CN103275867A - 一种用于固态纳米孔核酸测序电信号的检测和采集系统 - Google Patents

一种用于固态纳米孔核酸测序电信号的检测和采集系统 Download PDF

Info

Publication number
CN103275867A
CN103275867A CN2013101580832A CN201310158083A CN103275867A CN 103275867 A CN103275867 A CN 103275867A CN 2013101580832 A CN2013101580832 A CN 2013101580832A CN 201310158083 A CN201310158083 A CN 201310158083A CN 103275867 A CN103275867 A CN 103275867A
Authority
CN
China
Prior art keywords
circuit
data
signal
calibration
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013101580832A
Other languages
English (en)
Other versions
CN103275867B (zh
Inventor
张�浩
蔡子龙
曹忠升
瞿安连
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN201310158083.2A priority Critical patent/CN103275867B/zh
Publication of CN103275867A publication Critical patent/CN103275867A/zh
Application granted granted Critical
Publication of CN103275867B publication Critical patent/CN103275867B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

本发明涉及遗传学和分子生物学领域,提供了一种用于固态纳米孔核酸测序电信号的检测和采集系统,包括依次连接的电流电压变换电路、调理电路和碱基特征信号数据采集电路;电流电压变换电路用于将碱基在电场的驱动下通过固态纳米孔产生的特征电流信号转换为电压信号,调理电路用于将所述电压信号进行放大和滤波,碱基特征信号数据采集电路用于长时连续采集调理电路的输出并将采集数据输出到计算机处理。本发明克服膜片钳系统在固态纳米孔核酸测序中电信号检测的不足,针对四种碱基,采用彼此相互独立的检测通道和不同的增益,实现了检测和采集大幅度变化的pA~nA级电流信号,提高了碱基特征电流信号采集的速度和分辨率,进而可提高识别精度。

Description

一种用于固态纳米孔核酸测序电信号的检测和采集系统
技术领域
本发明属于遗传学和分子生物学领域,更具体地,涉及一种用于固态纳米孔核酸测序电信号的检测和采集系统。
背景技术
核酸测序技术是遗传学和分子生物学研究的重要手段,也是临床疾病诊断和治疗的一种有效工具。随着基因组计划的推动,核酸测序技术发挥着越来越重要的作用。固态纳米孔核酸测序(见发明专利200610116294.X)是一种低成本、高读长、高通量的第三代测序方法,在目前的方法中它最有望在24小时内仅花费1000美元实现个人全基因组测序的目标。纳米孔核酸测序大多采用电泳的方法,碱基在外加恒定电场的驱动下穿过纳米级的小孔时会引发电流的变化,不同的碱基会产生不同幅度和脉宽的特征电流,通过识别特征电流就能达到测定核酸碱基的目的。
诞生于二十世纪70年代的膜片钳技术是研究细胞离子通道的最重要的技术,是研究细胞电生理的常规方法。该技术利用膜片钳系统检测和采集活细胞离子通道pA~nA量级电流,而该电流量级与单个碱基穿越固态纳米孔产生的特征电流的数量级相同,故被用于纳米孔核酸测序。经对文献检索发现,目前主流的商用膜片钳放大器有Axopatch200B(MolecularDevices)和EPC-10(HEKA Electronik)。如图1所示,为膜片钳系统检测活细胞离子通道电流的框图,离子通道电流经过电流电压变换电路11将离子通道电流转换成电压信号,接着通过信号调理电路12对信号进行放大滤波,最后通过电生理信号数据采集电路13将数据采集到计算机进行显示和处理,在信号检测之前需要通过补偿电路10对电路快、慢电容和串联电阻进行补偿。
膜片钳系统的传统用途是检测细胞离子通道电流,在固态纳米孔核酸测序的应用中存在一些功能冗余和性能不足。现有膜片钳系统多采用12位或16位模数转换器,虽然单通道最高采样率可达200~500kHz,但经多路复用后,各通道共享采样率,无法同时满足多通道高精度并行高速的采集要求。另外,现有膜片钳系统在进行纳米孔核酸测序时,对不同碱基引发的特征电流均以相同放大倍数进行放大,而当特征电流幅度变化范围较大时,对小幅度特征电流检测可能存在分辨率不足的问题。对于纳米孔核酸测序,上述问题带来的后果是不仅极大地压缩了采集数据后处理的空间,而且影响对特征电流细节的辨识。而利用集成电路技术制作的放大器虽然可以降低噪声、扩大带宽,但在利用如外切酶降速进行核酸测序的场合(≤1000bp/s),成本则明显过高。
发明内容
针对现有技术的缺陷,本发明提供了一种可以检测和采集大幅度变化的pA~nA级微弱电流信号的用于固态纳米孔核酸测序电信号的检测和采集系统。
本发明提供了一种用于固态纳米孔核酸测序电信号的检测和采集系统,包括:依次连接的电流电压变换电路、调理电路和碱基特征信号数据采集电路;电流电压变换电路的输入端用于连接电泳池的正电极,碱基特征信号数据采集电路的输出端用于连接计算机;所述电流电压变换电路用于将碱基在外加恒定电场的驱动下通过固态纳米孔产生的特征电流信号转换为特征电压信号,所述调理电路用于将所述特征电压信号进行放大和滤波处理后输出,所述碱基特征信号数据采集电路用于长时连续采集所述调理电路的输出并将采集数据输出到所述计算机上用于显示和分析。
更进一步地,所述碱基特征信号数据采集电路包括:依次连接的程控放大电路、同步多通道数据转换电路、数据比较选择单元、数据缓冲单元和USB接口电路,以及连接在数据缓冲单元的反馈输出端与程控放大电路的反馈控制端之间的校准增益控制单元;所述程控放大电路用于对四种不同碱基的特征电压信号进行不同倍数的放大;所述同步多通道数据转换电路用于将放大后的特征电压信号同步转换成数字信号;所述数据比较选择单元用于将四路数字信号进行比较分析并输出转换数据;数据缓冲单元用于缓冲所述数据比较选择单元输出的数据和所述USB接口电路输入的数据;所述USB接口电路用于实现数据缓冲单元与计算机的数据交换;所述校准增益控制单元用于根据所述数据缓冲单元中的校准控制数据控制程控放大电路的放大倍数。
更进一步地,碱基特征信号数据采集电路包括:依次连接的程控放大电路、同步多通道数据转换电路、通道选择控制单元、数据缓冲单元和USB接口电路,连接在数据缓冲单元的反馈输出端与程控放大电路的反馈控制端之间的校准增益控制和阈值设置单元,以及连接在程控放大电路的输入端与通道选择控制单元的控制端之间的阈值比较电路;所述程控放大电路用于对四种不同碱基的特征电压信号进行不同倍数的放大;所述同步多通道数据转换电路用于将放大后的特征电压信号同步转换成数字信号;所述阈值比较电路用于将特征电压信号与参考电压进行比较并根据比较结果输出控制信号;所述通道选择控制单元用于根据所述控制信号进行通道选择;所述数据缓冲单元用于缓冲数据;所述USB接口电路用于实现数据缓冲单元与计算机的数据交换;所述校准增益控制和阈值设置单元用于设置所述参考电压以及根据所述数据缓冲单元中的校准控制数据控制所述程控放大电路的放大倍数。
更进一步地,所述程控放大电路包括四路并行的放大器,用于对四种不同碱基的特征电压信号分别同时进行不同倍数的放大。
更进一步地,所述同步数据转换电路包括四个模数转换器,分别连接至四个程控放大器的输出端,用于将经放大后的特征电压信号同步转换成数字信号。
更进一步地,阈值比较电路包括四个比较器,四个比较器的第一输入端作为阈值比较电路的输入端,均连接至程控放大电路的输入端,四个比较器的第二输入端分别连接所述校准增益控制和阈值设置单元输出的四个参考电压控制端,四个比较器的输出端均连接至通道选择控制单元的控制端。
本发明提供了一种用于固态纳米孔核酸测序电信号的检测和采集系统,通过修改膜片钳放大电路结构,删除了纳米孔DNA测序中不需要慢电容和串联电阻补偿电路,简化了电路结构,减小了仪器体积;通过增加多路程控放大功能、同步数据采集功能和比较选择功能,实现了检测和采集大幅度变化的pA~nA级微弱电流信号。
附图说明
图1是现有技术提供的用于单细胞离子通道电流的膜片钳检测和采集系统的原理框图;
图2是本发明实施例提供的用于固态纳米孔核酸测序电信号的检测和采集系统的原理框图;
图3是本发明实施例提供的用于固态纳米孔核酸测序电信号的检测和采集系统中碱基特征信号数据采集电路的一种结构示意图;
图4是本发明实施例提供的用于固态纳米孔核酸测序电信号的检测和采集系统中碱基特征信号数据采集电路的另一种结构示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明适用于连续检测和采集pA~nA量级的大幅度快速变化的微弱电流信号,并对最大和/或最小电信号都要进行高精度连续采集的应用领域。具体来说,可用于采集固态纳米孔核酸测序时产生的幅度无法事先预知的电流信号。固态纳米孔核酸测序时会产生四种幅度的特征电流信号,且最大和最小电信号的幅度可能相差100倍以上。
图2示出了本发明实施例提供的用于固态纳米孔核酸测序电信号的检测和采集系统的原理框图,为了便于说明,仅示出了与本发明实施例相关的部分,详述如下:
用于固态纳米孔核酸测序电信号的检测和采集系统1包括:依次连接的电流电压变换电路11、调理电路12和碱基特征信号数据采集电路14;电流电压变换电路11的输入端用于连接电泳池的正电极,碱基特征信号数据采集电路14的输出端用于连接计算机;电泳池中被核酸外切酶切下的带负电荷的碱基在外加恒定电场的驱动下通过固态纳米孔产生特征电流,电流电压变换电路11用于将特征电流信号转换为电压信号并同时提供驱动电压,调理电路12用于将电压信号进行放大和滤波处理后输出,碱基特征信号数据采集电路14用于长时连续采集调理电路12输出的特征电压信号,并将采集数据输出到计算机上用于显示和分析。
电泳池是一种碱基特征电流信号产生装置,在固态纳米孔电泳池中,核酸外切酶以一定速率逐个地切下核酸单链的碱基,带负电荷的碱基在外加恒定电场的驱动下通过固态纳米孔。碱基在通过碳纳米孔的时候会阻塞纳米孔,故将引起通道电流的变化,每种碱基通过纳米孔所产生的特征电流变化会与其他碱基存在一定差别,通过检测特征电流变化即可判断穿越纳米孔的碱基种类。可以采用外切酶-纳米孔的单分子核酸测序方法(申请号:200610116294.X)中所描述的方法搭建固态纳米孔核酸测序的电泳装置,其中碳纳米管纳米孔可采用碳纳米管制备二维可控纳米元件的方法(申请号:200610147236.3)进行制备和安装。
电流电压变换电路11通过超低噪声探头实现碱基特征电流信号到电压信号的转换并同时给电泳池提供驱动电压形成外加恒定电场。调理电路12由高频补偿电路、增益放大电路、低通滤波电路组成,主要将电流电压变换电路11输出的电压信号调理成可采集的低噪声特征电压信号。根据所使用的纳米孔材料不同,碱基通过纳米孔会产生pA~nA量级的电流变化,电流电压变换电路11和调理电路12的作用是将微小的电流放大成碱基特征信号数据采集电路14能识别的电压信号。与电生理实验中使用的膜片钳放大器相比,在电流的检测过程中,由于被测对象不是电生理实验中的活细胞,故不需要慢电容补偿、串联电阻补偿等辅助电路,但需保留其他补偿电路(比如快电容补偿电路)。核酸测序的电流放大器主通道仅保留了电流电压变换电路11与调理电路12中的高频补偿电路、滤波电路和增益放大电路。如此,可以减小电路体积,便于增加集成度。
调理电路12输出的特征电压信号的最大与最小电压幅度可能相差100倍以上,如果考虑最大信号,则最小信号就没有足够的采样精度,如果考虑最小信号,最大信号就会超过采集电路的量程。
由于本领域的普通技术人员根据上述描述很容易实现电流电压变换电路11和调理电路12,在此不再详述其内部结构。
碱基特征信号数据采集电路14能进行长时连续的采集,且能保证最大和最小特征电压信号都有足够的分辨率。
计算机用于将接收到的数据进行显示和后续处理,即碱基数据的分析。
本发明克服传统膜片钳系统对于固态纳米孔核酸测序中电信号检测的不足,通过修改膜片钳结构,减小了电流放大器的体积;通过增加多路程控放大电路、同步模数转换电路和比较选择电路,实现了并行高速高精度检测和采集大幅度变化的pA~nA级微弱电流信号。
本发明通过多路程控放大电路实现大幅度变化的电信号的低噪声检测和高精度采集;碱基电流信号存在很大幅度的变化,假设最大碱基电流为20nA、最小碱基电流为10pA时,如果采用固定增益的方法,当最大碱基电流信号转换成10V的满量程电压输出时,在12位模数转换器的情况下,最小碱基电流信号对应的电压输出仅为5mV。12位模数转换器电路在-10V~+10V的量程下,其最小分辨电压约为4.88mV,考虑到系统噪声,此时模数转换器的分辨率无法满足碱基特征电流波形的精确识别的要求,因此需要针对不同的碱基特征信号进行不同倍数的放大,并采用更高位数的模数转换器。
如图3所示,碱基特征信号数据采集电路14包括:依次连接的程控放大电路141、同步多通道数据转换电路142、数据比较选择单元144、数据缓冲单元145和USB接口电路146,以及连接在数据缓冲单元145的反馈输出端与程控放大电路141的反馈控制端之间的校准增益控制单元140;程控放大电路141用于对四种不同碱基的特征电压信号进行不同倍数的放大;同步多通道数据转换电路142用于将放大后的四路特征电压信号同步转换成数字信号;数据比较选择单元144将四路数字信号进行比较分析,选择出最大分辨率且不超量程的转换数据;数据缓冲单元145用于缓冲数据比较选择单元144输入的数据和USB接口电路输入的反方向数据;USB接口电路146通过USB总线实现数据缓冲单元145与计算机的数据交换。
程控放大电路141包括四路并行的放大器,四个放大器的放大倍数分别为k1、k2、k3、k4,分别针对四种不同碱基(DNA为A、T、G、C,RNA为A、U、G、C)的特征信号同时进行不同倍数的放大;程控放大功能采用数字可调的电位器和低噪声运算放大器实现,根据不同材料纳米孔的校准结果,可以通过校准增益控制单元140对放大倍数k1、k2、k3、k4进行调节。
同步数据转换电路142包括四个分别连接在上述四个放大器的输出端的模数转换器,用于将程控放大后的电压信号同步转换成数字信号。通过同步数据转换电路142可以保证在不降低采样率的情况下分别获得最大或最小信号的电压值,并且都能保证采集的信号有足够的分辨率且更小的相对误差。
数据比较选择单元144的输入端连接至上述四个模数转换器的输出端,用于通过阈值比较判断的方法选择出分辨率最高且不超量程的转换数据,对于16位模数转换器就是选择数值最大,且不超过量程最大数值的数据。
数据缓冲单元145的输入端连接至数据比较选择单元144的输出端,用于缓存数据。数据缓冲单元145能将数据缓存起来,避免数据丢失;该单元既可用于测序时缓存测序实验数据,又可缓存校准时的校准实验数据和校准控制数据。
USB接口电路146用于实现数据缓冲单元145与计算机之间双向数据通信,USB接口电路用于读写USB总线上的数据,实现数据缓冲单元与计算机的数据交换。
校准增益控制单元140用于接收数据缓冲单元145中的校准控制数据并控制程控放大电路141中四个放大器的放大倍数;校准增益控制单元通过发送数字信号给数字可调的电位器实现模拟放大器放大倍数的调节。由于不同材料固态纳米孔四种碱基的电流幅度大小不同,在采集信号之前,需要根据固态纳米孔的电流特征进行校准:
校准时,需先将四路程控放大器的增益设为不同增益基值,在电泳池中放入数量一定的单一碱基(如100个A碱基),碱基在外加电场作用下逐个通过纳米孔;产生的碱基特征电流信号经碱基特征信号数据采集电路传递给计算机。将校准时获得的数据称为校准实验数据,以区别测序实验获得的实验数据。
计算机根据校准实验数据计算“A碱基”对应的增益设置数值,再将增益设置数值通过USB总线发送给USB接口电路146,经数据缓冲单元145缓冲后,将增益设置数值传递给校准增益控制单元140;最后由校准增益控制单元140发送数据给程控放大电路141以设置“A碱基”的增益。
其他三种碱基的校准过程同理,在此不再赘述。
校准过程中需要采集到足够时长的纯碱基电流数据,并留出超量程余量,以保证数据的准确性。
电路校准之后,即可对碱基排序未知的DNA片段进行测序实验。当未知碱基穿越纳米孔时,特征电压信号经过倍数分别为k1、k2、k3、k4的四个程控放大器分别同时放大,接着通过同步数据转换电路142转换成四路数字信号,之后数据比较选择单元144通过判断选择出分辨率最大且不超量程的数据,再经过数据缓冲单元144和USB接口电路146将数据传递到计算机分析处理。
作为本发明的一个实施例,数据比较选择单元144、数据缓冲单元145和校准增益控制单元140可以在FPGA上实现,也可以在DSP或CPLD等实现。FPGA的RAM资源丰富,但是成本高;CPLD的RAM资源较少但是成本低;DSP更加专注于数字信号的处理,但是没有FPGA和CPLD使用上的灵活性。
如图4所示,碱基特征信号数据采集电路14包括:依次连接的程控放大电路141、同步多通道数据转换电路142、通道选择控制单元143、数据缓冲单元145和USB接口电路146,连接在数据缓冲单元145的反馈输出端与程控放大电路141的反馈控制端之间的校准增益控制和阈值设置单元148,以及连接在程控放大电路141的输入端与通道选择控制单元143的控制端之间的阈值比较电路147;校准增益控制和阈值设置单元148的输出端还与阈值比较电路147的控制端连接;程控放大电路141用于对四种不同碱基的特征电压信号进行不同倍数的放大;同步多通道数据转换电路142用于将放大后的特征电压信号同步转换成数字信号;阈值比较电路147用于将特征电压信号与参考电压进行比较并根据比较结果输出控制信号;通道选择控制单元143用于根据控制信号进行通道选择;数据缓冲单元145用于缓冲数据;USB接口电路146用于实现数据缓冲单元与计算机的数据交换。校准增益控制和阈值设置单元148是在校准增益控制单元140的基础上增加了阈值设置功能,用于设置阈值比较电路147的四个比较器参考电压VREF1、VREF2、VREF3、VREF4;阈值比较电路147用于根据比较器的输出结果输出控制信号给通道选择控制单元143。
程控放大电路141、同步多通道数据转换电路142、数据缓冲单元145和USB接口电路146的结构功能与上述结构相同,为了节省篇幅,在此不在赘述。
通道选择控制单元143接收阈值比较电路147的输出控制信号,控制信号选择当前碱基对应的通道数据,而忽略其他通道的数据。
阈值比较电路147包括四个比较器,每个比较器都有两个输入端,其中的一个输入端作为阈值比较电路147的输入端,均连接至程控放大电路141的输入端,每个比较器的另一个输入端均分别连接四个参考电压VREF1、VREF2、VREF3、VREF4;四个比较器的输出端均连接至通道选择控制单元143的控制端;阈值比较电路147用于根据比较器的输出结果输出控制信号;四个参考电压VREF1、VREF2、VREF3、VREF4可以通过下述的校准过程获取。
校准增益控制和阈值设置单元148是在校准增益控制单元140的基础上增加了阈值设置功能。
该实施例中校准包括两个步骤:即程控放大电路141的增益设置和阈值比较电路147的阈值设置。其中程控放大电路141的增益设置方法与图3所示实施例的方法原理相同。
校准时,先将阈值比较电路147中的四个阈值电压设为相等,再将程控放大电路141中的四路放大器增益均设为相应基值。电泳池中某纯碱(如A碱基)基逐个通过纳米孔时,产生的碱基特征电流信号经碱基特征信号数据采集电路14传递给计算机。将校准时获得的数据称为校准实验数据,以区别测序实验获得的实验数据。
计算机接收到校准实验数据后,根据校准实验数据计算“A碱基”对应的增益设置数值;再将增益设置数值通过USB总线发送给USB接口电路146,经数据缓冲单元145缓冲后,将增益设置数值传递给校准增益控制和阈值设置单元148;最后由校准增益控制和阈值设置单元148发送数据给程控放大电路141以设置A碱基的增益。
其它三种碱基增益设置过程同理。
计算机根据“A碱基”校准实验数据的分布,利用统计的方法,计算出A碱基校准实验数据幅度的平均值,可以将此平均值作为阈值比较电路147的阈值电压值;再将阈值电压值通过USB总线送给USB接口电路146,经数据缓冲单元145缓冲后,将阈值电压值传递给校准增益控制和阈值设置单元148,然后设置阈值比较电路147标记为“A碱基”的参考电压值。此种设置阈值的方法能保证同一种碱基的电流是来自于同一个程控放大通路,避免了通路切换造成的误差。
校准过程中需要采集到足够时长的纯碱基电流数据,并留出超量程余量,以保证数据的准确性。
电路校准之后,即可对碱基排序未知的DNA片段进行测序实验。当未知碱基穿越纳米孔时,特征电压信号经过倍数为k1~k4四个程控放大器141分别放大。与此同时,输入电压会经过四个比较器组成的阈值比较电路147对输入电压当前幅度进行判断比较并输出控制信号。控制信号控制通道选择控制单元143选择对应的数模转换器并转换相应的数据,数据将经过数据缓冲单元145和USB接口电路146将数据传递到计算机。
图4的方法相比于图3的实现方法,增加了通道选择控制单元143和阈值比较电路147,删减了数据比较选择单元144;由于采用模拟比较方法代替数字方法比较,图4的方法具有更快的响应速度,但是阈值比较电路147输出给通道选择控制单元143的数据为异步信号,图4的方法数字控制的复杂性较大,两种方法互有优缺点。
本发明实施例中,数据比较选择单元144、数据缓冲单元145、校准增益控制单元140、通道选择控制单元143和校准增益控制和阈值设置单元148可以用FPGA实现,也可以用DSP或CPLD等实现。FPGA的RAM资源丰富,灵活方便,但是成本高;CPLD的RAM资源较少但是成本低;DSP更加专注于数字信号的处理,但是使用上没有FPGA和CPLD灵活。
在本发明实施例中,碱基电流信号经过电流电压变换电路11和调理电路12后分成四路并进行放大,每一路程控放大对应于四种碱基的一种。程控放大电路141将碱基特征信号放大到一定的幅度,能够保证每种碱基的特征信号有足够的分辨率。如此设计能够保证四路信号中总有一路信号是需要采集的特征信号,采集到的四路数据任意时刻总存在一路高分辨率且不超量程的有效数据。碱基特征信号通过四路同步数模转换电路142采集,经数据缓冲单元145,数据将由USB接口电路146传输到计算机上进行处理。采集到的数据将通过自主开发的计算机软件转换成实际的四种碱基的电流值并显示。计算机分析软件还负责分析电流数据以得到实际碱基A、T、G、C的顺序,以达到测序的目的。
为了更进一步的说明本发明实施例提供的检测和采集系统,现结合具体实例详述如下:
采用碳纳米管孔实现电泳池装置,其中碳纳米孔的直径为1-2nm,厚度为200nm左右。电流电压变换电路和调理电路通过对具有自主知识版权的商用膜片钳放大器进行修改而实现。程控放大器采用数字电位器和低噪声运算放大器实现。模数转换器采用4通道16位同步模数转换器。数据比较选择单元/通道选择控制单元、数据缓冲单元、校准增益控制单元/校准增益控制和阈值设置单元采用FPGA和SDRAM实现。阈值比较电路采用带迟滞的比较器。
碱基穿越碳纳米管孔产生的电流信号经过电流电压变换电路11、调理电路12得到可采集的特征电压信号,之后经过多路程控放大电路141、同步多通道模数转换电路142和FPGA逻辑电路实现大幅度变化信号的连续采集。
为了更清楚地说明本发明的思想,通过以下数据对本发明中多路程控放大电路141增益设置方法进行详细说明,实际实验中可能因为纳米孔的材料不同而导致数据不同,但处理方法相同。假定利用纯碱基校准实验后得到的四种碱基对应的幅度范围的统计结果如表一所示,膜片钳放大器调理电路12的放大倍数为10倍,16位模数转换器的满量程为-10V~+10V。采用表一数据的最大值,根据膜片钳放大器满量程20nA进行计算,其程控放大倍数计算结果为:
碱基类型 电流大小±误差(pA) 程控放大倍数
dAMP 172.08±25.49 10.86
dTMP 356.81±42.90 5.00
dCMP 1437.47±66.49 1.33
dGMP 13.73±0.92 136.51
表一
从表一可以看出,采用本发明提供的检测和采集系统可以检测和采集十几pA至上千pA的大幅度快速变化的微弱电流信号。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.一种用于固态纳米孔核酸测序电信号的检测和采集系统,其特征在于,包括:依次连接的电流电压变换电路、调理电路和碱基特征信号数据采集电路;电流电压变换电路的输入端用于连接电泳池的正电极,碱基特征信号数据采集电路的输出端用于连接计算机;
所述电流电压变换电路用于将碱基在外加恒定电场的驱动下通过固态纳米孔产生的特征电流信号转换为电压信号,所述调理电路用于将所述电压信号进行放大和滤波处理后输出,所述碱基特征信号数据采集电路用于长时连续采集所述调理电路的输出并将采集数据输出到所述计算机上用于显示和分析。
2.如权利要求1所述的检测和采集系统,其特征在于,所述碱基特征信号数据采集电路包括:依次连接的程控放大电路、同步多通道数据转换电路、数据比较选择单元、数据缓冲单元和USB接口电路,以及连接在数据缓冲单元的反馈输出端与程控放大电路的反馈控制端之间的校准增益控制单元;
所述程控放大电路用于对四种不同碱基的特征电压信号进行不同倍数的放大;所述同步多通道数据转换电路用于将放大后的特征电压信号同步转换成数字信号;所述数据比较选择单元用于将四路数字信号进行比较分析并输出转换数据;数据缓冲单元用于缓冲所述数据比较选择单元输出的数据和所述USB接口电路输入的数据;所述USB接口电路用于实现数据缓冲单元与计算机的数据交换;所述校准增益控制单元用于根据所述数据缓冲单元中的校准控制数据控制程控放大电路的放大倍数。
3.如权利要求1所述的检测和采集系统,其特征在于,碱基特征信号数据采集电路包括:依次连接的程控放大电路、同步多通道数据转换电路、通道选择控制单元、数据缓冲单元和USB接口电路,连接在数据缓冲单元的反馈输出端与程控放大电路的反馈控制端之间的校准增益控制和阈值设置单元,以及连接在程控放大电路的输入端与通道选择控制单元的控制端之间的阈值比较电路,校准增益控制和阈值设置单元的输出端还与阈值比较电路的控制端连接;
所述程控放大电路用于对四种不同碱基的特征电压信号进行不同倍数的放大;所述同步多通道数据转换电路用于将放大后的特征电压信号同步转换成数字信号;所述阈值比较电路用于将特征电压信号与参考电压进行比较并根据比较结果输出通道控制信号;所述通道选择控制单元用于根据所述通道控制信号进行通道选择;所述数据缓冲单元用于缓冲数据;所述USB接口电路用于实现数据缓冲单元与计算机的数据交换;所述校准增益控制和阈值设置单元用于设置所述参考电压以及根据所述数据缓冲单元中的校准控制数据控制所述程控放大电路的放大倍数。
4.如权利要求2或3所述的检测和采集系统,其特征在于,所述程控放大电路包括四路并行的放大器,用于对四种不同碱基的特征电压信号分别进行不同倍数的放大。
5.如权利要求4所述的检测和采集系统,其特征在于,所述同步数据转换电路包括四个模数转换器,分别连接至四个程控放大器的输出端,用于将经放大后的特征电压信号同步转换成数字信号。
6.如权利要求3所述的检测和采集系统,其特征在于,阈值比较电路包括四个比较器,四个比较器的第一输入端作为阈值比较电路的输入端,均连接至程控放大电路的输入端,四个比较器的第二输入端分别连接所述校准增益控制和阈值设置单元输出的四个参考电压,四个比较器的输出端均连接至通道选择控制单元的控制端。
CN201310158083.2A 2013-05-02 2013-05-02 一种用于固态纳米孔核酸测序电信号的检测和采集系统 Active CN103275867B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310158083.2A CN103275867B (zh) 2013-05-02 2013-05-02 一种用于固态纳米孔核酸测序电信号的检测和采集系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310158083.2A CN103275867B (zh) 2013-05-02 2013-05-02 一种用于固态纳米孔核酸测序电信号的检测和采集系统

Publications (2)

Publication Number Publication Date
CN103275867A true CN103275867A (zh) 2013-09-04
CN103275867B CN103275867B (zh) 2014-06-04

Family

ID=49058494

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310158083.2A Active CN103275867B (zh) 2013-05-02 2013-05-02 一种用于固态纳米孔核酸测序电信号的检测和采集系统

Country Status (1)

Country Link
CN (1) CN103275867B (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104579301A (zh) * 2015-02-02 2015-04-29 天津工业大学 一种快电容补偿电路的设计
CN104974930A (zh) * 2014-04-03 2015-10-14 意法半导体股份有限公司 用于基于纳米通道的核酸测序的设备和方法
CN108369221A (zh) * 2015-09-24 2018-08-03 豪夫迈·罗氏有限公司 纳米孔测量数据的自适应压缩和修改
US10190161B2 (en) 2014-04-03 2019-01-29 Stmicroelectronics S.R.L. Apparatus and method for nucleic acid sequencing based on nanowire detectors
CN109998517A (zh) * 2019-02-27 2019-07-12 安博特纳米生物科技有限公司 生物电信号的采集方法及终端设备
CN110346579A (zh) * 2019-07-24 2019-10-18 中国科学院重庆绿色智能技术研究院 基于纳米孔的体外hiv蛋白酶检测仪器及方法
CN110954445A (zh) * 2019-10-31 2020-04-03 四川大学华西医院 一种活细胞生物传感器及其制备方法与应用
CN111060571A (zh) * 2019-12-26 2020-04-24 东南大学 一种提高纳米孔技术检测生物分子分辨率的方法
CN112708544A (zh) * 2019-10-25 2021-04-27 成都今是科技有限公司 基因测序的测量装置及其测量方法
CN112731254A (zh) * 2021-03-31 2021-04-30 北京齐碳科技有限公司 电流测量电路校准参数的确定方法、装置、系统及设备
CN113699223A (zh) * 2021-10-29 2021-11-26 成都齐碳科技有限公司 纳米孔测序电路、测序方法及装置
CN113759162A (zh) * 2021-08-31 2021-12-07 陕西科技大学 一种生物纳米孔道的微弱电流放大电路
CN116881634A (zh) * 2023-09-06 2023-10-13 北京齐碳科技有限公司 用于清洗纳米孔信号数据的方法、设备和存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1932039A (zh) * 2006-09-21 2007-03-21 上海交通大学 外切酶-纳米孔的单分子核酸测序方法
CN101080500A (zh) * 2003-02-28 2007-11-28 布朗大学 纳米孔,使用纳米孔的方法,制备纳米孔的方法和用纳米孔表征生物分子的方法
CN102901763A (zh) * 2012-09-25 2013-01-30 清华大学 基于石墨烯纳米孔-微腔-固态纳米孔的dna测序装置及制作方法
CN102899243A (zh) * 2012-09-21 2013-01-30 清华大学 基于石墨烯纳米孔-微腔-固态纳米孔结构的dna测序装置及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101080500A (zh) * 2003-02-28 2007-11-28 布朗大学 纳米孔,使用纳米孔的方法,制备纳米孔的方法和用纳米孔表征生物分子的方法
CN1932039A (zh) * 2006-09-21 2007-03-21 上海交通大学 外切酶-纳米孔的单分子核酸测序方法
CN102899243A (zh) * 2012-09-21 2013-01-30 清华大学 基于石墨烯纳米孔-微腔-固态纳米孔结构的dna测序装置及方法
CN102901763A (zh) * 2012-09-25 2013-01-30 清华大学 基于石墨烯纳米孔-微腔-固态纳米孔的dna测序装置及制作方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
陈剑等 : "面向新型DNA检测方法的固态纳米孔研究进展", 《微纳电子技术》, vol. 50, no. 3, 31 March 2013 (2013-03-31) *
陶莉和刘振宅: "膜片钳与单细胞RT-PCR技术相结合应用于神经细胞研究的进展", 《中国医药导报》, vol. 5, no. 10, 30 April 2008 (2008-04-30) *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104974930A (zh) * 2014-04-03 2015-10-14 意法半导体股份有限公司 用于基于纳米通道的核酸测序的设备和方法
US9765326B2 (en) 2014-04-03 2017-09-19 Stmicroelectronics S.R.L. Apparatus and method for nucleic acid sequencing based on nanochannels
US10190161B2 (en) 2014-04-03 2019-01-29 Stmicroelectronics S.R.L. Apparatus and method for nucleic acid sequencing based on nanowire detectors
CN104579301A (zh) * 2015-02-02 2015-04-29 天津工业大学 一种快电容补偿电路的设计
CN108369221A (zh) * 2015-09-24 2018-08-03 豪夫迈·罗氏有限公司 纳米孔测量数据的自适应压缩和修改
CN108369221B (zh) * 2015-09-24 2020-03-20 豪夫迈·罗氏有限公司 纳米孔测量数据的自适应压缩和修改
CN109998517A (zh) * 2019-02-27 2019-07-12 安博特纳米生物科技有限公司 生物电信号的采集方法及终端设备
CN109998517B (zh) * 2019-02-27 2022-10-18 上海微瑞博生物科技有限公司 生物电信号的采集方法及终端设备
CN110346579A (zh) * 2019-07-24 2019-10-18 中国科学院重庆绿色智能技术研究院 基于纳米孔的体外hiv蛋白酶检测仪器及方法
CN112708544A (zh) * 2019-10-25 2021-04-27 成都今是科技有限公司 基因测序的测量装置及其测量方法
CN110954445B (zh) * 2019-10-31 2022-08-16 四川大学华西医院 一种活细胞生物传感器及其制备方法与应用
CN110954445A (zh) * 2019-10-31 2020-04-03 四川大学华西医院 一种活细胞生物传感器及其制备方法与应用
CN111060571A (zh) * 2019-12-26 2020-04-24 东南大学 一种提高纳米孔技术检测生物分子分辨率的方法
CN112731254A (zh) * 2021-03-31 2021-04-30 北京齐碳科技有限公司 电流测量电路校准参数的确定方法、装置、系统及设备
CN112731254B (zh) * 2021-03-31 2021-07-13 北京齐碳科技有限公司 电流测量电路校准参数的确定方法、装置、系统及设备
CN113759162A (zh) * 2021-08-31 2021-12-07 陕西科技大学 一种生物纳米孔道的微弱电流放大电路
CN113699223A (zh) * 2021-10-29 2021-11-26 成都齐碳科技有限公司 纳米孔测序电路、测序方法及装置
CN113699223B (zh) * 2021-10-29 2022-02-15 成都齐碳科技有限公司 纳米孔测序电路、测序方法及装置
CN116881634A (zh) * 2023-09-06 2023-10-13 北京齐碳科技有限公司 用于清洗纳米孔信号数据的方法、设备和存储介质
CN116881634B (zh) * 2023-09-06 2023-12-26 北京齐碳科技有限公司 用于清洗纳米孔信号数据的方法、设备和存储介质

Also Published As

Publication number Publication date
CN103275867B (zh) 2014-06-04

Similar Documents

Publication Publication Date Title
CN103275867B (zh) 一种用于固态纳米孔核酸测序电信号的检测和采集系统
CN100441142C (zh) 用多阵列电极测量局部皮肤阻抗的装置
CN112994680B (zh) 多通道切换电路、切换方法
CN102857852B (zh) 一种声场定量重现控制系统的扬声器回放阵列控制信号的处理方法
CN107329163A (zh) 一种多道脉冲幅度分析仪
CN104820136A (zh) 一种快速测量作物叶片介电常数的装置和方法
WO2016110149A1 (zh) 一种探测器信号读出的通道复用方法
CN203572874U (zh) 电流检测装置以及电流检测芯片
CN105976411A (zh) 一种用于电阻抗断层成像数据采集系统的前置测量模块及标校方法
Gao et al. An integrated current measurement system for nanopore analysis
CN103278548A (zh) 一种固态纳米孔dna测序的电信号校准方法
CN113281386A (zh) 多通道电化学传感器检测装置及其检测方法
CN104713932A (zh) 一种交流模式的多参数纳米孔单分子分析仪
CN206975227U (zh) 一种多道脉冲幅度分析仪
CN102200550A (zh) 一种用于高精度测量相位差的延迟正交数字中频鉴相方法
CN103645391A (zh) 一种微通道板增益的测量电路及方法
CN203705367U (zh) 通道式安检机多道脉冲幅度分析器
CN206515389U (zh) 集纳米孔制备及检测分析于一体的装置
CN106483469B (zh) 一种提高电池测试通量的装置
CN109633243A (zh) 一种基于多相位采样的束流信号峰值幅度精确提取方法
CN102506694B (zh) 动态应变场观测系统
CN114236222A (zh) 静电探针电流测量装置
CN211478926U (zh) 一种多频率自动切换的采样装置
CN209821627U (zh) 一种多通道应变信号同步采集系统
CN202502254U (zh) 一种电法仪

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant