CN103293419A - A Method for Evaluating Impulse Characteristics of Grounding Devices - Google Patents
A Method for Evaluating Impulse Characteristics of Grounding Devices Download PDFInfo
- Publication number
- CN103293419A CN103293419A CN2013102145867A CN201310214586A CN103293419A CN 103293419 A CN103293419 A CN 103293419A CN 2013102145867 A CN2013102145867 A CN 2013102145867A CN 201310214586 A CN201310214586 A CN 201310214586A CN 103293419 A CN103293419 A CN 103293419A
- Authority
- CN
- China
- Prior art keywords
- grounding
- grounding device
- impact
- change curve
- horizontal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种接地装置接地冲击特性的评估技术,特别涉及一种接地装置冲击特性的评估方法。The invention relates to a technique for evaluating the grounding impact characteristics of a grounding device, in particular to a method for evaluating the grounding impact characteristics of a grounding device.
背景技术Background technique
在电力系统中,雷击是造成输配电线路闪络的主要原因之一。在我国跳闸率比较高的地区,高压线路总跳闸次数中由雷击引起的次数约占总数的40%-70%。为了防止人身遭受电击、保障电力系统的正常运行、防止雷击和静电的危害,需要采取一定的接地系统。国内外的运行经验和理论分析表明,有效降低杆塔接地电阻是改善输电线路直击雷保护效果最为有效的措施。In the power system, lightning strike is one of the main causes of flashover of transmission and distribution lines. In areas with a relatively high trip rate in my country, the number of trips caused by lightning strikes accounts for about 40%-70% of the total trip times of high-voltage lines. In order to prevent people from electric shock, ensure the normal operation of the power system, and prevent lightning strikes and static electricity, a certain grounding system is required. The operation experience and theoretical analysis at home and abroad show that effectively reducing the grounding resistance of towers is the most effective measure to improve the protection effect of direct lightning strikes on transmission lines.
接地电阻的大小不仅与接地电极的几何大小及形状结构相关,还和大地的结构、土壤的电阻率有关,在雷电冲击电流流过时还和流经接地电极的冲击电流的幅值和波形有关。但对于10kV配电网的杆塔防雷接地,由于雷电流的幅值大,等值频率高,使流过接地装置的电流密度增大,并由于电流冲击特性而会引起一系列复杂的过渡过程。所以雷击杆塔、避雷线或雷击线路经由避雷器,雷电流通过接地装置散流到大地中形成的地电位,起作用的是冲击接地电阻而不是工频接地电阻。The size of the grounding resistance is not only related to the geometric size and shape structure of the grounding electrode, but also related to the structure of the earth and the resistivity of the soil. When the lightning impulse current flows, it is also related to the amplitude and waveform of the impulse current flowing through the grounding electrode. But for the tower lightning protection grounding of 10kV distribution network, due to the large amplitude of lightning current and high equivalent frequency, the current density flowing through the grounding device will increase, and a series of complicated transition processes will be caused due to the current impact characteristics . Therefore, the lightning strike tower, lightning protection line or lightning strike line passes through the arrester, and the ground potential formed by the lightning current flowing through the grounding device to the ground is the impact grounding resistance rather than the power frequency grounding resistance.
由于10kV配电线路网架结构复杂,点多面广,整体绝缘水平低下,杆塔接地装置通常与避雷器一起安装架设,所以受到安装地点的环境、土壤电阻率、装置本身的锈蚀及不合理埋设等因素影响,造成杆塔接地电阻超过规程标准。当雷击10kV配电线路时,雷电流将在接地装置上产生较高的电压降,造成避雷器的二次故障率升高,极大影响10kV配网的正常运行。改善接地装置是电力系统中保护配电线路和电网设备特别是避雷器免遭故障电流和雷电流损害的保障。Due to the complex structure of the 10kV distribution line grid structure, multiple points and wide areas, and low overall insulation level, the tower grounding device is usually installed and erected together with the arrester, so it is affected by the environment of the installation site, soil resistivity, corrosion of the device itself, and unreasonable embedding. Influenced, causing the grounding resistance of the tower to exceed the regulation standard. When lightning strikes a 10kV distribution line, the lightning current will generate a high voltage drop on the grounding device, which will increase the secondary failure rate of the arrester and greatly affect the normal operation of the 10kV distribution network. Improving the grounding device is the guarantee to protect the distribution lines and grid equipment, especially the arrester, from fault current and lightning current damage in the power system.
本发明考虑10kV配电线路雷电过电压通过避雷器后的雷电流幅值大小,对在不同雷电冲击电流下的接地装置采用了建立π型电路模型计算接地装置元件的电气参数,并建立PSCAD/EMTDC仿真土壤火花效应的等效模型,通过对10kV配电线路的水平-垂直型接地装置在经流雷电流时,冲击电阻随土壤电阻率、雷电流幅值及接地装置埋设深度大小变化的关系,得出常见10kV配电线路接地装置的冲击特性,为实际工程中合理地优化接地装置的布置形式,降低配电线路的雷击跳闸率提供依据。The present invention considers the magnitude of the lightning current after the lightning overvoltage of the 10kV distribution line passes through the arrester, and adopts the establishment of a π-type circuit model to calculate the electrical parameters of the grounding device components for the grounding device under different lightning impulse currents, and establishes PSCAD/EMTDC The equivalent model for simulating the soil spark effect, through the horizontal-vertical grounding device of the 10kV distribution line, when the lightning current flows, the relationship between the impact resistance and the soil resistivity, the amplitude of the lightning current and the buried depth of the grounding device, The impact characteristics of common 10kV distribution line grounding devices are obtained, which provides a basis for rationally optimizing the layout of grounding devices in actual engineering and reducing the lightning tripping rate of distribution lines.
发明内容Contents of the invention
本发明的目的在于克服现有技术的缺点与不足,提供一种水平-垂直型接地装置电阻特性的评估方法,针对10kV配电线路中水平-垂直型接地装置的冲击特性规律,为了能正确评估10kV配电中水平-垂直型接地装置的在不同气象条件、地理条件、结构大小和安装工艺的差异性对接地装置冲击特性的影响,该方法通过构建10kV配电线路水平-垂直型接地装置的数学模型进行计算分析,该方法结合雷电流、土壤电阻率变化、埋设深度的接地装置冲击特性差异而提出。10kV配电线路中水平-垂直型接地装置的冲击特性规律评估适用于10kV配电线路接地装置的改造建设及10kV配电线路防雷风险评估。The purpose of the present invention is to overcome the shortcomings and deficiencies of the prior art, to provide a method for evaluating the resistance characteristics of a horizontal-vertical grounding device, aiming at the law of the impact characteristics of a horizontal-vertical grounding device in a 10kV distribution line, in order to correctly evaluate The influence of the horizontal-vertical grounding device in different meteorological conditions, geographical conditions, structure size and installation process on the impact characteristics of the grounding device in 10kV power distribution. The mathematical model is used for calculation and analysis, and this method is proposed by combining the lightning current, the change of soil resistivity, and the difference in the impact characteristics of the grounding device with the buried depth. The evaluation of the impulse characteristics of horizontal-vertical grounding devices in 10kV distribution lines is applicable to the reconstruction and construction of grounding devices for 10kV distribution lines and the lightning protection risk assessment of 10kV distribution lines.
本发明的目的通过下述技术方案实现,一种接地装置冲击特性的评估方法,包括以下步骤:The purpose of the present invention is achieved through the following technical solutions, a method for evaluating the impact characteristics of a grounding device, comprising the following steps:
1、针对一种在10kV配电线路中现有的水平-垂直接地装置,测量采用镀锌扁钢的水平体(如附图1水平体3),以及采用镀锌角钢的垂直体(如附图1垂直体4)的各分段长度;并测量水平体距离地面的埋设深度,以及所在地区的土壤电阻率;1. For an existing horizontal-vertical grounding device in a 10kV distribution line, measure the horizontal body using galvanized flat steel (as shown in Figure 1 horizontal body 3), and the vertical body using galvanized angle steel (as shown in attached Figure 1 The length of each segment of the vertical body 4); and measure the buried depth of the horizontal body from the ground, and the soil resistivity in the area;
2、计算接地装置水平体和垂直体的数值参数,根据附图2所示的等效电路模型搭建接地装置的等效计算模型;2. Calculate the numerical parameters of the horizontal body and vertical body of the grounding device, and build the equivalent calculation model of the grounding device according to the equivalent circuit model shown in Figure 2;
(1)计算水平体和垂直体每个分段长度的电感L0,各段接地体单位长度的电感,其公式如下:(1) Calculate the inductance L 0 of each section length of the horizontal body and the vertical body, and the inductance per unit length of the grounding body of each section, the formula is as follows:
式中:μ0为真空的导磁系数,在实用范围内可取μ0=4π×10-7,ref为接地体半径,l为每段接地体长度;In the formula: μ 0 is the magnetic permeability coefficient of vacuum, which can be taken as μ 0 =4π×10 -7 in the practical range, r ef is the radius of the grounding body, and l is the length of each grounding body;
(2)计算水平体和垂直体每个分段长度的电感C0,各段接地体单位长度对无穷远零位面的电容,其公式如下:(2) Calculate the inductance C 0 of each segment length of the horizontal body and the vertical body, and the capacitance of each segment grounding body unit length to the infinite zero plane, the formula is as follows:
C0=ερG0 (2)C 0 =ερG 0 (2)
式中,ε为土壤的介电常数,在实用范围内可取ε=9×8.86×10-12F/m;In the formula, ε is the dielectric constant of the soil, which can be taken as ε=9×8.86× 10-12 F/m in the practical range;
(3)计算水平体每个分段长度的电导G0,及垂直体每个分段长度的电导G1,其公式如下:(3) Calculate the conductance G 0 of each segment length of the horizontal body and the conductance G 1 of each segment length of the vertical body, the formula is as follows:
式中,ρ为土壤电阻率,h为接地体埋深,ref为等值半径。In the formula, ρ is the soil resistivity, h is the buried depth of the grounding body, and ref is the equivalent radius.
3、利用PSCAD/EMTDC仿真平台进行冲击电流测试模型的冲击特性包括:3. Use the PSCAD/EMTDC simulation platform to test the impact characteristics of the impact current test model including:
(1)绘制不同雷电流幅值30kA、50kA、70kA下的装置冲击接地电阻变化曲线图;(1) Draw the change curves of the impact grounding resistance of the device under different lightning current amplitudes of 30kA, 50kA, and 70kA;
(2)绘制不同土壤电阻率50Ω/m、100Ω/m、150Ω/m下的装置冲击接地电阻变化曲线图;(2) Draw the impact grounding resistance change curve of the device under different soil resistivities of 50Ω/m, 100Ω/m, and 150Ω/m;
(3)绘制不同接地装置尺寸包括分支数量为2至8个下的装置冲击接地电阻变化曲线图;(3) Draw the impact grounding resistance change curve of different grounding device sizes including the number of branches from 2 to 8;
(4)绘制不同埋设深度0.6m至1.2m下的装置冲击接地电阻变化曲线图;(4) Draw the change curve of the impact grounding resistance of the device at different buried depths from 0.6m to 1.2m;
4、测取接地装置在10kV配电线路中实际运行的接地电阻;将测取得接地电阻绘制成变化曲线与附图3、附图4、附图5、附图6对比,是否在符合曲线变化范围内并且是否符合曲线的连续变化规律。4. Measure the grounding resistance of the grounding device actually running in the 10kV distribution line; draw the measured grounding resistance as a change curve and compare it with attached
本发明的工作原理:本发明首先根据10kV配电线路的水平-垂直型接地装置实际结构特征,测量采用镀锌扁钢的水平体,以及采用镀锌角钢的垂直体各分段长度,距离地面的埋设深度以及所在地区的土壤电阻率,采用分布参数模型计算实际的模型的等效元件数值,计算接地装置的水平体和垂直体每个分段长度的电感、电容和电导。然后在PSCAD/EMTDC仿真平台建立π型电路仿真模型,利用PSCAD/EMTDC仿真平台进行冲击电流测试模型的冲击特性,并且绘制不同雷电流幅值、不同土壤电阻率、不同埋设深度的装置冲击接地电阻变化曲线图;最后测取接地装置的实际运行数据与所绘曲线对比,是否在符合曲线变化范围内并且是否符合曲线的连续变化规律,为10kV配电线路的改造及建设在考虑经济性和适用性下,选择最合适的接地装置形状及埋设深度。Working principle of the present invention: the present invention at first according to the actual structural characteristics of the horizontal-vertical grounding device of 10kV distribution line, measures the horizontal body that adopts galvanized flat steel, and the vertical body that adopts galvanized angle steel each section length, the distance from the ground The buried depth and the soil resistivity of the area, the distributed parameter model is used to calculate the equivalent element value of the actual model, and the inductance, capacitance and conductance of each segment length of the horizontal body and vertical body of the grounding device are calculated. Then establish a π-type circuit simulation model on the PSCAD/EMTDC simulation platform, use the PSCAD/EMTDC simulation platform to test the impact characteristics of the model, and draw the impact grounding resistance of the device with different lightning current amplitudes, different soil resistivities, and different buried depths Change curve diagram; finally, compare the actual operating data of the grounding device with the drawn curve, whether it is within the scope of the curve change and whether it conforms to the continuous change law of the curve, considering the economy and applicability for the transformation and construction of the 10kV distribution line Select the most suitable shape and embedding depth of the grounding device.
本发明相对于现有技术具有如下的优点及效果:Compared with the prior art, the present invention has the following advantages and effects:
1、本发明的10kV配电线路接地装置的等效计算模型简单,能很好模拟出接地装置在雷电流作用下的运行情况。1. The equivalent calculation model of the 10kV distribution line grounding device of the present invention is simple, and can well simulate the operation of the grounding device under the action of lightning current.
2、本发明能够得出10kV配电线路水平-垂直型接地装置在不同雷电冲击电流的冲击特性变化规律。2. The present invention can obtain the change rule of the impulse characteristics of the horizontal-vertical grounding device of the 10kV power distribution line under different lightning impulse currents.
3、本发明能够得出10kV配电线路水平-垂直型接地装置在不同雷电冲击电流、不同土壤电阻率的不同地理气象条件下的冲击特性变化规律。3. The present invention can obtain the change rule of the impact characteristics of the horizontal-vertical grounding device of the 10kV power distribution line under different geographical and meteorological conditions of different lightning impulse currents and different soil resistivities.
4、本发明能够得出10kV配电线路水平-垂直型接地装置在不同埋设深度、不同分支数量的不同规格和安装工艺条件下的冲击特性变化规律。4. The present invention can obtain the change rule of the impact characteristics of the horizontal-vertical grounding device of 10kV distribution line under different buried depths, different numbers of branches, different specifications and installation process conditions.
5、采用本发明的不同条件下的冲击特性规律可以为实际防雷改造工程中合理地优化接地装置的布置形式,降低配电线路的雷击跳闸率提供依据。5. Adopting the law of impact characteristics under different conditions of the present invention can provide a basis for rationally optimizing the layout of grounding devices in actual lightning protection renovation projects and reducing the lightning tripping rate of power distribution lines.
附图说明Description of drawings
图1是10kV配电线路的水平-垂直型接地装置示意图。Figure 1 is a schematic diagram of a horizontal-vertical grounding device for a 10kV distribution line.
图2是不同土壤电阻率下的冲击电阻曲线变化图。Figure 2 is a diagram of the impact resistance curve change under different soil resistivities.
图3是不同雷电流幅值下的冲击电阻曲线变化图。Fig. 3 is a graph showing the change of impulse resistance curves under different lightning current amplitudes.
图4是不同分支数量下的冲击电阻曲线变化图。Fig. 4 is a graph showing the change of impact resistance curves under different branch numbers.
图5是不同埋设深度下的冲击电阻曲线变化图。Figure 5 is a graph showing the change of impact resistance curves under different embedding depths.
图6是接地装置元件模型等效电路图。Fig. 6 is an equivalent circuit diagram of an element model of a grounding device.
具体实施方式Detailed ways
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。The present invention will be further described in detail below in conjunction with the embodiments and the accompanying drawings, but the embodiments of the present invention are not limited thereto.
实施例Example
1.针对的是一种在10kV配电线路中现有的水平-垂直型结构的接地装置,如图1所示冲击电流1,地面2,水平体3,垂直体4,根据实际情况测量施工建设或改造中接地体个分段的长度,埋设深度及土壤电阻率,确定接地装置的实际模型结构。1. It is aimed at an existing horizontal-vertical structure grounding device in a 10kV power distribution line, as shown in Figure 1, the impact current 1, the
2.接地装置导体使用分布参数模型进行数值运算处理,用该分支的单位长度导体电阻R0、自感L0、对地泄漏电导G0、对地电容C0进行描述(如图2所示的参数)。2. The conductor of the grounding device uses the distributed parameter model for numerical calculation processing, and uses the conductor resistance per unit length R 0 , self-inductance L 0 , leakage conductance to ground G 0 , and capacitance to ground C 0 to describe the branch (as shown in Figure 2 parameters).
3.搭建等效数值模型,计算元件的电容,电感及电导。L0、C0分别为有损导线每单位长度的电感、对无穷远零位面的电容,G0、G1为水平、垂直接地体的电导,其公式如下:3. Build an equivalent numerical model to calculate the capacitance, inductance and conductance of components. L 0 and C 0 are the inductance per unit length of the lossy wire and the capacitance to the infinite zero plane respectively, G 0 and G 1 are the conductance of the horizontal and vertical grounding bodies, and the formula is as follows:
式中:μ0为真空的导磁系数,在实用范围内可取μ0=4π×10-7,ref为接地体半径,l为每段接地体长度。In the formula: μ 0 is the magnetic permeability coefficient of vacuum, which can be taken as μ 0 =4π×10 -7 in the practical range, r ef is the radius of the grounding body, and l is the length of each grounding body.
式中,ρ为土壤电阻率,h为接地体埋深,ref为等值半径。In the formula, ρ is the soil resistivity, h is the buried depth of the grounding body, and ref is the equivalent radius.
各段接地体单位长度对无穷远零位面的电容为:The capacitance of the unit length of each grounding body to the infinite zero plane is:
C0=ερG0 , (4)C 0 =ερG 0 , (4)
式中,ε为土壤的介电常数,在实用范围内可取ε=9×8.86×10-12F/m。In the formula, ε is the dielectric constant of the soil, which can be taken as ε=9×8.86× 10-12 F/m in the practical range.
由于火花区域边界的电场强度为土壤的临界击穿场强,则各段导体考虑火花放电后的等值半径可通过式:Since the electric field strength at the boundary of the spark area is the critical breakdown field strength of the soil, the equivalent radius of each conductor after considering the spark discharge can be obtained by the formula:
式中J为通过导体流散的电流密度,△I为通过导体向大地流散的电流,△l为每段导体的长度,ρ为土壤电阻率,Ec为土壤临界击穿场强。In the formula, J is the current density flowing through the conductor, △I is the current flowing through the conductor to the earth, △l is the length of each conductor, ρ is the soil resistivity, and Ec is the critical breakdown field strength of the soil.
4.根据上述条件建立PSCAD/EMTDC模型进行仿真计算,采用π型电路模拟接地装置,用理想电流源来模拟雷电流波形。雷电流波形采用2.6/50μs,并用双指数表达式为:4. Establish a PSCAD/EMTDC model for simulation calculations based on the above conditions, use a π-type circuit to simulate the grounding device, and use an ideal current source to simulate the lightning current waveform. The lightning current waveform adopts 2.6/50μs, and the double exponential expression is:
I=AIm[exp(-αt)-exp(-βt)], (7)I=AI m [exp(-αt)-exp(-βt)], (7)
5.在PSCAD/EMTDC模型上,通过改变土壤电阻率利用公式(5)(6)计算元件不同的电容、电感和电导,绘制在土壤电阻率为50Ω/m、100Ω/m、150Ω/m时的接地电阻变化曲线图,如图3所示。5. On the PSCAD/EMTDC model, use the formula (5) (6) to calculate the different capacitance, inductance and conductance of the components by changing the soil resistivity, and draw it when the soil resistivity is 50Ω/m, 100Ω/m, and 150Ω/m The change curve of the grounding resistance is shown in Figure 3.
6.在PSCAD/EMTDC模型上的雷电流发生模块改变雷电流幅值大小,绘制在雷电流幅值为30kA、50kA、70kA时接地电阻变化曲线图,如图4所示。6. The lightning current generation module on the PSCAD/EMTDC model changes the magnitude of the lightning current amplitude, and draws the grounding resistance change curve when the lightning current amplitude is 30kA, 50kA, and 70kA, as shown in Figure 4.
7.在PSCAD/EMTDC模型上,通过改变分支数量利用公式(1)(2)(3)(4)增加或减少元件的电容、电感和电导,绘制在不同尺寸下的接地电阻变化曲线图,如图5所示。7. On the PSCAD/EMTDC model, by changing the number of branches, use the formula (1) (2) (3) (4) to increase or decrease the capacitance, inductance and conductance of the component, and draw the ground resistance change curve under different sizes, As shown in Figure 5.
8.在PSCAD/EMTDC模型上,通过改变埋设深度利用公式(2)(3)计算元件的电导,绘制在不同埋设深度下的接地电阻变化曲线图,如图6所示。8. On the PSCAD/EMTDC model, calculate the conductance of the element by changing the embedding depth using the formula (2) (3), and draw the grounding resistance change curve at different embedding depths, as shown in Figure 6.
9.测取接地装置的10kV配电线路中实际运行的接地电阻与附图3、附图4、附图5、附图6对比,是否在符合曲线变化范围内并且是否符合曲线的连续变化规律。9. Measure the grounding resistance of the 10kV power distribution line of the grounding device and compare it with the accompanying
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。The above-mentioned embodiment is a preferred embodiment of the present invention, but the embodiment of the present invention is not limited by the above-mentioned embodiment, and any other changes, modifications, substitutions, combinations, Simplifications should be equivalent replacement methods, and all are included in the protection scope of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2013102145867A CN103293419A (en) | 2013-05-31 | 2013-05-31 | A Method for Evaluating Impulse Characteristics of Grounding Devices |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2013102145867A CN103293419A (en) | 2013-05-31 | 2013-05-31 | A Method for Evaluating Impulse Characteristics of Grounding Devices |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103293419A true CN103293419A (en) | 2013-09-11 |
Family
ID=49094629
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2013102145867A Pending CN103293419A (en) | 2013-05-31 | 2013-05-31 | A Method for Evaluating Impulse Characteristics of Grounding Devices |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103293419A (en) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103792433A (en) * | 2014-02-21 | 2014-05-14 | 国家电网公司 | Measuring method using spark coefficient for correcting low-amplitude value impact resistance of tower grounding device |
CN103901328A (en) * | 2014-03-26 | 2014-07-02 | 国家电网公司 | Method suitable for calculating transmission line pole tower grounding body lightning impulse characteristics |
CN105445559A (en) * | 2015-11-19 | 2016-03-30 | 三峡大学 | Method of quantitatively describing influence of spark effect intensity changes on impulse grounding resistor |
CN106019013A (en) * | 2016-06-04 | 2016-10-12 | 福建优迪电力技术有限公司 | High voltage support lightning protection reliability integrated diagnosis method |
CN106771616A (en) * | 2016-11-25 | 2017-05-31 | 烟台职业学院 | A kind of method for determining the equivalent soil resistivity of deep soil |
CN106841942A (en) * | 2017-01-17 | 2017-06-13 | 国家电网公司 | A kind of method for obtaining the lower grounding body surrounding soil ionic discharge starting field intensity of impact |
CN107329056A (en) * | 2017-07-10 | 2017-11-07 | 国网浙江省电力公司宁波供电公司 | Test method for distribution line natural grounding substance impact characteristics |
CN107525972A (en) * | 2017-07-19 | 2017-12-29 | 国网辽宁省电力有限公司电力科学研究院 | A kind of method that shock-testing is carried out using portable impact generator |
CN108009318A (en) * | 2017-11-10 | 2018-05-08 | 海南电网有限责任公司电力科学研究院 | The emulation modelling method of ground resistance |
CN108663573A (en) * | 2017-03-29 | 2018-10-16 | 南方电网科学研究院有限责任公司 | Method for measuring tower impulse grounding resistance |
CN108918986A (en) * | 2018-03-07 | 2018-11-30 | 东南大学 | A kind of lv power cable electromagnetic shielding performance test method and system |
CN109613340A (en) * | 2019-01-24 | 2019-04-12 | 贵州电网有限责任公司 | A kind of impulse earthed resistance calculation method with spark thorn |
CN109709438A (en) * | 2018-12-26 | 2019-05-03 | 云南电网有限责任公司楚雄供电局 | A kind of reverse short distance measurement pressure-wire of grounded screen and current line mutual inductance influence model |
CN111597734A (en) * | 2020-06-03 | 2020-08-28 | 湖南经研电力设计有限公司 | Simulation model establishing method and verification method for grounding device in double-layer soil |
CN111724662A (en) * | 2020-07-14 | 2020-09-29 | 云南电网有限责任公司电力科学研究院 | A soil environment leakage simulation system and method |
CN112069608A (en) * | 2020-07-17 | 2020-12-11 | 中国电力科学研究院有限公司 | A method and device for grounding design of transmission line towers |
JP2021076943A (en) * | 2019-11-05 | 2021-05-20 | 株式会社Nttファシリティーズ | Circuit network model generation device and circuit network model generation method |
JP2021117672A (en) * | 2020-01-24 | 2021-08-10 | 株式会社Nttファシリティーズ | Analysis processing system and analysis processing method |
CN118095670A (en) * | 2024-04-29 | 2024-05-28 | 广东电网有限责任公司中山供电局 | Multi-parameter sensing detection system and device for buried ground of transformer substation grounding grid |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102928673A (en) * | 2012-10-25 | 2013-02-13 | 清华大学 | Method for acquiring impulse grounding resistance |
-
2013
- 2013-05-31 CN CN2013102145867A patent/CN103293419A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102928673A (en) * | 2012-10-25 | 2013-02-13 | 清华大学 | Method for acquiring impulse grounding resistance |
Non-Patent Citations (5)
Title |
---|
刘浔等: "输电线路杆塔接地装置冲击接地电阻特性研究", 《华中科技大学学报(自然科学版)》 * |
叶海峰等: "水平接地体的雷电冲击特性研究", 《水电能源科学》 * |
徐伟等: "基于ATP-EMTP 的杆塔接地体冲击接地电阻计算模型", 《电力建设》 * |
王辉等: "雷电流监测装置安装位置对测量结果的影响分析", 《高压电器》 * |
郭云才等: "电路法仿真分析水平-垂直接地体模型冲击特性", 《现代建筑电气》 * |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103792433A (en) * | 2014-02-21 | 2014-05-14 | 国家电网公司 | Measuring method using spark coefficient for correcting low-amplitude value impact resistance of tower grounding device |
CN103901328A (en) * | 2014-03-26 | 2014-07-02 | 国家电网公司 | Method suitable for calculating transmission line pole tower grounding body lightning impulse characteristics |
CN105445559A (en) * | 2015-11-19 | 2016-03-30 | 三峡大学 | Method of quantitatively describing influence of spark effect intensity changes on impulse grounding resistor |
CN106019013A (en) * | 2016-06-04 | 2016-10-12 | 福建优迪电力技术有限公司 | High voltage support lightning protection reliability integrated diagnosis method |
CN106771616A (en) * | 2016-11-25 | 2017-05-31 | 烟台职业学院 | A kind of method for determining the equivalent soil resistivity of deep soil |
CN106841942A (en) * | 2017-01-17 | 2017-06-13 | 国家电网公司 | A kind of method for obtaining the lower grounding body surrounding soil ionic discharge starting field intensity of impact |
CN108663573A (en) * | 2017-03-29 | 2018-10-16 | 南方电网科学研究院有限责任公司 | Method for measuring tower impulse grounding resistance |
CN107329056A (en) * | 2017-07-10 | 2017-11-07 | 国网浙江省电力公司宁波供电公司 | Test method for distribution line natural grounding substance impact characteristics |
CN107525972A (en) * | 2017-07-19 | 2017-12-29 | 国网辽宁省电力有限公司电力科学研究院 | A kind of method that shock-testing is carried out using portable impact generator |
CN108009318B (en) * | 2017-11-10 | 2019-02-12 | 海南电网有限责任公司电力科学研究院 | The emulation modelling method of ground resistance |
CN108009318A (en) * | 2017-11-10 | 2018-05-08 | 海南电网有限责任公司电力科学研究院 | The emulation modelling method of ground resistance |
CN108918986A (en) * | 2018-03-07 | 2018-11-30 | 东南大学 | A kind of lv power cable electromagnetic shielding performance test method and system |
CN108918986B (en) * | 2018-03-07 | 2020-10-09 | 东南大学 | A method and system for testing electromagnetic shielding performance of low-voltage power cables |
CN109709438A (en) * | 2018-12-26 | 2019-05-03 | 云南电网有限责任公司楚雄供电局 | A kind of reverse short distance measurement pressure-wire of grounded screen and current line mutual inductance influence model |
CN109709438B (en) * | 2018-12-26 | 2021-06-01 | 云南电网有限责任公司楚雄供电局 | Reverse short-distance measurement voltage line and current line mutual inductance influence model for grounding grid |
CN109613340A (en) * | 2019-01-24 | 2019-04-12 | 贵州电网有限责任公司 | A kind of impulse earthed resistance calculation method with spark thorn |
JP2021076943A (en) * | 2019-11-05 | 2021-05-20 | 株式会社Nttファシリティーズ | Circuit network model generation device and circuit network model generation method |
JP2021117672A (en) * | 2020-01-24 | 2021-08-10 | 株式会社Nttファシリティーズ | Analysis processing system and analysis processing method |
CN111597734A (en) * | 2020-06-03 | 2020-08-28 | 湖南经研电力设计有限公司 | Simulation model establishing method and verification method for grounding device in double-layer soil |
CN111597734B (en) * | 2020-06-03 | 2021-10-26 | 湖南经研电力设计有限公司 | Simulation model establishing method and verification method for grounding device in double-layer soil |
CN111724662A (en) * | 2020-07-14 | 2020-09-29 | 云南电网有限责任公司电力科学研究院 | A soil environment leakage simulation system and method |
CN112069608A (en) * | 2020-07-17 | 2020-12-11 | 中国电力科学研究院有限公司 | A method and device for grounding design of transmission line towers |
CN118095670A (en) * | 2024-04-29 | 2024-05-28 | 广东电网有限责任公司中山供电局 | Multi-parameter sensing detection system and device for buried ground of transformer substation grounding grid |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103293419A (en) | A Method for Evaluating Impulse Characteristics of Grounding Devices | |
CN102435921B (en) | The decision method of same tower double back transmission line insulation and resistance to lightning impulse performance | |
CN103543387B (en) | Lightning stroke positioning and lightning current inversion method for power transmission line | |
Malanda et al. | Analysis of soil resistivity and its impact on grounding systems design | |
CN102854415A (en) | Method for assessing lightning flashover risks of regional power grid lines | |
CN105182084A (en) | Method for obtaining impulse impedance of grounding device through low lightning current impulse test | |
CN105224797B (en) | A kind of extra-high voltage large cross line counterattack trip-out rate computational methods | |
CN103488815A (en) | Transmission line lightning shielding failure risk evaluation method | |
CN102879688A (en) | Test system for grounding grid | |
CN103293451B (en) | A kind of appraisal procedure of high-voltage transmission line pole tower earthing device lightning protection characteristic | |
CN105242133A (en) | Improved method for calculating lightning trip-out rate of distribution line | |
CN105160049A (en) | Method for calculating direct lightning tripping-out rate of distribution line up to 35kV | |
CN105652093A (en) | Grounding device impact grounding impedance test method | |
CN103427354A (en) | Early determination method for substation grounding grid | |
CN110543610A (en) | A real-time lightning strike transmission line risk assessment method | |
CN203858320U (en) | Grounding grid corrosion and breakpoint detection system based on threshold value comparison | |
CN112395788A (en) | Personal safety accurate evaluation method for distribution network neutral point grounding type reconstruction | |
CN203084089U (en) | Test system of grounding grid | |
CN105098391A (en) | 500 kV transmission line tower grounding body and estimation method of impulse grounding resistance thereof | |
Datsios et al. | Safe grounding system design for a photovoltaic power station | |
CN104833873B (en) | A kind of theoretical validation method of inductive type current-limited arrester lightning protection effect | |
Cheema et al. | A comparison of ground grid mesh design and optimization for 500KV substation using IEEE 80-2000 and finite element methods | |
CN104682305A (en) | Method for differentiated lightning protection of urban 10 kV distribution line | |
CN104483578B (en) | It is a kind of to assess the method that D.C. magnetic biasing influences on power system grounded screen | |
Warmi et al. | Proposal of analysis method to reduce back-flashover rate taking account of tower footing resistance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20130911 |