulating layer by thermal oxidation, and then preparing the silicon dioxide insulating layer by ion beam sputtering Ti adhesion layer, and then prepare low power consumption resistive variable memory on the Ti adhesion layer, the steps are as follows:

1)在Ti粘附层上采用磁控溅射工艺或电子束蒸发工艺制备下电极; 1) Prepare the lower electrode on the Ti adhesion layer by magnetron sputtering process or electron beam evaporation process;

2)在下电极上采用直流溅射或射频溅射法沉积氧化钒薄膜,溅射工艺条件为:本底真空小于10-4 Pa、衬底温度为18-400℃、工作压强0.1-2Pa、氧分压为5-30%、溅射功率为50-250W; 2) The vanadium oxide thin film is deposited on the lower electrode by DC sputtering or radio frequency sputtering. The partial pressure is 5-30%, and the sputtering power is 50-250W;

3)在氧化钒薄膜上采用化学气相沉积(CVD)或物理气相沉积(PVD)制备二氧化硅薄膜,化学气相沉积工艺条件为:采用PECVD方法制备,本底真空小于10-5Pa、工作压强为0.1-5Pa、射频功率为50-300W、反应气体为SiH4 和N2O,SiH4流量为50-600sccm、N2O流量为20-50sccm;物理气相沉积工艺条件为:溅射方法为射频磁控溅射,以二氧化硅为靶材,本底真空小于10-4 Pa、衬底温度为18-800℃、工作压强0.1-2Pa、溅射功率为50-250W; 3) The silicon dioxide film is prepared on the vanadium oxide film by chemical vapor deposition ( CVD) or physical vapor deposition (PVD). 0.1-5Pa, RF power 50-300W, reaction gas SiH 4 and N 2 O, SiH 4 flow 50-600sccm, N 2 O flow 20-50sccm; physical vapor deposition process conditions: sputtering method is RF magnetron sputtering, with silicon dioxide as the target material, the background vacuum is less than 10 -4 Pa, the substrate temperature is 18-800°C, the working pressure is 0.1-2Pa, and the sputtering power is 50-250W;

4)在二氧化硅薄膜上采用直流磁控溅射工艺或电子束蒸发工艺制备上电极。 4) The upper electrode is prepared on the silicon dioxide film by DC magnetron sputtering process or electron beam evaporation process.

所述制备下电极、上电极的工艺参数,磁控溅射工艺条件为:以金属靶为靶材,本底真空小于10-4 Pa、衬底温度为18-800℃、工作压强0.1-2Pa、溅射功率为50-250W;电子束蒸发工艺条件为:本底真空小于10-4 Pa,采用低熔点的金属作为蒸发源,加热方式为干锅加热或电子束加热。 The process parameters for preparing the lower electrode and the upper electrode, the magnetron sputtering process conditions are as follows: a metal target is used as the target material, the background vacuum is less than 10 -4 Pa, the substrate temperature is 18-800°C, and the working pressure is 0.1-2Pa , The sputtering power is 50-250W; the electron beam evaporation process conditions are: the background vacuum is less than 10 -4 Pa, the metal with a low melting point is used as the evaporation source, and the heating method is dry pot heating or electron beam heating.

所述制备好上电极的器件通过PECVD的方法生长一层二氧化硅作为保护层,工艺参数为:本底真空小于10-5Pa、工作压强为0.1-5Pa、射频功率为50-300W、反应气体为SiH4 和N2O,SiH4 流量为50-600sccm、N2O流量为20-50sccm。 The device on which the upper electrode has been prepared grows a layer of silicon dioxide as a protective layer by PECVD. The process parameters are: the background vacuum is less than 10 -5 Pa, the working pressure is 0.1-5Pa, the radio frequency power is 50-300W, the reaction The gas is SiH 4 and N 2 O, the flow rate of SiH 4 is 50-600 sccm, and the flow rate of N 2 O is 20-50 sccm.

本发明的优点和有益效果是: Advantage and beneficial effect of the present invention are:

该阻变存储器通过在电极和氧化钒薄膜间插入一层二氧化硅,可有效降低了阻变存储器件的reset电流,降低器件的功耗,相对于单层的氧化钒薄膜的阻变器件,功耗能可降低一个数量级。 By inserting a layer of silicon dioxide between the electrode and the vanadium oxide film, the resistive memory can effectively reduce the reset current of the resistive memory device and reduce the power consumption of the device. Compared with the resistive device with a single layer of vanadium oxide film, Power consumption can be reduced by an order of magnitude.

附图说明 Description of drawings

图 1为该低功耗阻变存储器结构示意图。 Figure 1 is a schematic diagram of the structure of the low-power resistive memory.

图中:1.下电极    2.氧化钒薄膜    3.二氧化硅薄膜    4.上电极 In the figure: 1. Lower electrode 2. Vanadium oxide film 3. Silicon dioxide film 4. Upper electrode

图 2为该阻变存储器的电流电压特性曲线。 Figure 2 is the current-voltage characteristic curve of the RRAM.

图 3为该阻变存储器擦写操作(endurance)测试图。 Figure 3 is a test diagram of the resistive memory erase and write operation (endurance).

具体实施方式 Detailed ways

实施例:Example:

一种低功耗阻变存储器,如图1所示,由铜下电极1、阻变层和铝上电极4组成并构成叠层结构,其中阻变层为氧化钒薄膜3和二氧化硅薄膜4叠层结构,各层的厚度分别为:铜下电极100 nm、氧化钒薄膜70nm、二氧化硅薄膜10nm、铝上电极100 nm。 A low-power resistive variable memory, as shown in Figure 1, consists of a copper lower electrode 1, a resistive layer and an aluminum upper electrode 4 and forms a stacked structure, wherein the resistive layer is a vanadium oxide film 3 and a silicon dioxide film 4 laminated structure, the thickness of each layer is: copper lower electrode 100nm, vanadium oxide thin film 70nm, silicon dioxide thin film 10nm, aluminum upper electrode 100nm.

该阻变存储器的制备方法,以硅片为衬底,利用热氧化的方法首先制备二氧化硅绝缘层,再在二氧化硅绝缘层上利用离子束溅射的方法制备5 nm厚的Ti粘附层,然后在Ti粘附层上制备低功耗阻变存储器,步骤如下: The preparation method of the resistive variable memory uses a silicon wafer as a substrate, firstly prepares a silicon dioxide insulating layer by thermal oxidation, and then prepares a 5 nm thick Ti paste on the silicon dioxide insulating layer by ion beam sputtering. Adhesive layer, and then prepare a low-power resistive variable memory on the Ti adhesive layer, the steps are as follows:

1)在Ti粘附层上采用直流磁控溅射工艺制备下电极,直流磁控溅射工艺条件为:以金属靶为靶材,本底真空5×10-4 Pa、衬底温度为300℃、工作压强0.5Pa、溅射功率为50W; 1) The lower electrode was prepared on the Ti adhesion layer by DC magnetron sputtering process. The DC magnetron sputtering process conditions were as follows: a metal target was used as the target material, the background vacuum was 5×10 -4 Pa, and the substrate temperature was 300 ℃, working pressure 0.5Pa, sputtering power 50W;

2)在下电极上采用射频磁控溅射制备70nm厚的氧化钒薄膜,溅射工艺条件为:直径Φ60mm氧化钒靶材,溅射模式为射频(RF)磁控溅射,本底真空小于5×10-4 Pa、衬底温度为22℃、工作压强1Pa、溅射功率为100W,反应气体O2、Ar流量分比为为16、64 Sccm; 2) A 70nm thick vanadium oxide film is prepared on the lower electrode by radio frequency magnetron sputtering. The sputtering process conditions are: a diameter of Φ60mm vanadium oxide target, the sputtering mode is radio frequency (RF) magnetron sputtering, and the background vacuum is less than 5 ×10 -4 Pa, the substrate temperature is 22°C, the working pressure is 1Pa, the sputtering power is 100W, and the reaction gas O 2 and Ar flow ratios are 16 and 64 Sccm;

3)在氧化钒薄膜上采用射频磁控溅射工艺沉积10nm二氧化硅薄膜, 溅射工艺:直径Φ60mm二氧化硅靶材,溅射模式为射频(RF)磁控溅射,本底真空小于5×10-4 Pa、衬底温度为22℃、工作压强1Pa、溅射功率为100W,反应气体Ar流量20 Sccm; 3) Deposit 10nm silicon dioxide film on the vanadium oxide film by radio frequency magnetron sputtering process, sputtering process: diameter Φ60mm silicon dioxide target, sputtering mode is radio frequency (RF) magnetron sputtering, the background vacuum is less than 5×10 -4 Pa, the substrate temperature is 22°C, the working pressure is 1Pa, the sputtering power is 100W, and the reaction gas Ar flow rate is 20 Sccm;

4)在二氧化硅薄膜上采用直流磁控溅射工艺制备上电极,直流磁控溅射工艺条件为:以金属靶为靶材,本底真空5×10-4 Pa、衬底温度为300℃、工作压强1Pa、溅射功率为100W; 4) The upper electrode is prepared on the silicon dioxide film by DC magnetron sputtering process. The DC magnetron sputtering process conditions are as follows: a metal target is used as the target material, the background vacuum is 5×10 -4 Pa, and the substrate temperature is 300 ℃, working pressure 1Pa, sputtering power 100W;

5)将制备好上电极的器件通过PECVD的方法生长一层二氧化硅作为保护层,工艺参数为:本底真空5×10-4Pa、工作压强为3Pa、射频功率为150W、反应气体为SiH4 和N2O,SiH4 流量为50sccm、N2O流量为20sccm。 5) Grow a layer of silicon dioxide as a protective layer on the device with the upper electrode prepared by PECVD. The process parameters are: background vacuum 5×10 -4 Pa, working pressure 3 Pa, radio frequency power 150W, reaction gas SiH 4 and N 2 O, the SiH 4 flow rate is 50 sccm, and the N 2 O flow rate is 20 sccm.

电学特性通过半导体参数分析仪测试,图 2为该阻变存储器的电流电压特性曲线,图中表明:该器件的电学特性为典型的双极性特性,限流为5μA时reset电流为2μA,得到了比较低的功耗。图3为该器件的擦写的循环次数,图中表明该器件在直流扫描模式下有800次的循环次数,并且高阻态有较好的一致性。 The electrical characteristics are tested by a semiconductor parameter analyzer. Figure 2 is the current-voltage characteristic curve of the resistive variable memory. The figure shows that the electrical characteristics of the device are typical bipolar characteristics, and the reset current is 2 μA when the current limit is 5 μA. A relatively low power consumption. Figure 3 shows the number of erasing and writing cycles of the device, which shows that the device has a cycle number of 800 in the DC scanning mode, and the high-impedance state has a good consistency.

Claims (5)

1.一种低功耗阻变存储器,其特征在于:由下电极、阻变层和上电极组成并构成叠层结构,其中阻变层为氧化钒薄膜和二氧化硅薄膜叠层结构,各层的厚度分别为:下电极50-200 nm、氧化钒薄膜5-100nm、二氧化硅薄膜1-50nm、上电极50-200 nm。 1. A low-power resistive variable memory, characterized in that: it is composed of a lower electrode, a resistive layer and an upper electrode and forms a stacked structure, wherein the resistive layer is a vanadium oxide thin film and a silicon dioxide thin film stacked structure, each The thicknesses of the layers are: 50-200 nm for the lower electrode, 5-100 nm for the vanadium oxide film, 1-50 nm for the silicon dioxide film, and 50-200 nm for the upper electrode. 2.根据权利要求1所低功耗阻变存储器,其特征在于:述所述上、下电极的材料为导电金属、金属合金和导电金属化合物,其中导电金属为Al、Ti、Ni、Cu、Ag、W、Au或Pt;金属合金为Pt/Ti、、Cu/Ti、Cu/Au、或Cu/Al且比例任意;导电金属化合物为TiN、TaN、ITO或AZO。 2. The low power consumption resistive variable memory according to claim 1, wherein the materials of the upper and lower electrodes are conductive metals, metal alloys and conductive metal compounds, wherein the conductive metals are Al, Ti, Ni, Cu, Ag, W, Au or Pt; the metal alloy is Pt/Ti, Cu/Ti, Cu/Au, or Cu/Al in any ratio; the conductive metal compound is TiN, TaN, ITO or AZO. 3.一种如权利要求1所述低功耗阻变存储器的制备方法,其特征在于:以硅片为衬底,利用热氧化的方法首先制备二氧化硅绝缘层,再在二氧化硅绝缘层上利用离子束溅射的方法制备Ti粘附层,然后在Ti粘附层上制备低功耗阻变存储器,步骤如下: 3. A method for preparing a low-power resistive variable memory as claimed in claim 1, characterized in that: a silicon wafer is used as a substrate, and a silicon dioxide insulating layer is first prepared by thermal oxidation, and then a silicon dioxide insulating layer is formed on the silicon dioxide insulating layer. The Ti adhesion layer is prepared by ion beam sputtering on the layer, and then the low power consumption resistive memory is prepared on the Ti adhesion layer. The steps are as follows: 1)在Ti粘附层上采用磁控溅射工艺或电子束蒸发工艺制备下电极; 1) Prepare the lower electrode on the Ti adhesion layer by magnetron sputtering process or electron beam evaporation process; 2)在下电极上采用直流溅射或射频溅射法沉积氧化钒薄膜,溅射工艺条件为:本底真空小于10-4 Pa、衬底温度为18-400℃、工作压强0.1-2Pa、氧分压为5-30%、溅射功率为50-250W; 2) The vanadium oxide thin film is deposited on the lower electrode by DC sputtering or radio frequency sputtering. The partial pressure is 5-30%, and the sputtering power is 50-250W; 3)在氧化钒薄膜上采用化学气相沉积(CVD)或物理气相沉积(PVD)制备二氧化硅薄膜,化学气相沉积工艺条件为:采用PECVD方法制备,本底真空小于10-5Pa、工作压强为0.1-5Pa、射频功率为50-300W、反应气体为SiH4 和N2O,SiH4流量为50-600sccm、N2O流量为20-50sccm;物理气相沉积工艺条件为:溅射方法为射频磁控溅射,以二氧化硅为靶材,本底真空小于10-4 Pa、衬底温度为18-800℃、工作压强0.1-2Pa、溅射功率为50-250W; 3) The silicon dioxide film is prepared on the vanadium oxide film by chemical vapor deposition ( CVD) or physical vapor deposition (PVD). 0.1-5Pa, RF power 50-300W, reaction gas SiH 4 and N 2 O, SiH 4 flow 50-600sccm, N 2 O flow 20-50sccm; physical vapor deposition process conditions: sputtering method is RF magnetron sputtering, with silicon dioxide as the target material, the background vacuum is less than 10 -4 Pa, the substrate temperature is 18-800°C, the working pressure is 0.1-2Pa, and the sputtering power is 50-250W; 4)在二氧化硅薄膜上采用直流磁控溅射工艺或电子束蒸发工艺制备上电极。 4) The upper electrode is prepared on the silicon dioxide film by DC magnetron sputtering process or electron beam evaporation process. 4.根据权利要求3所述低功耗阻变存储器的制备方法,其特征在于:所述制备下电极、上电极的工艺参数,磁控溅射工艺条件为:以金属靶为靶材,本底真空小于10-4 Pa、衬底温度为18-800℃、工作压强0.1-2Pa、溅射功率为50-250W;电子束蒸发工艺条件为:本底真空小于10-4 Pa,采用低熔点的金属作为蒸发源,加热方式为干锅加热或电子束加热。 4. The preparation method of the low-power resistive memory according to claim 3, characterized in that: the process parameters for preparing the lower electrode and the upper electrode, the magnetron sputtering process conditions are: using a metal target as the target material, the The bottom vacuum is less than 10 -4 Pa, the substrate temperature is 18-800°C, the working pressure is 0.1-2Pa, and the sputtering power is 50-250W; the electron beam evaporation process conditions are: the background vacuum is less than 10 -4 Pa, and the low melting point The metal is used as the evaporation source, and the heating method is dry pan heating or electron beam heating. 5.根据权利要求3所述低功耗阻变存储器的制备方法,其特征在于:所述制备好上电极的器件通过PECVD的方法生长一层二氧化硅作为保护层,工艺参数为:本底真空小于10-5Pa、工作压强为0.1-5Pa、射频功率为50-300W、反应气体为SiH4 和N2O,SiH4 流量为50-600sccm、N2O流量为20-50sccm。 5. according to the preparation method of the described low-power resistive variable memory of claim 3, it is characterized in that: the device that described upper electrode is prepared grows a layer of silicon dioxide as protective layer by the method for PECVD, and process parameter is: background The vacuum is less than 10 -5 Pa, the working pressure is 0.1-5Pa, the radio frequency power is 50-300W, the reaction gas is SiH 4 and N 2 O, the flow rate of SiH 4 is 50-600 sccm, and the flow rate of N 2 O is 20-50 sccm.
CN2013102730381A 2013-07-01 2013-07-01 Low power consumption resistive random access memory and manufacturing method thereof Pending CN103296205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2013102730381A CN103296205A (en) 2013-07-01 2013-07-01 Low power consumption resistive random access memory and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2013102730381A CN103296205A (en) 2013-07-01 2013-07-01 Low power consumption resistive random access memory and manufacturing method thereof

Publications (1)

Publication Number Publication Date
CN103296205A true CN103296205A (en) 2013-09-11

Family

ID=49096772

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2013102730381A Pending CN103296205A (en) 2013-07-01 2013-07-01 Low power consumption resistive random access memory and manufacturing method thereof

Country Status (1)

Country Link
CN (1) CN103296205A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109704596A (en) * 2019-03-01 2019-05-03 昆山福钻新材料科技有限公司 A kind of antireflective conductive film of index matching and preparation method thereof
CN109980083A (en) * 2019-04-17 2019-07-05 河南大学 A kind of small area electrode resistance-variable storing device of filament mechanism and preparation method thereof
CN113130741A (en) * 2021-02-26 2021-07-16 华中科技大学 Vanadium oxide gate tube with high-heat-resistance heat-insulation layer and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1783336A (en) * 2004-08-21 2006-06-07 三星电子株式会社 Antiferromagnetic/paramagnetic resistive device,non-volatile memory and method for fabricating the same
CN101542728A (en) * 2006-11-22 2009-09-23 日本电气株式会社 Nonvolatile storage device
US20100155684A1 (en) * 2008-12-22 2010-06-24 Electronics And Telecommunications Research Institute Non-volatile memory device and method of forming the same
CN102916129A (en) * 2012-11-07 2013-02-06 天津理工大学 Resistance random access memory based on vanadium oxide/zinc oxide laminated structure and preparation method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1783336A (en) * 2004-08-21 2006-06-07 三星电子株式会社 Antiferromagnetic/paramagnetic resistive device,non-volatile memory and method for fabricating the same
CN101542728A (en) * 2006-11-22 2009-09-23 日本电气株式会社 Nonvolatile storage device
US20100155684A1 (en) * 2008-12-22 2010-06-24 Electronics And Telecommunications Research Institute Non-volatile memory device and method of forming the same
CN102916129A (en) * 2012-11-07 2013-02-06 天津理工大学 Resistance random access memory based on vanadium oxide/zinc oxide laminated structure and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109704596A (en) * 2019-03-01 2019-05-03 昆山福钻新材料科技有限公司 A kind of antireflective conductive film of index matching and preparation method thereof
CN109980083A (en) * 2019-04-17 2019-07-05 河南大学 A kind of small area electrode resistance-variable storing device of filament mechanism and preparation method thereof
CN109980083B (en) * 2019-04-17 2024-06-07 河南大学 Small-area electrode resistance random access memory with filament mechanism and preparation method thereof
CN113130741A (en) * 2021-02-26 2021-07-16 华中科技大学 Vanadium oxide gate tube with high-heat-resistance heat-insulation layer and preparation method thereof
CN113130741B (en) * 2021-02-26 2022-09-13 华中科技大学 A kind of vanadium oxide gate tube with high thermal resistance thermal insulation layer and preparation method thereof

Similar Documents

Publication Publication Date Title
CN103311435B (en) Based on the resistance-variable storing device and preparation method thereof of vanadium oxide/aluminium oxide laminated construction
Lian et al. Resistance switching characteristics and mechanisms of MXene/SiO2 structure-based memristor
Lee et al. Forming-free resistive switching behaviors in Cr-embedded Ga2O3 thin film memories
Simanjuntak et al. Enhanced switching uniformity in AZO/ZnO1− x/ITO transparent resistive memory devices by bipolar double forming
CN104795494B (en) GeTe/Sb superlattice phase-change thin-film material for high-speed phase-change memory and preparation method thereof
CN111463346B (en) OTS gating material, OTS gating unit, preparation method of OTS gating unit and memory
CN102916129B (en) Resistance random access memory based on vanadium oxide/zinc oxide laminated structure and preparation method thereof
CN103151459B (en) Hafnium-oxynitride-based low-power consumption resistive random access memory and preparation method for same
CN104733612B (en) A kind of resistance-variable storing device and preparation method thereof
CN103035840A (en) Resistive random access memory and preparation method thereof
CN102194995A (en) Zinc-oxide-based polarity-controlled resistive random-access memory (RRAM) and manufacturing method thereof
CN106374043A (en) A kind of Si-Sb-Se nano phase change film material and its preparation method and application
CN103682089A (en) High-speed, high-density and lower power consumption phase-change memory unit and preparation method thereof
CN103474571B (en) Resistance memory component and manufacturing method thereof
CN101931049B (en) Anti-fatigue phase change storage unit with low power consumption and preparation method thereof
CN105977379B (en) A kind of oxycarbide film and resistance-variable storing device
CN105552220A (en) Silicon oxide thin film based low power consumption resistive random access memory and preparation method therefor
CN103427022B (en) The preparation method comprising the phase change storage structure of sandwich type electrode
CN103296205A (en) Low power consumption resistive random access memory and manufacturing method thereof
CN103794621B (en) A kind of bidirectional current limiting device and preparation method thereof
CN102593350B (en) Phase change memory cell and producing method thereof
CN105514267B (en) A kind of low-power consumption memristor based on amorphous Si C thin film and preparation method thereof
CN111785830A (en) Resistive memory based on gallium oxide film and preparation method thereof
CN107240642A (en) A kind of complementary type resistance-variable storing device and preparation method thereof
CN105633279A (en) Phase-change memory unit comprising partially defined phase-change material structures and fabrication method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20130911

RJ01 Rejection of invention patent application after publication