CN103293079A - Method for evaluating flame retardant efficiency of asphalt - Google Patents
Method for evaluating flame retardant efficiency of asphalt Download PDFInfo
- Publication number
- CN103293079A CN103293079A CN201310262923XA CN201310262923A CN103293079A CN 103293079 A CN103293079 A CN 103293079A CN 201310262923X A CN201310262923X A CN 201310262923XA CN 201310262923 A CN201310262923 A CN 201310262923A CN 103293079 A CN103293079 A CN 103293079A
- Authority
- CN
- China
- Prior art keywords
- asphalt
- flame
- retardant
- flame retardant
- pitch
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010426 asphalt Substances 0.000 title claims abstract description 92
- 239000003063 flame retardant Substances 0.000 title claims abstract description 84
- 238000000034 method Methods 0.000 title claims abstract description 67
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 title claims abstract description 58
- 238000006243 chemical reaction Methods 0.000 claims abstract description 56
- 238000012360 testing method Methods 0.000 claims abstract description 35
- 230000000694 effects Effects 0.000 claims abstract description 27
- 238000002076 thermal analysis method Methods 0.000 claims abstract description 25
- 238000005979 thermal decomposition reaction Methods 0.000 claims abstract description 25
- 239000000463 material Substances 0.000 claims abstract description 22
- 230000008569 process Effects 0.000 claims abstract description 21
- 230000004913 activation Effects 0.000 claims abstract description 13
- 230000007246 mechanism Effects 0.000 claims abstract description 11
- 230000001360 synchronised effect Effects 0.000 claims abstract description 8
- 238000010438 heat treatment Methods 0.000 claims description 6
- 239000011159 matrix material Substances 0.000 claims description 6
- 238000003756 stirring Methods 0.000 claims description 3
- 238000004458 analytical method Methods 0.000 claims description 2
- 238000002360 preparation method Methods 0.000 claims 3
- 238000010792 warming Methods 0.000 claims 1
- 230000015572 biosynthetic process Effects 0.000 abstract description 8
- 238000011156 evaluation Methods 0.000 abstract description 8
- 238000004364 calculation method Methods 0.000 abstract description 6
- 238000005511 kinetic theory Methods 0.000 abstract description 4
- 239000000126 substance Substances 0.000 description 16
- 238000002485 combustion reaction Methods 0.000 description 14
- 230000008859 change Effects 0.000 description 10
- 238000000197 pyrolysis Methods 0.000 description 8
- 238000004455 differential thermal analysis Methods 0.000 description 5
- 238000012933 kinetic analysis Methods 0.000 description 5
- 230000004580 weight loss Effects 0.000 description 5
- 238000011160 research Methods 0.000 description 4
- 238000010276 construction Methods 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 229910017053 inorganic salt Inorganic materials 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000012796 inorganic flame retardant Substances 0.000 description 2
- 238000009533 lab test Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 150000003014 phosphoric acid esters Chemical class 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000004451 qualitative analysis Methods 0.000 description 2
- 238000004445 quantitative analysis Methods 0.000 description 2
- 230000036632 reaction speed Effects 0.000 description 2
- 239000013558 reference substance Substances 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 239000011343 solid material Substances 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 239000002023 wood Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- LFVGISIMTYGQHF-UHFFFAOYSA-N ammonium dihydrogen phosphate Chemical compound [NH4+].OP(O)([O-])=O LFVGISIMTYGQHF-UHFFFAOYSA-N 0.000 description 1
- 229910000387 ammonium dihydrogen phosphate Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 235000010338 boric acid Nutrition 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000006757 chemical reactions by type Methods 0.000 description 1
- 239000004035 construction material Substances 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000010921 in-depth analysis Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 235000012254 magnesium hydroxide Nutrition 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 235000019837 monoammonium phosphate Nutrition 0.000 description 1
- 239000006012 monoammonium phosphate Substances 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 238000002411 thermogravimetry Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Landscapes
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
Abstract
本发明是一种评价沥青阻燃效果的方法,属于沥青路面技术领域,是一种解决目前阻燃剂对沥青阻燃性能的评价方法难以准确定量化的问题。本发明基于热重-差热同步试验与热分析动力学理论公式计算相结合,定量地评价阻燃剂对沥青的阻燃效果。首先,采用热重-差热分析仪对沥青和制备的阻燃沥青分别进行测试,获取TG、DTG、DTA和成炭率等试验数据;然后,依据热分析动力学理论公式,作ln[g(α)/T2]对1/T的曲线,经最小二乘法线性拟和,确定沥青材料热分解过程的反应机理函数g(α);其次,作ln[g(α)/T2]对1/T的直线,通过斜率和截距求得动力学参数活化能E和频率因子A;最后,比较沥青和制备的阻燃沥青的E和A的大小,从而全面、准确地评价不同类型和掺量的阻燃剂对沥青的阻燃效果。
The invention relates to a method for evaluating the flame-retardant effect of asphalt, which belongs to the technical field of asphalt pavement, and solves the problem that it is difficult to accurately quantify the evaluation method of the flame-retardant performance of asphalt at present. The invention is based on the combination of thermogravimetric-differential heat synchronous test and thermal analysis kinetic theory formula calculation, and quantitatively evaluates the flame retardant effect of the flame retardant on asphalt. First, the asphalt and the prepared flame-retardant asphalt were tested separately by thermogravimetric-differential heat analyzer, and the test data such as TG, DTG, DTA and char formation rate were obtained; then, according to the theoretical formula of thermal analysis kinetics, ln[g (α)/T 2 ] to the curve of 1/T, through the linear fitting of the least square method, determine the reaction mechanism function g(α) of the thermal decomposition process of asphalt material; secondly, make ln[g(α)/T 2 ] For the straight line of 1/T, the kinetic parameters activation energy E and frequency factor A are obtained through the slope and intercept; finally, the magnitudes of E and A of the asphalt and the prepared flame-retardant asphalt are compared, so as to comprehensively and accurately evaluate different types of And the flame retardant effect of the amount of flame retardant on asphalt.
Description
技术领域technical field
本发明是一种基于热重-差热同步试验与热分析动力学理论计算相结合来准确评价阻燃剂对沥青阻燃效果的方法,属于道路沥青路面的技术领域。The invention relates to a method for accurately evaluating the flame retardant effect of a flame retardant on asphalt based on the combination of thermogravimetric-differential thermal synchronous test and thermal analysis kinetic theory calculation, and belongs to the technical field of road asphalt pavement.
背景技术Background technique
随着公路建设迅速发展,公路隧道日益增多。沥青路面因其行车舒适、抗滑性能好、噪音小、建设周期短、维修方便等优点在长大型隧道内日益得到广泛应用。由于沥青在隧道火灾高温环境下会热解、燃烧,并释放出大量有毒烟气和热量,造成严重次生灾害,给人员逃生及火灾救援带来极大困难。因此,隧道沥青路面阻燃性能的研究日益受到普遍重视。With the rapid development of highway construction, there are more and more highway tunnels. Asphalt pavement is widely used in long and large tunnels because of its advantages such as comfortable driving, good skid resistance, low noise, short construction period, and convenient maintenance. Because asphalt will pyrolyze and burn in the high-temperature environment of tunnel fire, and release a large amount of toxic smoke and heat, causing serious secondary disasters and bringing great difficulties to personnel escape and fire rescue. Therefore, the research on the flame retardancy of tunnel asphalt pavement has been paid more and more attention.
为了抑制沥青材料燃烧,加入阻燃剂是有效方法之一。按组分的不同阻燃剂种类包括无机盐类阻燃剂、有机阻燃剂、有机与无机混合阻燃剂三种。无机阻燃剂主要组分是无机物,如氢氧化铝、氢氧化镁、磷酸一铵、氯化铵、硼酸等。有机阻燃剂的主要组分为有机物,如卤系阻燃剂、磷酸酯、卤代磷酸酯等。有机与无机混合阻燃剂是无机盐类阻燃剂的改良产品,主要用非水溶性的有机磷酸酯的水乳液,部分代替无机盐类阻燃剂。在上述阻燃剂类别中,无机阻燃剂具有无毒、无害、无烟、无卤的优点,广泛应用于各类领域。In order to suppress the burning of asphalt materials, adding flame retardant is one of the effective methods. The different types of flame retardants according to the components include inorganic salt flame retardants, organic flame retardants, and organic and inorganic mixed flame retardants. The main components of inorganic flame retardants are inorganic substances, such as aluminum hydroxide, magnesium hydroxide, monoammonium phosphate, ammonium chloride, boric acid, etc. The main components of organic flame retardants are organic substances, such as halogenated flame retardants, phosphate esters, halogenated phosphate esters, etc. Organic and inorganic mixed flame retardants are improved products of inorganic salt flame retardants, mainly using water-insoluble organic phosphate emulsions to partially replace inorganic salt flame retardants. Among the above flame retardant categories, inorganic flame retardants have the advantages of non-toxic, harmless, smoke-free, and halogen-free, and are widely used in various fields.
为了发挥阻燃剂的阻燃性能,需要将阻燃剂先加入到沥青基体中,制备阻燃沥青,即将沥青加热到一定温度熔融流动后,加入某一比例的上述阻燃剂,并充分高速搅拌,使阻燃剂与沥青基体充分混合,制备均匀稳定的阻燃沥青。为了评价阻燃剂对沥青的阻燃效果,需要对上述制备的阻燃沥青进行耐燃性测试,目前评价阻燃材料耐燃性的试验方法主要有闪点和燃点试验、氧指数试验、水平燃烧试验、锥形量热仪试验等。In order to exert the flame retardant performance of the flame retardant, it is necessary to add the flame retardant to the asphalt matrix first to prepare the flame retardant asphalt, that is, after the asphalt is heated to a certain temperature to melt and flow, a certain proportion of the above flame retardant is added, and fully high-speed Stir to fully mix the flame retardant with the asphalt matrix to prepare uniform and stable flame retardant asphalt. In order to evaluate the flame retardant effect of flame retardants on asphalt, it is necessary to carry out the flame resistance test on the flame retardant asphalt prepared above. At present, the test methods for evaluating the flame resistance of flame retardant materials mainly include flash point and fire point test, oxygen index test, and horizontal combustion test. , Cone calorimeter test, etc.
上述方法在评价沥青的阻燃效果时存在较大局限性,是粗放性试验,较难准确定量评价阻燃材料的耐燃性。闪点和燃点试验可以评价沥青在储存及施工过程中的安全性,但是它们均不能评价沥青的持续燃烧能力,用来评价沥青的燃烧性能则存在明显缺点;氧指数试验多应用于纺织、化工等行业对阻燃材料的评价,但沥青在常温下的燃烧相当困难,需要加热到一定温度,且沥青的燃烧与气体流量、流速等都有关系,应用目前的氧指数试验方法评价沥青材料阻燃效果还存在较大困难;水平燃烧试验主要用于评价塑料、橡胶等固体材料在规定火源直接燃烧下的耐燃性能,判断阻燃材料的耐火等级。但是沥青材料在加热至燃烧温度前已成流动液体,难以进行测试,且该方法只能定性评价耐火等级,不能定量评价沥青材料的阻燃性能;锥形量热仪试验是一种对建筑材料在特定的热辐射条件下测定试样燃烧热释放速率的试验,主要用来测试固体材料,存在与水平燃烧试验类似的局限性。The above method has great limitations in evaluating the flame retardant effect of asphalt, and it is an extensive test, so it is difficult to accurately and quantitatively evaluate the flame resistance of flame retardant materials. Flash point and fire point tests can evaluate the safety of asphalt during storage and construction, but neither of them can evaluate the continuous burning ability of asphalt, and there are obvious shortcomings in evaluating the burning performance of asphalt; oxygen index test is mostly used in textile, chemical industry The evaluation of flame retardant materials in other industries, but the combustion of asphalt at room temperature is quite difficult, it needs to be heated to a certain temperature, and the combustion of asphalt is related to the gas flow rate, flow rate, etc. There are still great difficulties in the combustion effect; the horizontal combustion test is mainly used to evaluate the flame resistance of solid materials such as plastics and rubber under the direct combustion of a specified fire source, and to judge the fire resistance level of flame retardant materials. However, the asphalt material has become a flowing liquid before it is heated to the combustion temperature, so it is difficult to test, and this method can only qualitatively evaluate the fire resistance level, and cannot quantitatively evaluate the flame retardancy of the asphalt material; the cone calorimeter test is a kind of construction material. The test for determining the heat release rate of combustion of a sample under specific heat radiation conditions is mainly used to test solid materials, and has similar limitations to the horizontal combustion test.
热分析是在程序控温下,利用热分析仪测量物质的物理性质与温度的关系的一类技术,本发明采用热重-差热同步热分析试验方法。热重试验法(Thermogravimetry,简称TG)是指在程序控温条件下,连续测量出样品的质量变化与温度或时间的函数关系的方法。该方法是评价沥青材料热分解、燃烧和阻燃性能的非常简便有效的方法,阻燃前后沥青热分解失重的快慢和剧烈程度可以灵敏、直观地反映在TG曲线上。热重法原理是样品以一定的升温速率从常温升到指定温度,通过计算机自动监测反应过程中的物料质量随时间或温度的变化,并直接测出质量与时间或温度的失重(TG)曲线、微分失重(DTG)曲线和成炭率,其中DTG曲线是TG曲线对时间或温度的一阶导数。单质炭不会发生热分解,成炭率能反映沥青材料阻燃性能,成炭率越高,沥青材料阻燃性能越好。该法操作简单,灵敏度高,具有快速、准确和直观的特点,通过TG和DTG曲线进行定性和定量分析,可以获得有关样品分解过程中的重要信息及相应过程的反应动力学参数。Thermal analysis is a kind of technology that uses a thermal analyzer to measure the relationship between the physical properties of a substance and temperature under programmed temperature control. The present invention adopts a thermogravimetric-differential thermal synchronous thermal analysis test method. Thermogravimetry (TG for short) refers to the method of continuously measuring the function relationship between the mass change of the sample and the temperature or time under the condition of programmed temperature control. This method is a very simple and effective method for evaluating the thermal decomposition, combustion and flame retardancy of asphalt materials. The speed and intensity of thermal decomposition weight loss of asphalt before and after flame retardancy can be sensitively and intuitively reflected on the TG curve. The principle of thermogravimetric method is that the sample is raised from normal temperature to a specified temperature at a certain heating rate, and the computer automatically monitors the change of material quality with time or temperature during the reaction process, and directly measures the weight loss (TG) curve of mass and time or temperature. , differential weight loss (DTG) curve and char formation rate, where DTG curve is the first derivative of TG curve to time or temperature. Elemental carbon does not undergo thermal decomposition, and the char formation rate can reflect the flame retardancy of asphalt materials. The higher the char formation rate, the better the flame retardancy of asphalt materials. The method is easy to operate, high in sensitivity, fast, accurate and intuitive. Through qualitative and quantitative analysis of TG and DTG curves, important information about the decomposition process of the sample and the reaction kinetic parameters of the corresponding process can be obtained.
热重法有非等温热重法与等温热重法两种。通常有机物的热解采用非等温热重法,与等温法相比,非等温热重法有优点有:①试验量小,只需一次试验就可以获得反应温度范围内各温度点的反应常数信息;②试验数据在同一个样品上获得,可以消除因样品的差异而引起的试验误差;③它反映了整个反应温度范围内的情况,消除了因温度范围选择不当而造成的试验数据的不可比性。There are two types of thermogravimetric methods: non-isothermal thermogravimetric method and isothermal thermogravimetric method. Usually, non-isothermal thermogravimetric method is used for pyrolysis of organic matter. Compared with isothermal method, non-isothermal thermogravimetric method has the following advantages: ①The test volume is small, and the reaction constants of each temperature point within the reaction temperature range can be obtained with only one test. ②The test data is obtained on the same sample, which can eliminate the test error caused by the difference of the sample; ③It reflects the situation in the whole reaction temperature range, and eliminates the inaccurate test data caused by the improper selection of the temperature range. comparability.
差热分析法(Differential thermal analysis,简称DTA)是在程控温度下测量物质与参比物之间温度差与温度或时间关系的一种技术。差热分析曲线(DTA曲线)描述样品与参比物之间的温度差(ΔT)随温度或时间的变化关系。在DTA试验中,样品温度的变化是由于相转变或化学反应的吸热或放热作用引起的。根据DTA曲线上的各种吸热峰或放热峰的个数、形状和位置与相应的温度可以定性地鉴定所研究的物质。物质在不同温度下的放热或吸热过程,对应于DTA曲线上的放热峰或吸热峰。差热分析是木材燃烧和阻燃研究的有效的方法之一,DTA曲线上的放热峰或吸热峰出现与否及面积的大小变化,对应于沥青热分解过程中放热或吸热的变化情况。Differential thermal analysis (DTA for short) is a technique for measuring the relationship between the temperature difference and temperature or time between a substance and a reference substance at a programmed temperature. The differential thermal analysis curve (DTA curve) describes the relationship between the temperature difference (ΔT) between the sample and the reference substance as a function of temperature or time. In DTA experiments, changes in sample temperature are caused by phase transitions or endothermic or exothermic effects of chemical reactions. According to the number, shape and position of various endothermic peaks or exothermic peaks on the DTA curve and the corresponding temperature, the substance under study can be qualitatively identified. The exothermic or endothermic process of a substance at different temperatures corresponds to the exothermic peak or endothermic peak on the DTA curve. Differential thermal analysis is one of the effective methods for the study of wood combustion and flame retardancy. Whether the exothermic peak or endothermic peak appears on the DTA curve and the size of the area change corresponds to the degree of exothermic or endothermic during the thermal decomposition of asphalt. Changes.
热分析动力学是用化学动力学的原理研究热分析方法所获得的物理量(如质量、温度、热量等)的变化速度与温度之间的关系的一个学科分支。通过动力学分析可以深入了解各种反应过程及其机理。热分析动力学的研究包括沥青材料在热分解过程中的反应类型、反应历程、反应产物、反应速度、反应动力学参数等。热分析动力学参数包括活化能和频率因子,它们定量地描述了沥青的反应能力,反映了不同沥青的反应能力随温度变化的规律。因此,对动力学参数变化规律的分析有助于评价阻燃剂对沥青的阻燃作用。Thermal analysis kinetics is a branch of disciplines that uses the principles of chemical kinetics to study the relationship between the rate of change of physical quantities (such as mass, temperature, heat, etc.) obtained by thermal analysis methods and temperature. Kinetic analysis provides insight into various reaction processes and their mechanisms. The study of thermal analysis kinetics includes the reaction type, reaction process, reaction products, reaction speed and reaction kinetic parameters of asphalt materials during the thermal decomposition process. The kinetic parameters of thermal analysis include activation energy and frequency factor, which quantitatively describe the reaction ability of asphalt, and reflect the change law of the reaction ability of different asphalt with temperature. Therefore, the analysis of the change law of the kinetic parameters is helpful to evaluate the flame retardant effect of flame retardants on asphalt.
活化能是决定反应速度的主要因素之一。活化能是物质的固有特性,物质要参加化学反应,就要破坏物质原有的分子结构,使分子活化,然后才能合成新分子。某一种沥青的活化能越小,它的反应能力就越强,且它的反应速度随温度变化的可能性越小。即该沥青不仅容易着火,而且在较低的温度下也易燃烬;反之,某一种沥青的活化能越大,则它的反应能力越弱,反应速度随温度变化的可能性越大,即在较高的温度下才能有较大的反应速度,这种沥青不仅难于着火,而且要求在较高的温度下,耗费较长的时间才能燃烬。Activation energy is one of the main factors that determine the rate of a reaction. Activation energy is an inherent characteristic of substances. To participate in chemical reactions, the original molecular structure of the substance must be destroyed to activate the molecules, and then new molecules can be synthesized. The lower the activation energy of a pitch, the more reactive it is and the less likely its rate of reaction will vary with temperature. That is, the asphalt is not only easy to catch fire, but also flammable at a lower temperature; on the contrary, the greater the activation energy of a certain asphalt, the weaker its reaction ability, and the greater the possibility of the reaction speed changing with temperature. That is, only at a higher temperature can there be a greater reaction rate. This kind of asphalt is not only difficult to catch fire, but also requires a longer time to burn at a higher temperature.
频率因子反映了物质在化学反应中粒子的碰撞频率和方位,当温度升高时,有效碰撞频率显著增加,从而使反应速率常数增加,最终使反应速率增加。它也反映了物质的活性,如果频率因子大,说明该沥青的活性强,需要更多的能量才能激活反应,促进反应进行,故该种沥青热稳定好,不易热分解、燃烧;反之,如果频率因子小,说明该沥青的活性弱,需要较少的能量就能激活反应,促进反应进行,故该种沥青热稳定较差,较易热分解、燃烧。The frequency factor reflects the collision frequency and orientation of particles in a chemical reaction. When the temperature increases, the effective collision frequency increases significantly, thereby increasing the reaction rate constant and ultimately the reaction rate. It also reflects the activity of the substance. If the frequency factor is large, it means that the asphalt has strong activity and needs more energy to activate the reaction and promote the reaction. Therefore, this kind of asphalt has good thermal stability and is not easy to thermally decompose and burn; on the contrary, if A small frequency factor indicates that the asphalt has weak activity and requires less energy to activate the reaction and promote the reaction. Therefore, this kind of asphalt has poor thermal stability and is easier to thermally decompose and burn.
鉴于目前沥青阻燃效果评价方法存在诸多局限性,本发明采用热重-差热同步热分析技术,提供一种更准确评价阻燃剂对沥青阻燃效果的方法显得十分必要,从而可以更好、更深入地分析不同类型阻燃剂和掺量对沥青燃烧过程的阻燃作用。In view of the many limitations of the current evaluation method of asphalt flame retardant effect, the present invention uses thermogravimetric-differential thermal simultaneous thermal analysis technology to provide a more accurate method for evaluating the flame retardant effect of flame retardant on asphalt, which is very necessary, so that it can be better , A more in-depth analysis of the flame retardant effects of different types of flame retardants and their dosage on the combustion process of asphalt.
发明内容Contents of the invention
(1)技术问题:本发明目的是提供一种评价阻燃剂对沥青阻燃效果的新方法,该方法结合室内试验和理论公式计算,能解决了目前评价方法存在的局限性,较准确地全面评价不同类型阻燃剂和掺量对沥青的阻燃效果。(1) Technical problem: the purpose of this invention is to provide a new method for evaluating the flame retardant effect of flame retardants on asphalt. This method can solve the limitations of the current evaluation method in combination with laboratory tests and theoretical formula calculations, and more accurately Comprehensively evaluate the flame retardant effects of different types of flame retardants and their dosage on asphalt.
(2)技术方案:鉴于目前现有沥青材料阻燃性能评价方法存在局限性,本发明采用室内试验和理论公式计算相结合的方法,准确评价沥青材料的阻燃性能。先通过热重-差热同步试验准确获取沥青材料热分解过程的TG、DTG、DTA数据和成炭率,了解不同类型阻燃剂和掺量对沥青的热分解影响;再基于已获取的TG试验数据采用热分析动力学理论公式,计算沥青材料热分析动力学参数(活化能和频率因子),从而较准确地定量评价不同类型阻燃剂和掺量对沥青的阻燃效果。(2) Technical solution: In view of the limitations of the current evaluation methods for the flame retardant performance of asphalt materials, the present invention uses a method of combining laboratory tests and theoretical formula calculations to accurately evaluate the flame retardant performance of asphalt materials. Accurately obtain the TG, DTG, DTA data and char formation rate of asphalt material thermal decomposition process through thermogravimetric-differential thermal synchronous test, and understand the influence of different types of flame retardants and dosage on thermal decomposition of asphalt; then based on the acquired TG The experimental data uses the thermal analysis kinetic theory formula to calculate the thermal analysis kinetic parameters (activation energy and frequency factor) of asphalt material, so as to more accurately and quantitatively evaluate the flame retardant effect of different types of flame retardants and dosage on asphalt.
热重-差热同步热分析试验是样品以一定的升温速率从常温升到指定温度,通过计算机自动监测反应过程中的物料质量随时间或温度的变化,并直接获得质量与时间或温度的TG、DTG、DTA曲线和成炭率。通过TG和DTG曲线进行定性和定量分析,可以获得有关样品分解过程中的重要信息以及相应过程的反应动力学参数。根据DTA曲线上的各种吸热峰或放热峰的个数、形状和位置与相应的温度可以鉴定所研究的物质。物质在不同温度下的放热或吸热过程,对应于DTA曲线上的放热峰或吸热峰。差热分析是木材燃烧和阻燃研究的有效的方法之一,DTA曲线上的放热峰或吸热峰出现与否及面积的大小变化,对应于沥青热分解过程中放热或吸热的变化情况。Thermogravimetric-differential thermal simultaneous thermal analysis test is to raise the sample from normal temperature to the specified temperature at a certain heating rate, and automatically monitor the change of material quality with time or temperature during the reaction process through the computer, and directly obtain the TG of the mass and time or temperature. , DTG, DTA curve and char formation rate. Through the qualitative and quantitative analysis of TG and DTG curves, important information about the decomposition process of the sample and the reaction kinetic parameters of the corresponding process can be obtained. According to the number, shape and position of various endothermic peaks or exothermic peaks on the DTA curve and the corresponding temperature, the substance under study can be identified. The exothermic or endothermic process of a substance at different temperatures corresponds to the exothermic peak or endothermic peak on the DTA curve. Differential thermal analysis is one of the effective methods for the study of wood combustion and flame retardancy. Whether the exothermic peak or endothermic peak appears on the DTA curve and the size of the area change corresponds to the degree of exothermic or endothermic during the thermal decomposition of asphalt. Changes.
在热重-差热同步热分析试验过程中,当沥青受热分解,挥发物析出并离开反应系统,热天平测定沥青的质量损失,本发明就是利用反应失重来研究热分解挥发分动力学特性,准确地描述沥青热解过程中复杂的热分解反应,了解热解过程的本质。其目的在于定量表征反应(或相变)过程,确定其遵循的热分解反应机理函数g(α),求出热分析动力学参数,评价沥青材料阻燃性能。During the thermogravimetric-differential thermal synchronous thermal analysis test process, when the asphalt is thermally decomposed, the volatile matter precipitates out and leaves the reaction system, and the thermobalance measures the mass loss of the asphalt. The present invention utilizes the reaction weight loss to study the thermal decomposition volatile matter kinetics, Accurately describe the complex thermal decomposition reactions in the pyrolysis of bitumen and understand the nature of the pyrolysis process. Its purpose is to quantitatively characterize the reaction (or phase transition) process, determine the thermal decomposition reaction mechanism function g(α) followed by it, obtain thermal analysis kinetic parameters, and evaluate the flame retardancy of asphalt materials.
热分析动力学的研究方法分为等温动力学和非等温动力学。对于等温动力学法,由于耗时及物质达到指定温度前已分解等因素的制约,在热分析研究反应动力学中已较少采用,故本发明采用非等温热分析动力学方法。非等温热分析法是分析热解动力学最常用的方法,在分析各种因素对热分解过程的影响规律方面比较准确可靠,分析动力学参数的变化规律有助于研究沥青热分解、燃烧机理历程。非等温热分析动力学则可以直接从热分析曲线求取反应动力学参数并分析反应机理。一条动态TG曲线相当于无数条等温TG曲线,换句话说,一次动态热重法试验可以代替无数次等温热重试验,而且这些大量的原始数据是在同一个样品上得到的,没有样品间的误差,样品消耗少,节省试验时间,能够在反应开始到反应结束的整个范围内连续计算动力学参数。The research methods of thermal analysis kinetics are divided into isothermal kinetics and non-isothermal kinetics. For the isothermal kinetic method, due to time-consuming and the restriction of factors such as the decomposition of the substance before reaching the specified temperature, it is rarely used in thermal analysis to study the reaction kinetics, so the present invention adopts the non-isothermal thermal analysis kinetic method. Non-isothermal thermal analysis is the most commonly used method to analyze pyrolysis kinetics. It is more accurate and reliable in analyzing the influence of various factors on the thermal decomposition process. Analyzing the change law of kinetic parameters is helpful for the study of asphalt thermal decomposition and combustion. Mechanism process. Non-isothermal thermal analysis kinetics can directly obtain the reaction kinetic parameters and analyze the reaction mechanism from the thermal analysis curve. A dynamic TG curve is equivalent to countless isothermal TG curves. In other words, a dynamic thermogravimetric test can replace countless isothermal thermogravimetric tests, and these large amounts of original data are obtained on the same sample, there is no difference between samples. The error is small, the sample consumption is small, the test time is saved, and the kinetic parameters can be continuously calculated in the whole range from the beginning of the reaction to the end of the reaction.
沥青热分解反应过程非常复杂,反应速率常数k是温度的函数,温度越高,反应速率越大。阿累尼乌斯理论认为,速率常数是温度的指数函数。The thermal decomposition reaction process of asphalt is very complicated, and the reaction rate constant k is a function of temperature. The higher the temperature, the greater the reaction rate. The Arrhenius theory states that the rate constant is an exponential function of temperature.
k=Ae(-E/RT) k=Ae (-E/RT)
将求得的活化能E和频率因子A代入上述阿累尼乌斯公式,进一步计算可得出相应阶段一定温度下的反应速率常数k。在相同浓度条件下,反以速率常数越大,反应越快。Substituting the obtained activation energy E and frequency factor A into the above-mentioned Arrhenius formula, further calculation can obtain the reaction rate constant k at a certain temperature in the corresponding stage. Under the same concentration conditions, the larger the rate constant, the faster the reaction.
热分解反应速率是升温速率、终温及热分解产物质量的函数。假设把在无限短时间的非等温反应认为是等温反应,热解本质动力学方程可表示为:The thermal decomposition reaction rate is a function of the heating rate, the final temperature and the quality of the thermal decomposition products. Assuming that the non-isothermal reaction in an infinitely short time is considered as an isothermal reaction, the essential kinetic equation of pyrolysis can be expressed as:
dα/dt=k·f(α)=Ae(-E/RT)f(α) (1)dα/dt=k·f(α)=Ae (-E/RT) f(α) (1)
式中:f(α)为与反应速率及α有关的函数,即反应速率函数;α为反应速率,即质量变化率,%,可表示为其中m0为起始质量,m为任意T(t)时刻的质量,m∞为最终质量,Δm为T(t)时刻的质量损失量,Δm∞为最大质量损失量;A为频率因子,1/s;E为活化能,KJ/mol;R为摩尔气体常数,8.314×10-3KJ/(mol·k),T为反应温度,K。In the formula: f(α) is a function related to the reaction rate and α, that is, the reaction rate function; α is the reaction rate, that is, the mass change rate, %, which can be expressed as Where m 0 is the initial mass, m is the mass at any time T(t), m ∞ is the final mass, Δm is the mass loss at T(t), Δm ∞ is the maximum mass loss; A is the frequency factor, 1/s; E is the activation energy, KJ/mol; R is the molar gas constant, 8.314×10 -3 KJ/(mol·k); T is the reaction temperature, K.
对于沥青热解反应来说,可能的反应机理是多种多样的,反应速率函数f(α)根据反应机理的不同而具有不同的形式。由恒定升温速率代入(1)式,经变换可得For asphalt pyrolysis reaction, there are various possible reaction mechanisms, and the reaction rate function f(α) has different forms according to different reaction mechanisms. constant heating rate Substituting into formula (1), after transformation, we can get
目前,基于式(2)给出了许多动力学分析方法,其目的就是基于试验获得的TG或DTG曲线,由式(2)导出反应动力学参数,如活化能E和频率因子A,并确定反应速度函数f(α)的形式。对式(2)进行积分,结合TG曲线来进行动力学分析。At present, many kinetic analysis methods are given based on formula (2), the purpose of which is to derive reaction kinetic parameters, such as activation energy E and frequency factor A, from formula (2) based on the TG or DTG curve obtained from the experiment, and determine The form of the reaction rate function f(α). Integrate formula (2) and perform kinetic analysis in combination with TG curve.
定义积分函数g(α)为:Define the integral function g(α) as:
结合(2)式得Combined with (2) to get
式中:T0是初始温度。上式右端的温度积分是不可解析求积的,大多数积分动力学分析方法彼此的区别,就在于它们各自使用不同的温度积分近似式。Coats和Redfern提出的积分法直接利用TG曲线,计算过程比较简单而且准确性好。采用Coats-Redfern积分方法求解反应动力学参数。Coats-Redfern通过对温度积分的近似推导,导出了如下近似的积分型方程:Where: T 0 is the initial temperature. The temperature integral on the right-hand side of the above equation cannot be quadratured analytically, and most integral kinetic analysis methods differ from each other in that they each use a different approximation for the temperature integral. The integral method proposed by Coats and Redfern directly uses the TG curve, the calculation process is relatively simple and the accuracy is good. The Coats-Redfern integral method was used to solve the reaction kinetic parameters. Coats-Redfern derived the following approximate integral equation through the approximate derivation of the temperature integral:
采用一种动力学模型来描述某一特定物质的热解失重反应时,必须通过各种方法对这种模型进行检验。动力学分析本身,就是对所建立的模型的一种检验。ln[g(α)/T2]对1/T线性相关程度的大小体现了所建立模型的优劣。When a kinetic model is used to describe the pyrolysis weight loss reaction of a specific substance, the model must be tested by various methods. Kinetic analysis itself is a test of the established model. The degree of linear correlation between ln[g(α)/T 2 ] and 1/T reflects the quality of the established model.
从式(5)可知,由于2RT/E<<1,2RT/E可以忽略,近似等于一个常数ln[AR/(βT)]。式(5)求解的关键在于如何确定g(α),对于正确的g(α)形式,作ln[g(α)/T2]对1/T的曲线应该是一条直线,该曲线是否呈现线性,就是判断选取的g(α)是否正确的标准。经最小二乘法拟和,并取相关系数R2最大所对应的g(α)作为该热解反应的反应机理函数。当确定了正确的g(α)后,就可以作ln[g(α)/T2]对1/T的直线,拟合直线的斜率为-E/R,而截距中包含频率因子A。因此,通过斜率和截距可以求得动力学参数E和A,如图1所示。It can be seen from formula (5) that since 2RT/E<<1, 2RT/E can be ignored, It is approximately equal to a constant ln[AR/(βT)]. The key to solving formula (5) is how to determine g(α). For the correct g(α) form, the curve of ln[g(α)/T 2 ] versus 1/T should be a straight line. Whether the curve presents Linearity is the criterion for judging whether the selected g(α) is correct. Fitted by the least square method, and take the g(α) corresponding to the maximum correlation coefficient R 2 as the reaction mechanism function of the pyrolysis reaction. When the correct g(α) is determined, a straight line of ln[g(α)/T 2 ] to 1/T can be made, the slope of the fitted line is -E/R, and the intercept includes the frequency factor A . Therefore, the kinetic parameters E and A can be obtained through the slope and intercept, as shown in Figure 1.
(3)有益效果:本发明采用的热重-差热同步试验与热分析动力学理论公式相结合的方法是一种很有效的评价沥青材料阻燃性能的手段,具有测试速度快、重现性好、灵敏高、试验数据可靠等特点。通过TG、DTG、DTA曲线和成炭率反映沥青热分解过程,可获得沥青热分解过程相关的基本信息,并基于热分析动力学理论公式,计算沥青材料热分析动力学参数(活化能和频率因子),作为阻燃效果优劣的评判标准,从而更深入地、更准确地定量评价不同类型阻燃剂和掺量对沥青的阻燃效果。(3) Beneficial effect: the method that the thermogravimetric-differential thermal synchronous test that the present invention adopts combines with thermal analysis dynamics theoretical formula is a kind of very effective means of evaluating the flame retardancy of asphalt material, has test speed fast, reproducible Good performance, high sensitivity, reliable test data and so on. The thermal decomposition process of asphalt can be reflected by the TG, DTG, DTA curves and char formation rate, and the basic information related to the thermal decomposition process of asphalt can be obtained, and based on the thermal analysis kinetic theory formula, the thermal analysis kinetic parameters (activation energy and frequency) of asphalt materials can be calculated. factor), as a criterion for judging the flame retardant effect, so as to more deeply and accurately quantitatively evaluate the flame retardant effect of different types of flame retardants and their dosage on asphalt.
因此,该方法在沥青阻燃剂类型和掺量筛选、阻燃性能评价、阻燃机理研究等方面显示出独特的优越性,能够动态地了解沥青的热分解行为随时间的变化,从而获得沥青热分解的内在规律,而其它的研究方法只能对比热分解终态与原料沥青的一些参数的变化,如微观结构、元素组成、化学成分,来预测沥青在热分解过程中的可能历程。Therefore, this method shows unique advantages in the screening of asphalt flame retardant types and dosage, flame retardant performance evaluation, and flame retardant mechanism research. It can dynamically understand the thermal decomposition behavior of asphalt over time, so as to obtain asphalt The internal laws of thermal decomposition, while other research methods can only compare the final state of thermal decomposition with the changes in some parameters of raw asphalt, such as microstructure, elemental composition, and chemical composition, to predict the possible course of asphalt in the thermal decomposition process.
通过实体工程应用证明,本发明提供的阻燃剂对沥青阻燃效果的评价方法准确可靠,采用该方法成功评价了实体工程所采用的阻燃剂对沥青的阻燃效果,目前该沥青路面使用状况良好,说明本发明评价方法是合理的、可靠的、实用的,可用于评价不同类型阻燃剂和掺量对沥青的阻燃性能。The application of the actual project proves that the method for evaluating the flame retardant effect of the flame retardant on asphalt provided by the present invention is accurate and reliable, and the method has successfully evaluated the flame retardant effect of the flame retardant used in the actual project on asphalt. Currently, the asphalt pavement uses The condition is good, which shows that the evaluation method of the present invention is reasonable, reliable and practical, and can be used to evaluate the flame retardancy of different types of flame retardants and dosages on asphalt.
附图说明Description of drawings
图1ln[g(α)/T2]对直线的斜率与截距示意图Figure 1ln[g(α)/T 2 ] pair Slope and intercept diagram of a straight line
1-横坐标轴 2-纵坐标轴ln[g(α)/T2] 3-斜率 4-截距1-Abscissa axis 2-axis of ordinate ln[g(α)/T 2 ] 3-slope 4-intercept
具体实施方式Detailed ways
采用本发明提出的评价阻燃剂对沥青阻燃效果的方法,具体步骤如下:Adopt the method that the evaluation fire retardant that the present invention proposes to asphalt fire-retardant effect, concrete steps are as follows:
(1)制备阻燃沥青试样,将沥青加热到一定温度,熔融流动后,分别加入不同类型和掺量的阻燃剂,并充分搅拌,使阻燃剂与沥青基体充分混合,制备均匀、稳定的阻燃沥青。(1) Prepare the flame retardant asphalt sample, heat the asphalt to a certain temperature, and after melting and flowing, add different types and amounts of flame retardants respectively, and stir fully to make the flame retardant and asphalt matrix fully mixed, and prepare uniform, Stabilized flame retardant bitumen.
(2)采用热重-差热同步分析仪对基质沥青和制备的阻燃沥青分别进行测试,气氛流量为60ml/min,升温速率为5℃/min,自室温升温至750℃,获取TG、DTG、DTA和成炭率等试验数据。(2) The base asphalt and the prepared flame-retardant asphalt were tested separately by thermogravimetric-differential thermal analyzer. The atmosphere flow rate was 60ml/min, and the heating rate was 5°C/min. Test data such as DTG, DTA and char formation rate.
(3)根据上述公式(5),作ln[g(α)/T2]对1/T的曲线,经最小二乘法线性拟和,取相关系数R2最大所对应的g(α)作为该热分解过程的反应机理函数。(3) According to the above formula (5), draw the curve of ln[g(α)/T 2 ] against 1/T, linearly fit through the least square method, and take g(α) corresponding to the maximum correlation coefficient R 2 as The reaction mechanism function of the thermal decomposition process.
(4)确定了g(α)后,作ln[g(α)/T2]对1/T的直线,拟合直线的斜率为-E/R,而截距中包含频率因子A,通过斜率和截距可以求得动力学参数E和A。(4) After determining g(α), make a straight line of ln[g(α)/T 2 ] to 1/T, the slope of the fitted line is -E/R, and the intercept includes the frequency factor A, through Kinetic parameters E and A can be obtained from the slope and intercept.
(5)比较基质沥青和制备阻燃沥青的活化能E和频率因子A的大小,并结合热重-差热同步分析试验结果,全面、准确评价不同类型和掺量的阻燃剂对沥青的阻燃效果。(5) Comparing the activation energy E and frequency factor A of the base asphalt and the prepared flame-retardant asphalt, combined with the thermogravimetric-differential thermal analysis test results, comprehensively and accurately evaluate the effects of different types and dosages of flame retardants on asphalt Flame retardant effect.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310262923XA CN103293079A (en) | 2013-06-28 | 2013-06-28 | Method for evaluating flame retardant efficiency of asphalt |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310262923XA CN103293079A (en) | 2013-06-28 | 2013-06-28 | Method for evaluating flame retardant efficiency of asphalt |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103293079A true CN103293079A (en) | 2013-09-11 |
Family
ID=49094322
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310262923XA Pending CN103293079A (en) | 2013-06-28 | 2013-06-28 | Method for evaluating flame retardant efficiency of asphalt |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103293079A (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103468007A (en) * | 2013-09-22 | 2013-12-25 | 南京林业大学 | Design method of efficient asphalt flame retardant multi-element compounding scheme |
CN103472091A (en) * | 2013-09-26 | 2013-12-25 | 南京林业大学 | Component level-based asphalt thermal decomposition behavior researching method |
CN103499598A (en) * | 2013-10-16 | 2014-01-08 | 南京林业大学 | Method for evaluating suppression effect of smoke suppressor on release process of asphalt thermal decomposition product |
CN104535608A (en) * | 2014-12-15 | 2015-04-22 | 常州大学 | Method for rapidly evaluating activity of catalyst for cyclic ester ring opening polymerization in industrial production process |
CN106442950A (en) * | 2016-09-14 | 2017-02-22 | 南京林业大学 | Flame retardation and smoke suppression scheme designing method in whole thermal decomposition process of tunnel asphalt pavement |
CN107421845A (en) * | 2017-09-18 | 2017-12-01 | 山东大学 | A kind of quick analysis and identification Weihai sea cucumber, Russian red ginseng and the method for eggplant ginseng |
CN107421970A (en) * | 2017-05-10 | 2017-12-01 | 贵州新联爆破工程集团有限公司 | It is a kind of to FeS2Thermal process reactor carries out the method and FeS of quantitative deduction2Thermal hazard appraisal procedure |
CN107907441A (en) * | 2017-11-13 | 2018-04-13 | 山东大学 | A kind of quick method for differentiating plantain seed and lepidium seed |
CN108753132A (en) * | 2018-04-28 | 2018-11-06 | 南京林业大学 | A kind of preparation method of the super-hydrophobic suppression ice coating of Novel road |
CN108985006A (en) * | 2018-08-03 | 2018-12-11 | 中国科学技术大学 | Pyrolysis Kinetics Parameter and mechanism function acquisition methods under multiple heating mode |
CN109142422A (en) * | 2018-06-29 | 2019-01-04 | 南方电网科学研究院有限责任公司 | Method for evaluating aging degree of basin-type insulator |
CN109557242A (en) * | 2018-12-28 | 2019-04-02 | 长安大学 | A kind of asphalt material flame retardant property test equipment and method |
CN110793891A (en) * | 2019-10-18 | 2020-02-14 | 江苏大学 | Quantitative evaluation method for pyrolysis activation energy of diesel engine classified particles |
CN112748149A (en) * | 2020-12-23 | 2021-05-04 | 重庆交通建设(集团)有限责任公司 | Asphalt content detection method |
CN114112782A (en) * | 2021-11-12 | 2022-03-01 | 武汉理工大学 | Method for evaluating influence degree of different flame retardants on asphalt flame-retardant and smoke-suppression effect |
CN114441530A (en) * | 2022-01-17 | 2022-05-06 | 山东省路桥集团有限公司 | Method for evaluating activation degree of old asphalt mixture of pavement |
CN119044394A (en) * | 2024-11-01 | 2024-11-29 | 西尼尔(山东)新材料科技有限公司 | Intelligent monitoring method and system for flame retardant performance of flame retardant |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2082166C1 (en) * | 1994-02-04 | 1997-06-20 | Научно-исследовательский институт по нефтепромысловой химии | Device for determining efficiency of inhibitors and removers of asphaltene-paraffin tar deposits |
CN102297863A (en) * | 2011-05-17 | 2011-12-28 | 同济大学 | Method for evaluating smoke suppression performance of flame retardant asphalt mixture |
CN102680517A (en) * | 2011-03-09 | 2012-09-19 | 同济大学 | Method for testing oxygen index of flame-retardant modified asphalt |
-
2013
- 2013-06-28 CN CN201310262923XA patent/CN103293079A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2082166C1 (en) * | 1994-02-04 | 1997-06-20 | Научно-исследовательский институт по нефтепромысловой химии | Device for determining efficiency of inhibitors and removers of asphaltene-paraffin tar deposits |
CN102680517A (en) * | 2011-03-09 | 2012-09-19 | 同济大学 | Method for testing oxygen index of flame-retardant modified asphalt |
CN102297863A (en) * | 2011-05-17 | 2011-12-28 | 同济大学 | Method for evaluating smoke suppression performance of flame retardant asphalt mixture |
Non-Patent Citations (4)
Title |
---|
余剑英等: "阻燃SBS改性沥青的制备及性能", 《中国公路学报》 * |
屈言宾等: "阻燃沥青的制备及性能研究", 《石油沥青》 * |
薛向欣等: "抚顺油页岩及其残渣的热解性能", 《东北大学学报(自然科学版)》 * |
许涛: "隧道火灾过程沥青路面热行为及阻燃抑烟机理研究", 《东南大学博士学位论文》 * |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103468007A (en) * | 2013-09-22 | 2013-12-25 | 南京林业大学 | Design method of efficient asphalt flame retardant multi-element compounding scheme |
CN103468007B (en) * | 2013-09-22 | 2015-11-25 | 南京林业大学 | A kind of Design method of efficient asphalt flame retardant Recompounded multielement Design Method |
CN103472091A (en) * | 2013-09-26 | 2013-12-25 | 南京林业大学 | Component level-based asphalt thermal decomposition behavior researching method |
CN103472091B (en) * | 2013-09-26 | 2015-11-25 | 南京林业大学 | A kind of based on the pitch thermal decomposition behavior research method on component level |
CN103499598A (en) * | 2013-10-16 | 2014-01-08 | 南京林业大学 | Method for evaluating suppression effect of smoke suppressor on release process of asphalt thermal decomposition product |
CN104535608A (en) * | 2014-12-15 | 2015-04-22 | 常州大学 | Method for rapidly evaluating activity of catalyst for cyclic ester ring opening polymerization in industrial production process |
CN106442950A (en) * | 2016-09-14 | 2017-02-22 | 南京林业大学 | Flame retardation and smoke suppression scheme designing method in whole thermal decomposition process of tunnel asphalt pavement |
CN107421970A (en) * | 2017-05-10 | 2017-12-01 | 贵州新联爆破工程集团有限公司 | It is a kind of to FeS2Thermal process reactor carries out the method and FeS of quantitative deduction2Thermal hazard appraisal procedure |
CN107421845A (en) * | 2017-09-18 | 2017-12-01 | 山东大学 | A kind of quick analysis and identification Weihai sea cucumber, Russian red ginseng and the method for eggplant ginseng |
CN107907441A (en) * | 2017-11-13 | 2018-04-13 | 山东大学 | A kind of quick method for differentiating plantain seed and lepidium seed |
CN108753132A (en) * | 2018-04-28 | 2018-11-06 | 南京林业大学 | A kind of preparation method of the super-hydrophobic suppression ice coating of Novel road |
CN109142422A (en) * | 2018-06-29 | 2019-01-04 | 南方电网科学研究院有限责任公司 | Method for evaluating aging degree of basin-type insulator |
CN108985006A (en) * | 2018-08-03 | 2018-12-11 | 中国科学技术大学 | Pyrolysis Kinetics Parameter and mechanism function acquisition methods under multiple heating mode |
CN109557242A (en) * | 2018-12-28 | 2019-04-02 | 长安大学 | A kind of asphalt material flame retardant property test equipment and method |
CN110793891A (en) * | 2019-10-18 | 2020-02-14 | 江苏大学 | Quantitative evaluation method for pyrolysis activation energy of diesel engine classified particles |
CN112748149A (en) * | 2020-12-23 | 2021-05-04 | 重庆交通建设(集团)有限责任公司 | Asphalt content detection method |
CN114112782A (en) * | 2021-11-12 | 2022-03-01 | 武汉理工大学 | Method for evaluating influence degree of different flame retardants on asphalt flame-retardant and smoke-suppression effect |
CN114441530A (en) * | 2022-01-17 | 2022-05-06 | 山东省路桥集团有限公司 | Method for evaluating activation degree of old asphalt mixture of pavement |
CN114441530B (en) * | 2022-01-17 | 2023-05-12 | 山东省路桥集团有限公司 | Evaluation method for activation degree of old asphalt mixture of pavement |
CN119044394A (en) * | 2024-11-01 | 2024-11-29 | 西尼尔(山东)新材料科技有限公司 | Intelligent monitoring method and system for flame retardant performance of flame retardant |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103293079A (en) | Method for evaluating flame retardant efficiency of asphalt | |
Mensah et al. | Correlation analysis of cone calorimetry and microscale combustion calorimetry experiments | |
CN103471956A (en) | Method for predicting pyrolysis process of environment-friendly flame-retarding asphalt | |
CN103472091B (en) | A kind of based on the pitch thermal decomposition behavior research method on component level | |
Agarwal et al. | Method for measuring the standard heat of decomposition of materials | |
Stoliarov et al. | Parameterization and validation of pyrolysis models for polymeric materials | |
CN103499511A (en) | Asphalt combustion process predicting method based on multistage thermal analysis kinetics models | |
Carvel et al. | Determination of the flammability properties of polymeric materials: A novel method | |
Veshkini et al. | Understanding soot particle size evolution in laminar ethylene/air diffusion flames using novel soot coalescence models | |
Xu et al. | Discuss the heat release capacity of polymer derived from microscale combustion calorimeter | |
Qing et al. | Risk evaluation of coal spontaneous combustion from the statistical characteristics of index gases | |
CN105510374A (en) | Determination method of asphalt fume in asphalt heating and spontaneous combustion process | |
CN107421844A (en) | Based on pitch each component short ageing analogy method associated with heat analysis-infrared | |
Won et al. | Comparative evaluation of global combustion properties of alternative jet fuels | |
Jach et al. | Assessment of detailed reaction mechanisms for reproduction of ignition delay times of C2–C6 alkenes and acetylene | |
Jullien et al. | Airborne emissions assessment of hot asphalt mixing: methods and limitations | |
CN103499598A (en) | Method for evaluating suppression effect of smoke suppressor on release process of asphalt thermal decomposition product | |
Abu-Bakar et al. | Experimental investigation of effects of variation in heating rate, temperature and heat flux on fire properties of a non-charring polymer | |
Guo et al. | Data on analysis of temperature inversion during spontaneous combustion of coal | |
Zhang et al. | A detailed oxidation mechanism for the prediction of formaldehyde emission from methanol-gasoline SI engines | |
Bray et al. | The controlled atmosphere cone calorimeter: a literature review | |
Liu et al. | Comprehensive evaluation of low-temperature oxidation characteristics of low-rank bituminous coal and oil shale | |
Jimenez et al. | Kinetic analysis of the thermal degradation of PVC plastisols | |
Liu et al. | Dimensionless prejudgment criterion of coal spontaneous combustion in longwall gobs and its application | |
Lautenberger et al. | Understanding materials flammability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C12 | Rejection of a patent application after its publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20130911 |