CN103270712B - 用于无源光学网络的复用转换 - Google Patents

用于无源光学网络的复用转换 Download PDF

Info

Publication number
CN103270712B
CN103270712B CN201180060340.8A CN201180060340A CN103270712B CN 103270712 B CN103270712 B CN 103270712B CN 201180060340 A CN201180060340 A CN 201180060340A CN 103270712 B CN103270712 B CN 103270712B
Authority
CN
China
Prior art keywords
optical
upstream
downstream
signal
flm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201180060340.8A
Other languages
English (en)
Other versions
CN103270712A (zh
Inventor
大卫·B·鲍勒尔
马新发
斯科特·D·塞勒斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commscope UK Ltd
Original Assignee
General Instrument Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Instrument Corp filed Critical General Instrument Corp
Publication of CN103270712A publication Critical patent/CN103270712A/zh
Application granted granted Critical
Publication of CN103270712B publication Critical patent/CN103270712B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)
  • Small-Scale Networks (AREA)

Abstract

一种无源光学网络系统,该无源光学网络系统具有光学地耦合到光线路终端(OLT)并且光学地耦合到光学网络单元(ONU)的节点。该节点包括至少一个光纤链路模块(FLM),每个FLM包括上游复用转换装置(MCD)和下游MCD。上游MCD从ONU接收上游光信号,将上游光信号转换为上游电信号,并且向OLT发射重新产生的上游光信号。下游MCD从OLT接收下游光信号,将下游光信号转换为下游电信号,并且向ONU发射重新产生的下游光信号。

Description

用于无源光学网络的复用转换
背景技术
许多通信网络通过共享介质提供高比特率传送,该共享介质例如是无源光学网络(PON)、有线电视同轴或混合光纤/电缆(HFC)网络或无线网络。这些共享介质网络通常使用时分复用、频分复用或码分复用来从中央终端向若干远程客户终端传送数据信号,并且使用时分多址(TDMA)来从远程终端向中央终端传送数据信号。TDMA其特征在于不连续或突发模式数据发射。在现有的光学网络中,特别是在PON体系结构中,将来自远程终端的每个分组复用在一个光纤上的时间序列中并且以类似突发的方式进行发射。
PON通常使用波分复用(WDM),例如,在特定的单个光纤上,使用一个波长来用于下游业务,并且使用另一个波长来用于上游业务。WDM可以包括例如宽波分复用、粗波分复用(CWDM)和密集波分复用(DWDM)。
以太网无源光学网络(EPON)是使用例如标准IEEE802.3以太网帧来封装因特网协议(IP)业务的PON。传统的EPON种类包括1GEPON(支持1Gbps(每秒千兆比特)的下游和上游速度)、10GEPON(支持10Gbps的下游和上游速度))和10G/1GEPON(支持10Gbps的下游速度和1Gbps的上游速度)。其他PON种类包括宽带PON(BPON)、千兆比特PON(GPON)和XGPON(也称为10G-PON)等。
EPON通常支持在光线路终端(OLT)和一个或多个光学网络单元(ONU)之间的双向通信。下游业务是从OLT至ONU,并且上游业务是从ONU至OLT。ONU可以例如被包括在客户驻地设备(CPE)中,或被安装在客户或终端用户站点,该客户或终端用户站点例如是家或居住地、多单元住宅建筑物、办公室建筑物或复合体或者企业或工作场所。典型的ONU将光信号(例如,经由光纤发射)转换为电信号,并且反之亦然。
在典型的配置中,EPON集线器包括一个或多个OLT,其中每个包括用于光信号的一个或多个EPON收发器。每个OLT包括一个或多个介质访问控制(MAC)实例。来自每个EPON收发器的光信号在具有一个或多个级的WDM组合器中被组合。功率分解器从WDM组合器接收单个光信号,并且将该信号分解为多个光纤(每个承载许多波长)。例如,1xM功率分解器支持将光信号分解到M个光纤。在另一个实施例中,来自每个EPON收发器的光信号绕过WDM组合器,并且直接连接到功率分解器。
需要一种光学重新产生装置,该装置从WDM/CWDM/DWDM域转换为EPON域,驻留在将集线器连接到CPE的节点中,并且提供灵活地部署的成本有效的解决方案。由本发明的光学重新产生装置提供的优点包括:使能在PON信号和现有HFC服务之间的共存,增大光学链路预算,增大每个OLT可以服务的地理区域,增大可以被单个OLT端口服务的订户的数量,并且降低订户侧光学器件的成本。本公开的发明满足这些需求。
发明内容
本发明的多个方面提供了一种复用转换模块、一种具有复用转换模块的EPON系统以及用于EPON复用转换的系统和方法。本发明的多个方面也提供了一种无源光学网络系统,所述无源光学网络系统具有光学地耦合到光线路终端(OLT)并且光学地耦合到光学网络单元(ONU)的节点。该节点包括至少一个光纤链路模块(FLM),每个FLM包括上游复用转换装置(MCD)和下游MCD。上游MCD从ONU接收上游光信号,将上游光信号转换为上游电信号,并且向OLT发射重新产生的上游光信号。下游MCD从OLT接收下游光信号,将下游光信号转换为下游电信号,并且向ONU发射重新产生的下游光信号。
附图说明
图1是图示根据本发明的一个实施例的示例性EPON系统的方框图。
图2是图示根据本发明的一个实施例的光纤链路模块的方框图。
图3是图示根据本发明的一个实施例的示例性10GEPONOLT系统的方框图。
图4是图示根据本发明的一个实施例的示例性10GEPONOLT系统的方框图。
图5是图示根据本发明的一个实施例的示例性10G/1GEPONOLT系统的方框图。
图6是图示根据本发明的一个实施例的示例性10G/1GEPONOLT系统的方框图。
图7是图示根据本发明的一个实施例的示例性10G/1GEPONOLT系统的方框图。
图8是图示根据本发明的一个实施例的示例性1GEPONOLT系统的方框图。
图9是图示根据本发明的一个实施例的示例性10G/1GEPONOLT系统的方框图。
图10是图示根据本发明的一个实施例的示例性10G/1GEPONOLT系统的方框图。
具体实施方式
如下所述的附图描述了EPON系统,但是读者应当明白,本发明的实施例适用于任何点至多点光学网络拓扑,例如,BPON或GPON。
图1是图示根据本发明的一个实施例的示例性EPON系统的方框图。在图1中所示的EPON系统描述了一种系统级实现方式,其包括连接到一个或多个节点130的集线器110,其中,每个节点130连接到在一个或多个客户站点处安装的ONU。为了例示的目的,图1描述了在蜂窝塔151处的示例性ONU(例如,用于支持回程)、在商业或办公室建筑物152处的另一个示例性ONU和在家或居住地153处的第三示例性ONU。从节点130至每个ONU的连接是光纤连接。
在图1中所示的集线器110描述了一个或多个PONOLT,该一个或多个PONOLT可以与其他HFC运营商服务一起组合到从集线器110至每个节点130的单个网络光纤上。从集线器110至每个节点130的单个网络光纤可以承载许多波长。图1描述了集线器110,该集线器110包括连接到WDM组合器120的一个或多个OLT,其中,WDM组合器120的组合侧连接到1xM功率分解器125。为了例示的目的,图1描述了:示例性1GEPONOLT111,其包括1GEPON收发器(XCVR)112;示例性10GEPONOLT113,其包括10GEPONXCVR114;示例性1GEPONOLT115,其包括DWDM/CWDM1GXCVR116;以及示例性10GEPONOLT117,其包括DWDM/CWDM10GXCVR118。在图1中所示的1GEPONOLT111、10GEPONOLT113、1GEPONOLT115、and10GEPONOLT117还包括MAC(未示出)实例。
WDM组合器120可以包括一个或多个级,诸如宽WDM、CWDM或DWDM。在各个实施例中,WDM组合器120可以包括WDM滤波器,用于支持光纤保护,其中,期望最小化在多服务系统中使用的光纤的数量;然而,本发明可以在没有WDM滤波器的情况下运行。在一个实施例中,1xM功率分解器125是1xM分解器,其中,期望使用单个OLT端口来支持在现场的多个节点130。在一个替代实施例中,不存在1xM功率分解器125,并且,本发明支持1xM分解器的使用。分解器的输出可以然后馈送光纤节点130中的一个或多个。因此,单个OLT端口可以服务于多个节点130。通过以这种方式连接节点130,本发明的实施例中的一个或多个实例可以独立地或一起运行,以馈送接入光学网络。节点130的订户(下游)侧可以支持标准PON架构支持的任何分解和距离架构。在一些实施例中,节点的下游侧可以包括WDM滤波器或WDM组合器120,用于使用EPON波长来重新组合信号。
在图1中所示的节点130(例如,在HFC网络中的远程节点)将集线器至节点链路与节点至CPE链路分离。节点130包括WDM去复用器135,WDM去复用器135从1xM功率分解器125接收光纤连接。WDM去复用器135与WDM组合器120配对,其中,WDM去复用器135的去复用侧连接到一个或多个分段,其中,每个分段包括光纤链路模块140。在图1中所示的实施例中,每个光纤链路模块140包括1Gbps/10Gbps上游光至电至光(O-E-O)转换141和1Gbps/10Gbps下游O-E-O转换142。每个光纤链路模块140的下游侧连接到1xN功率分解器145,其中,1xN功率分解器145的每个下游侧是到在客户站点处安装的ONU的光纤连接。
有益的是,本发明的实施例可以允许在集线器110和节点130之间的光纤保护,并且可以与现有的HFC服务共存。本发明的其他实施例可以有益地增大单个OLT端口当在全部距离运行时可以支持的分解比率。本发明的其他实施例可以有益地提供在10GPON光学器件的成本上的显著降低。本发明的其他实施例可以有益地允许单个OLT端口处理比传统PON系统宽得多的地理半径。本发明的其他实施例可以在CPE侧完全符合IEEE/EPON,并且可以使用现成的ONU。本发明的另外的实施例可以在G.983/G.984版本上完全ITU符合,允许使用现成的ONT。其他实施例可以提供比远程OLT或智能PON节点低得多的功耗和/或比远程OLT或智能PON节点好得多的在故障之间的平均时间(MTBF)和可靠性。
图2是图示根据本发明的一个实施例的光纤链路模块的方框图。在图2中所示的光纤链路模块140在WDM域(例如,宽WDM、CWDM和DWDM等)和PON域(例如,EPON、BPON、GPON、10GEPON和XGPON等)之间提供转换。在一个实施例中,光纤链路模块140包括光学重新产生装置,用于O-E-O转换。在一个实施例中,光纤链路模块140包括作为上游O-E-O转换141的上游复用转换装置(MCD)210和作为下游O-E-O转换142的下游MCD220。上游MCD210将光信号从WDM域转换为PON域,并且下游MCD220将光信号从PON域转换为WDM域。
另外,不像传统3R(重新放大、重新整形、重新定时)达到扩展器那样,光纤链路模块140的实施例不必包括时钟检测和恢复电路,不必在节点中包括MAC功能,并且不要求ONU片上系统(SOC)。
在图2中所示的下游MCD220包括光电二极管221、下游接收器222、下游发射器223和激光器224。光电二极管221和包括下游接收器222的电路作用为从OLT接收下游信号的光学接收器。光电二极管221将在光纤线缆上的光功率转换为向下游接收器222输入的成比例的电流。下游接收器222的输出是向下游发射器223输入的数字逻辑电压信号。激光器224将下游发射器223的输出转换为在光纤线缆上的光功率。包括下游发射器223的电路和激光器224作用为光学发射器,用于向ONU发射下游信号。
在一个示例性实施例中,在下游路径中,下游MCD220包括简单的O-E-O重新产生装置,其具有驱动光学发射器的光学接收器。光学接收器被设计来在标准连续模式中运行,并且从OLT发射器接收WDM/CWDM/DWDM信号。基于在特定工厂中的限制来选择波长,在这个实例中该工厂是HFC工厂,并且波长基于与在那个工厂中的现有服务的共存。光学接收器简单地将光学WDM/CWDM/DWDM不归零(NRZ)信号转换为电NRZ比特流。该NRZ比特流然后被馈送到连续模式光学发射器,该光学发射器以对于数据率和PON类型适当的波长来发射。例如,在1.25GbpsEPON系统的情况下,标称的发射器波长在1490nm。在10GbpsEPON系统的情况下,标称的发射器波长在1577nm。
在图2中所示的上游MCD210包括光电二极管211、上游接收器212、上游发射器213和激光器214。光电二极管211和包括上游接收器212的电路作用为光学接收器,该光学接收器从ONU接收上游信号。光电二极管211将在光纤线缆上的光功率转换为向上游接收器212输入的成比例的电流。上游接收器212的输出是向上游发射器213输入的数字逻辑电压信号。激光器214将上游发射器213的输出转换为在光纤线缆上的光功率。包括下游发射器213的电路和激光器214作用为光学发射器,用于向OLT发射上游信号。在一个替代实施例中,上游MCD210包括从上游接收器212至上游发射器213的选用激光器214使能/禁止信号215。可以使用在上游接收器212光电二极管211上的光学信号检测来产生选用激光器214使能215,或者,通过使用在由上游接收器212产生的电数据信号上的RF信号检测功能来产生选用激光器214使能215。
在该示例性实施例中,在上游路径中,设置了上游MCD210。上游MCD210包括在下游MCD220中未找到的另外的复杂度。在上游MCD210中,使用不要求任何种类的MAC信息的突发模式接收器212,诸如在美国专利No.6,420,928和美国专利No.6,963,696中描述的接收器,这些专利的公开通过引用被完全包含在此,就好像在此给出那样。设置了该突发模式接收器212,因为节点130和OLT不总是位于相同位置,并且因为PONMAC将包含在OLT内。突发模式接收器212被设计来在对于在使用的数据率和PON类型适当的波长下接收。例如,在1.25GbpsEPON系统的情况下,标称接收器波长在1310nm。在10GbpsEPON系统的情况下,标称接收器波长在1270nm。突发模式接收器212被设计为在逻辑“1”和逻辑“0”的扩展串以及分组之间间隙和突发停滞时间上稳定。在分组之间间隙和突发停滞时间的情况下,光学信号返回到逻辑“0”状态,在这种情况下,接收器也在电侧上解析为逻辑“0”状态。
在该示例性实施例中,在上游侧上的返回发射器213也要求另外的设计考虑。自动功率控制(APC)回路必须能够处理上游多点至点架构的突发模式特性。这意味着APC回路必须能够在突发期间被激活,但是然后在突发之间将其测量和监控功能冻结。替代地,也可以使用查找表手段,这对于在突发模式环境中运行的挑战是免疫的。除了关于在突发模式中运行的APC回路的问题之外,也必须处理当以点至多点配置运行时的激光器偏置电流操作。可以在多种不同情形下部署本发明的实施例,结果,需要根据部署架构来处理多种不同的偏置电流/功率管理选择。在一些情况下,不必进行规定,除了如上所述的APC回路控制之外。在其他情况下,需要降低偏置功率,并且结果,需要增大在发射器处的消光比(ER),以便允许该设计在其中多个节点全部被单个OLT端口服务的系统中运行。在其中多点至点的、许多节点至单个集线器架构需要最小化来自相邻的上游发射器的噪声的其他情况下,需要在突发模式接收器和突发模式发射器之间提供信号,该信号逻辑地使能和禁止该设计的发射器部分。这允许设计者将竞争的发射器噪声减小为不重要的水平,并且将使得能够使用现在的工业标准突发模式发射器架构,诸如在美国专利No.6,738,401和美国专利No.7,031,357中描述的那些,这些专利的公开通过引用被全部包含在此,就好像在此给出那样。对于位于光纤链路模块140中的上游发射器213的波长选择可以根据确切的部署情形是任何WDM、CWDM、DWDM或与在光纤上运行的现有服务最兼容的其他波长。
正向或下游MCD220使用具有适当的WDM/CWDM/DWDM前端的连续模式接收器222电路。该接收器222从光电二极管221接收输入,或者包括光电二极管221,该光电二极管221将在光纤上的光功率转换为成比例的电流。接收器电路然后将该电流转换为NRZ数字逻辑电压信号。该逻辑信号可以是任何数量的数字逻辑家族,包括但是不限于LVPECL或CML。接收器222可以例如基于PIN或APD。
下游发射器223使用对于所选择的数据率适当的波长来起作用。例如,在1.25GbpsEPON系统的情况下,标称的发射器波长在1490nm。在10GbpsEPON系统的情况下,标称的发射器波长在1577nm。也应当注意,如果该设计能够具有10Gbps数据率,则它也在1.25Gbps数据率下工作。在下游侧上在订户侧上使用的激光器224可以是FP、DFB或外部调制的激光器224。在其中解决方案成本很敏感并且其中在每个节点和终端客户之间的距离允许的10Gbps应用的情况下,较低成本DFB激光器可以取代昂贵得多的外部调制激光器而被使用,即使当从集线器110至客户ONU的距离大得不允许这样的实现方式时。激光器偏置电流被示出在发射器块外部,但是它也可以被包括在激光器驱动器块中。
在上游MCD210中,使用可以无颤动的不要求任何种类的MAC级信息的突发模式接收器212(即,较少复位的突发模式接收器),诸如在美国专利No.6,420,928和6,963,696中描述的接收器。这是因为节点和OLT不总是处于相同位置,并且因为PONMAC将包含在OLT内。突发模式接收器212被设计来在对于在使用的数据率和PON类型适当的波长下接收。例如,在1.25GbpsEPON系统的情况下,标称的接收器波长在1310nm。在10GbpsEPON系统的情况下,标称接收器波长在1270nm。突发模式接收器被设计为在逻辑“1”和逻辑“0”的扩展串以及分组之间间隙和突发停滞时间上稳定。在分组之间间隙和突发停滞时间的情况下,光学信号返回到逻辑“0”状态,在这种情况下,接收器也在电侧上解析为逻辑“0”状态。突发模式接收器212可以根据成本/网络架构折中来使用基于PIN或APD的接收器。
在一个实施例中,上游发射器213(在上游侧上的返回发射器)也要求另外的设计考虑。返回发射器213包括自动功率控制回路(APC),该APC必须能够处理上游多点至点架构的突发模式特性。这意味着APC回路必须能够在突发期间被激活,但是然后在突发之间将其测量和监控功能冻结。替代地,也可以使用查找表手段,因为这对于在突发模式环境中运行的挑战是免疫的。除了关于在突发模式中运行的APC回路的问题之外,也必须处理当以点至多点配置运行时的激光器偏置电流操作。可以在多种不同情形下部署本发明的实施例,结果,需要根据部署架构来处理多种不同的偏置电流/功率管理选择。在诸如在节点和集线器之间的点至点网络的一些情况下,不必进行规定,除了如上所述的APC回路控制之外。在其他情况下,需要降低偏置功率,并且结果,需要增大在发射器处的消光比(ER),以便允许该设计在其中多个节点全部被单个OLT端口服务的系统中运行。在其中多点至点的、许多节点至单个集线器架构需要最小化来自相邻的上游发射器的噪声的其他情况下,需要在突发模式接收器和突发模式发射器之间提供信号,该信号逻辑地使能和禁止该设计的发射器部分。这允许设计者将竞争的发射器噪声减小为不重要的水平,并且将使得能够使用现在的工业标准突发模式发射器架构,诸如在美国专利No.6,738,401和美国专利No.7,031,357中描述的那些。对于位于节点中的上游发射器选择的波长可以根据确切确的部署情形是任何WDM、CWDM、DWDM或与在光纤上运行的现有服务最兼容的其他波长。对于当需要该信号时的情况也图示了在突发模式接收器和突发模式发射器之间的控制连接。
图3是图示根据本发明的一个实施例的示例性10GEPONOLT系统的方框图。在图3中所示的系统架构是在图1中所示的系统架构的一个实施例。在图3中所示的集线器310包括单个OLT、包括10GEPONXCVR314的10GEPONOLT313,10GEPONXCVR314连接到1xM功率分解器125。1xM功率分解器125的输出馈送一个或多个光纤节点330。节点330包括WDM去复用器335,WDM去复用器335从1xM功率分解器125接收光纤连接。WDM去复用器335的去复用侧连接到一个或多个分段,其中,每个分段包括光纤链路模块340,光纤链路模块340包括上游O-E-O转换341和下游O-E-O转换342。每个光纤链路模块340下游侧连接到组合器336,组合器336连接到1xN功率分解器145,其中,1xN功率分解器145的每个下游侧是到在客户站点处安装的ONU的光纤连接。
图4是图示根据本发明的一个实施例的示例性10GEPONOLT系统的方框图。在图4中所示的系统架构是在图1中所示的系统架构的一个实施例。在图4中所示的集线器410包括单个OLT、包括10GEPONXCVR414的10GEPONOLT413,10GEPONXCVR414连接到1xM功率分解器125。1xM功率分解器125的输出馈送一个或多个光纤节点430。节点430包括WDM去复用器435,WDM去复用器435从1xM功率分解器125接收光纤连接。WDM去复用器435的去复用侧连接到一个或多个分段,其中,每个分段包括光纤链路模块440,光纤链路模块440包括在1270nm波长下的10Gbps上游O-E-O转换441、在1310nm波长下的1.25Gbps下游O-E-O转换442、在1577nm波长下的10Gbps下游O-E-O转换443和在1490波长下的1.25Gbps下游O-E-O转换444。如图4中所示,在光纤链路模块440中的四个路径并行运行。每个光纤链路模块440的下游侧连接到组合器436,组合器436连接到1xN功率分解器145,其中,1xN功率分解器145的每个下游侧是到在客户站点处安装的ONU的光纤连接。在一个替代实施例中,在其中期望在TDMA模式中运行10GbpsEPON和1.25GbpsEPON上游链路441、442的应用中,可以消除在1310nm波长下的1.25Gbps上游O-E-O转换442,并且在1270nm波长下的10Gbps上游O-E-O转换441可以使用宽带检测器,该宽带检测器能够接收1310和1270nm信号两者。在这个替代实施例中,上游O-E-O转换442将在10Gbps和1.25Gbps两者下运行,但是可以观察到在动态范围和链路预算上的减小。
图5是图示根据本发明的一个实施例的示例性10G/1GEPONOLT系统的方框图。在图5中所示的系统架构是在图1中所示的系统架构的实施例。在图5中所示的集线器510包括单个OLT、包括10GEPONXCVR514的10G/1GEPONOLT513,10GEPONXCVR514连接到1xM功率分解器125。1xM功率分解器125的输出馈送一个或多个光纤节点530。节点530包括WDM去复用器535,WDM去复用器535从1xM功率分解器125接收光纤连接。WDM去复用器535的去复用侧连接到一个或多个分段,其中,每个分段包括光纤链路模块540,光纤链路模块540包括在1310nm和1270nm波长两者下的1.25Gbps/10Gbps上游O-E-O转换541、在1577nm波长下的10Gbps下游O-E-O转换542和在1490nm波长下的1.25Gbps下游O-E-O转换543。如图5中所示,对于在节点内的成本和功耗而不是对于节点的接入网侧上的链路预算优化在光纤链路模块540中的三个路径。每个光纤链路模块540的下游侧连接到组合器536,组合器536连接到1xN功率分解器145,其中,1xN功率分解器145的每个下游侧是到在客户站点处安装的ONU的光纤连接。
图6是图示根据本发明的一个实施例的示例性10G/1GEPONOLT系统的方框图。在图6中所示的系统架构是在图1中所示的系统架构的实施例。在图6中所示的集线器610包括单个OLT、包括10GEPONXCVR614的10G/1GEPONOLT613,10GEPONXCVR614连接到1xM功率分解器125。1xM功率分解器125的输出馈送一个或多个光纤节点630。节点630包括WDM去复用器635,WDM去复用器635从1xM功率分解器125接收光纤连接。WDM去复用器635的去复用侧连接到一个或多个分段,其中,每个分段包括光纤链路模块640,光纤链路模块640包括在1310nm波长下的1.25Gbps/10Gbps上游O-E-O转换641和在1577nm波长下的10Gbps下游O-E-O转换642。如图6中所示,在光纤链路模块640中的两个路径是与1.25Gbps上游链路相结合地使用10Gbps下游链路的不对称实现方式。每个光纤链路模块640的下游侧连接到组合器636,组合器636连接到1xN功率分解器145,其中,1xN功率分解器145的每个下游侧是到在客户站点处安装的ONU的光纤连接。
图7是图示根据本发明的一个实施例的示例性10G/1GEPONOLT系统的方框图。在图7中所示的系统架构是在图1中所示的系统架构的实施例。如图7中所示,集线器110包括传统射频(RF)HFC服务719,该服务719连接到WDM组合器120。在图7中所示的集线器110中的1xM功率分解器125的输出馈送一个或多个光纤节点730。节点730包括WDM去复用器135,WDM去复用器135从1xM功率分解器125接收光纤连接。WDM去复用器135的去复用侧连接到一个或多个分段,其中,每个分段包括与在图1中所示者类似的光纤链路模块140。另外,节点730包括提供上游RF至光学转换741的链路模块740和下游光学至RF转换742,以支持传统RFHFC服务719。光纤链路模块140与链路模块740共存,因为在节点730和集线器110之间的WDM/CWDM/DWDM链路允许这些服务独立于彼此和独立于传统RFHFC服务719地运行。
图8是图示根据本发明的一个实施例的示例性1GEPONOLT系统的方框图。在图8中所示的系统架构是在图1中所示的系统架构的实施例。在图8中所示的集线器810包括一个或多个1GEPONOLT,其中,包括DWDM/CWDMXCVR818的一个1GEPONOLT817连接到WDM组合器120,其中,WDM组合器120的组合侧连接到1xM功率分解器125。1xM功率分解器125的输出馈送一个或多个光纤节点830。节点830包括从1xM功率分解器125接收光纤连接的WDM去复用器835。WDM去复用器835的去复用侧连接到一个或多个分段,其中,每个分段包括光纤链路模块840,光纤链路模块840包括上游O-E-O转换841和下游O-E-O转换842。如图8中所示,单个OLT端口服务于多个光纤节点和多种服务,诸如居住应用、商业客户或小区塔回程(CTBH)业务。每个光纤链路模块840的下游侧连接到组合器836,组合器836连接到1xN功率分解器145,其中,1xN功率分解器145的每个下游侧是到在客户站点处安装的ONU的光学连接。
图9是图示根据本发明的一个实施例的示例性10G/1GEPONOLT系统的方框图。在图9中所示的系统架构是在图1中所示的系统架构的实施例。图9描述了集线器910,集线器910包括连接到WDM组合器120的四个OLT,其中,WDM组合器120的组合侧连接到1xM功率分解器125。为了例示的目的,图9描述了:示例性1GEPONOLT911,其包括DWDM/CWDMXCVR912;另一种示例性1GEPONOLT913,其包括DWDM/CWDMXCVR914;示例性10GEPONOLT915,其包括两个DWDM/CWDMXCVR916、917;以及示例性10G/10G/1G/1G多速率EPONOLT918,其包括DWDM/CWDMXCVR919。在图7中所示的集线器910中的1xM功率分解器125的输出馈送一个或多个光纤节点930。节点930包括WDM去复用器935,其从1xM功率分解器125接收光纤连接。WDM去复用器935的去复用侧连接到一个或多个分段,其中,每个分段包括光纤链路模块140。在图9中所示的第一光纤链路模块940包括1.25Gbps上游O-E-O转换941和1.25Gbps下游O-E-O转换942。在图9中所示的第二光纤链路模块950包括10Gbps上游O-E-O转换951和10Gbps下游O-E-O转换952。在图9中所示的第三光纤链路模块960包括1Gbps/10Gbps上游O-E-O转换961和1Gbps/10Gbps下游O-E-O转换962。组合器936从第一光纤链路模块940和第二光纤链路模块950接收输出。另一个组合器937从第三光纤链路模块960接收输出。在图9中所示的三个光纤链路模块940、950、960并行地运行,以向一些ONU提供1Gbps,并且向其他ONU提供10Gbps。在图9中所示的系统实现方式提供了通过单个接入网传递的多速率PON服务。节点930内的实现可以由多个独立的转换模块或单个集中的转换模块构成。在架构上,这些手段是相同的,因为每个路径是独立的。组合和分解在模块的任一侧上的WDM滤波器中发生,或者在单级或级的级联中发生。也可以在同一节点中扩增另外的独立的模块。
图10是图示根据本发明的一个实施例的示例性10G/1GEPONOLT系统的方框图。在图10中所示的系统架构是在图1中所示的系统架构的实施例。图10描述了集线器1010,集线器1010包括连接到WDM组合器120的5个OLT,其中,WDM组合器120的组合侧连接到1xM功率分解器125。为了例示的目的,图10描述了三个示例性1GEPONOLT1011、1012、1013;示例性10GEPONOLT1014,其包括两个DWDM/CWDMXCVR1015、1016;以及示例性10GEPONOLT1017,其包括DWDM/CWDMXCVR1018。在图10中所示的集线器1010中的1xM功率分解器125的输出馈送一个或多个光纤节点1030。节点1030包括WDM去复用器1035,WDM去复用器1035从1xM功率分解器125接收光纤连接。WDM去复用器1035的去复用侧连接到一个或多个分段,其中,每个分段包括光纤链路模块1040,光纤链路模块1040包括1G/10G上游O-E-O转换1041和1G/10G下游O-E-O转换1042。每个光纤链路模块1040的下游侧连接到组合器1036,组合器1036连接到1xN功率分解器145,其中,1xN功率分解器145的每个下游侧是到在客户站点处安装的ONU的光纤连接。图10图示了根据进一步实施例的允许未来的灵活性的架构。在其中服务“获取率”可能低并且期望最大化每个OLT端口可以支持的地理区域的部署情形的情况下,单个OLT端口可以支持许多节点,并且因此,每个节点的服务半径可以被相加在一起。如果在未来在给定节点或给定的一组节点处的服务使用增大到其中期望将一个或一组节点移动到单个OLT端口的点,则可以通过下述方式来完成这一点:将光纤重新路由到自由OLT端口或馈送自由OLT端口的另一个分光器/光组合器1021、1022。在这些情形下,对于在正在被移动的节点上的用户,仅暂时影响服务,剩余的节点将继续不受影响地运行。如图中所示,如果要求复用另外的服务,或者如果光纤保护对于实现者是重要的,则仅要求WDM滤波器组合器。
在上面的说明书中,已经描述了本发明的特定实施例。然而,本领域内的普通技术人员可以明白,在不偏离在所附的权利要求中给出的本发明的范围的情况下,可以进行各种修改和改变。因此,要在说明性而不是限制性的意义上看待说明书和附图,并且所有这样的修改意欲被包括在本发明的范围内。益处、优点、对于问题的解决方案和可以使得任何益处、优点或对于问题的解决方案出现或变得更显著的任何一个或多个元素不应被解释为任何或全部权利要求的关键、所需或必要特征或元素。

Claims (27)

1.一种在无源光学网络中的光纤链路模块(FLM),所述无源光学网络包括至少一个光线路终端(OLT)和至少一个光学网络单元(ONU),所述FLM包括:
上游复用转换装置(MCD),所述上游MCD从所述至少一个ONU接收上游光信号,将所述上游光信号转换为上游电信号,并且在不对所述上游电信号使用时钟检测和恢复的情况下向所述至少一个OLT发射重新产生的上游光信号;以及
下游MCD,所述下游MCD从所述至少一个OLT接收下游光信号,其中所述下游光信号是波分复用(WDM)信号,将所述下游光信号转换为下游电信号,并且在不对所述下游电信号使用时钟检测和恢复的情况下向所述至少一个ONU发射重新产生的下游光信号。
2.根据权利要求1所述的FLM,其中,所述上游光信号的波长与所述重新产生的上游光信号的波长不同。
3.根据权利要求1所述的FLM,其中,所述下游光信号的波长与所述重新产生的下游光信号的波长不同。
4.根据权利要求1所述的FLM,其中,光电二极管将所述上游光信号转换为所述上游电信号,并且其中,激光器将所述上游电信号转换为所述重新产生的光信号。
5.根据权利要求4所述的FLM,其中,所述上游MCD包括用于所述激光器的使能/禁止信号。
6.根据权利要求1所述的FLM,其中,光电二极管将所述下游光信号转换为所述下游电信号,并且其中,激光器将所述下游电信号转换为所述重新产生的下游光信号。
7.根据权利要求1所述的FLM,其中,所述上游MCD包括没有介质访问控制(MAC)信息的突发模式接收器,用于接收所述上游光信号。
8.根据权利要求7所述的FLM,其中,所述突发模式接收器是AC耦合的预放大器。
9.根据权利要求7所述的FLM,其中,所述上游MCD包括发射器,用于发射所述重新产生的上游光信号,其中,所述发射器包括自动功率控制(APC)回路,用于容纳所述突发模式接收器。
10.一种在无源光学网络中的光纤链路模块(FLM),所述无源光学网络包括至少一个光线路终端(OLT)和至少一个光学网络单元(ONU),所述FLM包括:
上游复用转换装置(MCD),包括:
上游光学接收器,所述上游光学接收器从所述至少一个ONU接收上游光信号;以及
上游光学发射器,所述上游光学发射器在不对上游电信号使用时钟检测和恢复的情况下向所述至少一个OLT发射重新产生的上游光信号;
其中,所述上游光学接收器电耦合到所述上游光学发射器;
下游MCD,包括:
下游光学接收器,所述下游光学接收器从所述至少一个OLT接收下游光信号,其中所述下游光信号是波分复用(WDM)信号;
下游光学发射器,所述下游光学发射器在不对下游电信号使用时钟检测和恢复的情况下向所述至少一个ONU发射重新产生的下游光信号,
其中,所述下游光学接收器电耦合到所述下游光学发射器。
11.根据权利要求10所述的FLM,其中,所述上游光信号的波长与所述重新产生的上游光信号的波长不同。
12.根据权利要求10所述的FLM,其中,所述下游光信号的波长与所述重新产生的下游光信号的波长不同。
13.根据权利要求10所述的FLM,其中,所述上游光学接收器包括光电二极管,用于将所述上游光信号转换为所述上游电信号,并且其中,所述上游光学发射器包括激光器,用于将所述上游电信号转换为所述重新产生的上游光信号。
14.根据权利要求13所述的FLM,其中,所述上游MCD包括用于所述激光器的使能/禁止信号。
15.根据权利要求10所述的FLM,其中,所述下游光学接收器包括光电二极管,用于将所述下游光信号转换为所述下游电信号,并且其中,所述下游光学发射器包括激光器,用于将所述下游电信号转换为所述重新产生的下游光信号。
16.根据权利要求10所述的FLM,其中,所述上游光学接收器是没有介质访问控制(MAC)信息的突发模式接收器,用于接收所述上游光信号。
17.根据权利要求16所述的FLM,其中,所述突发模式接收器是AC耦合的预放大器。
18.根据权利要求16所述的FLM,其中,所述上游光学发射器包括自动功率控制(APC)回路,用于容纳所述突发模式接收器。
19.一种无源光学网络系统,包括:
节点,所述节点光耦合到至少一个光线路终端(OLT),并且光耦合到至少一个光学网络单元(ONU);
在所述节点中的至少一个光纤链路模块(FLM),每个FLM包括:
上游复用转换装置(MCD),所述上游MCD从所述至少一个ONU接收上游光信号,将所述上游光信号转换为上游电信号,并且在不对所述上游电信号使用时钟检测和恢复的情况下向所述至少一个OLT发射重新产生的上游光信号;以及
下游MCD,所述下游MCD从所述至少一个OLT接收下游光信号,其中所述下游光信号是波分复用(WDM)信号,将所述下游光信号转换为下游电信号,并且在不对所述下游电信号使用时钟检测和恢复的情况下向所述至少一个ONU发射重新产生的下游光信号。
20.根据权利要求19所述的无源光学网络系统,其中,所述上游光信号的波长与所述重新产生的上游光信号的波长不同。
21.根据权利要求19所述的无源光学网络系统,其中,所述下游光信号的波长与所述重新产生的下游光信号的波长不同。
22.根据权利要求19所述的无源光学网络系统,其中,光电二极管将所述上游光信号转换为所述上游电信号,并且其中,激光器将所述上游电信号转换为所述重新产生的上游光信号。
23.根据权利要求22所述的无源光学网络系统,其中,所述上游MCD包括用于所述激光器的使能/禁止信号。
24.根据权利要求19所述的无源光学网络系统,其中,光电二极管将所述下游光信号转换为所述下游电信号,并且其中,激光器将所述下游电信号转换为所述重新产生的下游光信号。
25.根据权利要求19所述的无源光学网络系统,其中,所述上游MCD包括没有介质访问控制(MAC)信息的突发模式接收器,用于接收所述上游光信号。
26.根据权利要求25所述的无源光学网络系统,其中,所述突发模式接收器是AC耦合的预放大器。
27.根据权利要求25所述的无源光学网络系统,其中,所述上游MCD包括发射器,用于发射所述重新产生的上游光信号,其中,所述发射器包括自动功率控制(APC)回路,用于容纳所述突发模式接收器。
CN201180060340.8A 2010-12-14 2011-12-08 用于无源光学网络的复用转换 Active CN103270712B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US42265810P 2010-12-14 2010-12-14
US61/422,658 2010-12-14
US13/314,136 2011-12-07
US13/314,136 US10341038B2 (en) 2010-12-14 2011-12-07 Multiplex conversion for a passive optical network
PCT/US2011/064039 WO2012082527A1 (en) 2010-12-14 2011-12-08 Multiplex conversion for a passive optical network

Publications (2)

Publication Number Publication Date
CN103270712A CN103270712A (zh) 2013-08-28
CN103270712B true CN103270712B (zh) 2015-11-25

Family

ID=46199493

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180060340.8A Active CN103270712B (zh) 2010-12-14 2011-12-08 用于无源光学网络的复用转换

Country Status (7)

Country Link
US (4) US10341038B2 (zh)
EP (1) EP2652893B1 (zh)
KR (1) KR20130095314A (zh)
CN (1) CN103270712B (zh)
CA (1) CA2819857C (zh)
MX (1) MX2013006807A (zh)
WO (1) WO2012082527A1 (zh)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10341038B2 (en) * 2010-12-14 2019-07-02 Arris Enterprises Llc Multiplex conversion for a passive optical network
KR101738687B1 (ko) * 2010-12-23 2017-05-23 한국전자통신연구원 연속 모드 파장 변환 장치, 버스트 모드 파장 변환 장치, 원격 종단 장치 및 국사 종단 장치
US8848523B2 (en) * 2011-04-05 2014-09-30 Broadcom Corporation Method for sub-rating an ethernet passive optical network (EPON) medium access control (MAC) based communication link
JP5408199B2 (ja) * 2011-06-20 2014-02-05 住友電気工業株式会社 中継装置、中継方法及びその中継装置を用いた光通信システム
JP5842438B2 (ja) * 2011-07-28 2016-01-13 富士通株式会社 中継装置、中継方法及び光伝送システム
US9154851B2 (en) 2011-11-10 2015-10-06 Arris Technology, Inc. Tunable RF return path filter with automatic channel plan detection
US9374187B2 (en) * 2012-03-12 2016-06-21 Advanced Rf Technologies, Inc. Distributed antenna system and method
WO2014043689A1 (en) * 2012-09-17 2014-03-20 Broadcom Corporation Time to time-frequency mapping and demapping for ethernet passive optical network over coax (epoc)
US9699532B2 (en) * 2013-03-15 2017-07-04 Cox Communications, Inc. Systems and methods of hybrid DWDM aggregation and extension for time division multiplexing passive optical networks
US9432121B2 (en) * 2014-06-05 2016-08-30 Xilinx, Inc. Optical communication circuits
US10205552B2 (en) * 2017-01-20 2019-02-12 Cox Communications, Inc. Optical communications module link, systems, and methods
US10516922B2 (en) * 2017-01-20 2019-12-24 Cox Communications, Inc. Coherent gigabit ethernet and passive optical network coexistence in optical communications module link extender related systems and methods
US11502770B2 (en) 2017-01-20 2022-11-15 Cox Communications, Inc. Optical communications module link extender, and related systems and methods
US10838732B2 (en) * 2018-12-21 2020-11-17 Micron Technology, Inc. Apparatuses and methods for ordering bits in a memory device
US10993003B2 (en) 2019-02-05 2021-04-27 Cox Communications, Inc. Forty channel optical communications module link extender related systems and methods
US10999658B2 (en) 2019-09-12 2021-05-04 Cox Communications, Inc. Optical communications module link extender backhaul systems and methods
KR102436568B1 (ko) * 2019-11-27 2022-08-26 한국전자통신연구원 광 액세스 네트워크의 슬라이스 연결 방법 및 슬라이스 연결을 위한 광 액세스 네트워크 시스템
US11317177B2 (en) 2020-03-10 2022-04-26 Cox Communications, Inc. Optical communications module link extender, and related systems and methods
US11271670B1 (en) 2020-11-17 2022-03-08 Cox Communications, Inc. C and L band optical communications module link extender, and related systems and methods
US11146350B1 (en) 2020-11-17 2021-10-12 Cox Communications, Inc. C and L band optical communications module link extender, and related systems and methods
US11523193B2 (en) 2021-02-12 2022-12-06 Cox Communications, Inc. Optical communications module link extender including ethernet and PON amplification
US11323788B1 (en) 2021-02-12 2022-05-03 Cox Communications, Inc. Amplification module
US11689287B2 (en) 2021-02-12 2023-06-27 Cox Communications, Inc. Optical communications module link extender including ethernet and PON amplification
KR102598313B1 (ko) * 2023-04-26 2023-11-03 (주)썬웨이브텍 25g 프론트홀 망 구성용 리버스 먹스폰더 및 먹스폰더

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6420928B1 (en) * 2001-04-30 2002-07-16 Quantum Bridge Communications, Inc. AC coupled pre-amplifier for burst signal
CN101425852A (zh) * 2007-10-29 2009-05-06 阿尔卡特朗讯 用于无源光网络的电子点到多点中继器

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6334219B1 (en) 1994-09-26 2001-12-25 Adc Telecommunications Inc. Channel selection for a hybrid fiber coax network
US5999796A (en) 1997-03-14 1999-12-07 Tresness Irrevocable Patent Trust Return path attenuation filter
US5745838A (en) 1997-03-14 1998-04-28 Tresness Irrevocable Patent Trust Return path filter
US6775840B1 (en) 1997-12-19 2004-08-10 Cisco Technology, Inc. Method and apparatus for using a spectrum analyzer for locating ingress noise gaps
US20020027688A1 (en) * 2000-09-05 2002-03-07 Jim Stephenson Fiber optic transceiver employing digital dual loop compensation
US6690251B2 (en) 2001-04-11 2004-02-10 Kyocera Wireless Corporation Tunable ferro-electric filter
US6963696B1 (en) 2001-04-30 2005-11-08 Quantum Bridge Communications, Inc. AC-coupled burst mode receiver with wide dynamic range
US7295518B1 (en) 2001-08-30 2007-11-13 Entropic Communications Inc. Broadband network for coaxial cable using multi-carrier modulation
US20020186430A1 (en) 2001-06-12 2002-12-12 Ross Halgren Communications network
US7342973B2 (en) 2001-09-26 2008-03-11 General Atomics Method and apparatus for adapting multi-band ultra-wideband signaling to interference sources
US6738401B2 (en) 2001-10-11 2004-05-18 Quantum Bridge Communications, Inc. High speed switching driver
US20030072516A1 (en) * 2001-10-11 2003-04-17 International Business Machines Corporation Optical device having an adjustable gain and a method of dynamically adjusting the gain of an optical device
US7415367B2 (en) 2003-05-20 2008-08-19 Arcom Digital, Llc System and method to locate common path distortion on cable systems
JP2008522504A (ja) 2004-11-30 2008-06-26 スーパー・コンダクター・テクノロジーズ・インコーポレーテッド フィルタをチューニングするためのシステムおよび方法
US7594252B2 (en) 2005-03-01 2009-09-22 Time Warner Cable, Inc. Early warning fault identification and isolation system for a two-way cable network
US7627246B2 (en) 2005-07-22 2009-12-01 Novera Optics, Inc. Wavelength division multiplexing passive optical networks to transport access platforms
JP2009512337A (ja) 2005-10-12 2009-03-19 トムソン ライセンシング ケーブル・システムで用いられる帯域切り替え可能タップ及び増幅器
US7825745B1 (en) 2006-09-12 2010-11-02 Rf Magic Inc. Variable bandwidth tunable silicon duplexer
US7970281B2 (en) 2007-01-26 2011-06-28 Fujitsu Limited System and method for managing different transmission architectures in a passive optical network
CN101364844B (zh) * 2007-08-10 2011-03-30 华为技术有限公司 在无源光网络中实现拉远传输数据的装置
KR100948831B1 (ko) 2007-10-19 2010-03-22 한국전자통신연구원 시분할 다중 및 파장 분할 다중 접속 수동형 광 네트워크장치
US8132222B2 (en) 2007-11-20 2012-03-06 Commscope, Inc. Of North Carolina Addressable tap units for cable television networks and related methods of remotely controlling bandwidth allocation in such networks
US9479255B2 (en) 2008-04-30 2016-10-25 Arris Enterprises, Inc. Method and apparatus for controlling the optical output power from a burst mode laser
US8155159B2 (en) 2008-06-13 2012-04-10 General Instruments Corporation Method and apparatus for calibrating burst mode laser transmitters
US8139957B2 (en) 2008-06-24 2012-03-20 General Instrument Corporation High sensitivity optical receiver employing a high gain amplifier and an equalizing circuit
US8532487B2 (en) * 2008-10-21 2013-09-10 Broadcom Corporation Managed PON repeater and cross connect
US8179814B2 (en) 2009-03-30 2012-05-15 John Mezzalingua Associates, Inc. Automatic return path switching for a signal conditioning device
US10341038B2 (en) * 2010-12-14 2019-07-02 Arris Enterprises Llc Multiplex conversion for a passive optical network
US9154851B2 (en) 2011-11-10 2015-10-06 Arris Technology, Inc. Tunable RF return path filter with automatic channel plan detection

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6420928B1 (en) * 2001-04-30 2002-07-16 Quantum Bridge Communications, Inc. AC coupled pre-amplifier for burst signal
CN101425852A (zh) * 2007-10-29 2009-05-06 阿尔卡特朗讯 用于无源光网络的电子点到多点中继器

Also Published As

Publication number Publication date
EP2652893B1 (en) 2019-08-21
US10903928B2 (en) 2021-01-26
CA2819857C (en) 2022-01-11
US20120148245A1 (en) 2012-06-14
US11916658B2 (en) 2024-02-27
CN103270712A (zh) 2013-08-28
US20190327013A1 (en) 2019-10-24
CA2819857A1 (en) 2012-06-21
US20240146435A1 (en) 2024-05-02
WO2012082527A1 (en) 2012-06-21
MX2013006807A (es) 2013-07-29
US20210119721A1 (en) 2021-04-22
EP2652893A1 (en) 2013-10-23
KR20130095314A (ko) 2013-08-27
US10341038B2 (en) 2019-07-02

Similar Documents

Publication Publication Date Title
CN103270712B (zh) 用于无源光学网络的复用转换
US10432340B2 (en) Optical port auto-negotiation method, optical module, central office end device, and terminal device
US9967033B2 (en) Flexible TWDM PON with load balancing and power saving
Grobe et al. PON in adolescence: from TDMA to WDM-PON
US9344195B2 (en) Multiple level signaling for passive optical networks
US9479284B2 (en) Discovery method, optical communication method, and optical communication system
CN1983906B (zh) 一种波分复用无源光网络及实现方法
TWI450508B (zh) 管理的被動光纖網路中繼器及交叉連接
WO2015154389A1 (zh) 光收发模块及其工作参数的配置方法及装置
CN101997614A (zh) 集成光收发器、光网络系统、光通信系统及方法
CN112911427B (zh) 一种无源光网络光模块、全光接入网系统和控制方法
CN102332955A (zh) 一种用于pon的光中继器
WO2006029476A1 (en) A pon system with a remote upstream repeater
CN106470075A (zh) Olt光收发一体模块、处理多种pon的方法及系统
Grobe et al. PON Evolution from TDMA to WDM-PON
CN102497605A (zh) 光模块用接收机电路及光模块
Payne et al. Long-reach passive optical networks and access/metro integration
Choudhary et al. Analysis of next generation PON architecture for optical broadband access networks
Prat et al. Passive optical network for long-reach scalable and resilient access
Payne et al. End-to-end network design and experimentation in the DISCUS project
Nadarajah et al. 10 Gb/s upgrade for high-split and long-reach PON using remote repeater
Yang Enabling Technologies for Radio-over-Fiber Based Fiber-Wireless Access Network
Nakamura et al. MITSUBISHI ELECTRIC
Farooq et al. Feasibility Analysis of STARGATE Network with Integration of Ethernet based PON to Metro Network
Tran et al. CSMA/CD-Based Fiber-to-the-Desk System with Remote Repeater

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CP03 Change of name, title or address

Address after: Georgia, USA

Patentee after: Ai Ruishi Technology Co.

Address before: American Pennsylvania

Patentee before: GENERAL INSTRUMENT Corp.

CP03 Change of name, title or address
TR01 Transfer of patent right

Effective date of registration: 20180417

Address after: Georgia, USA

Patentee after: ARRIS ENTERPRISES LLC

Address before: Georgia, USA

Patentee before: Ai Ruishi Technology Co.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220713

Address after: London

Patentee after: Iris International Intellectual Property Co.,Ltd.

Address before: State of Georgia, US

Patentee before: ARRIS ENTERPRISES LLC

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240111

Address after: London

Patentee after: CommScope UK Ltd.

Address before: London

Patentee before: Iris International Intellectual Property Co.,Ltd.

TR01 Transfer of patent right