CN103258949B - Ag1‑xCuSe热电材料及其制备和用途 - Google Patents
Ag1‑xCuSe热电材料及其制备和用途 Download PDFInfo
- Publication number
- CN103258949B CN103258949B CN201310174940.8A CN201310174940A CN103258949B CN 103258949 B CN103258949 B CN 103258949B CN 201310174940 A CN201310174940 A CN 201310174940A CN 103258949 B CN103258949 B CN 103258949B
- Authority
- CN
- China
- Prior art keywords
- thermoelectric
- cuse
- temperature
- preparation
- xcuse
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000463 material Substances 0.000 title claims abstract description 36
- 238000002360 preparation method Methods 0.000 title claims abstract description 7
- 238000005245 sintering Methods 0.000 claims abstract description 5
- 238000003836 solid-state method Methods 0.000 claims abstract description 3
- 229910052802 copper Inorganic materials 0.000 claims description 6
- 239000002994 raw material Substances 0.000 claims description 3
- 229910052711 selenium Inorganic materials 0.000 claims description 3
- 239000013077 target material Substances 0.000 claims description 3
- 239000000126 substance Substances 0.000 claims 1
- 239000000843 powder Substances 0.000 abstract 1
- 230000005619 thermoelectricity Effects 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 7
- 230000007704 transition Effects 0.000 description 7
- 239000012071 phase Substances 0.000 description 6
- 229910052709 silver Inorganic materials 0.000 description 5
- 150000002500 ions Chemical class 0.000 description 3
- 238000000634 powder X-ray diffraction Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 239000002226 superionic conductor Substances 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910002899 Bi2Te3 Inorganic materials 0.000 description 1
- 229910005900 GeTe Inorganic materials 0.000 description 1
- 229910002665 PbTe Inorganic materials 0.000 description 1
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- 229910007372 Zn4Sb3 Inorganic materials 0.000 description 1
- 239000003708 ampul Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000001786 chalcogen compounds Chemical class 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000002305 electric material Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 230000002687 intercalation Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- OCGWQDWYSQAFTO-UHFFFAOYSA-N tellanylidenelead Chemical compound [Pb]=[Te] OCGWQDWYSQAFTO-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
Abstract
本发明涉及Ag1‑xCuSe(x=0.01‑0.03)热电材料及其制备和用途。采用高温固相法合成Ag1‑ xCuSe的熔融体,将得到熔融体研磨成粉体进行热压烧结可得到目标块体材料。Ag空位Ag1‑xCuSe热电材料的热电优值ZT最高达到1.4,在高温区间其ZT值约为0.6,且随温度基本不变化,该材料可用于高效热‑电转换器件制作。
Description
技术领域
本发明属于材料科学领域,涉及一种高效的热电材料的制备及其用途。
背景技术
热电材料是能够实现热能和电能直接转换的材料,通常用热电优值ZT来评估热电材料的性能。 ,式中S是塞贝克系数,σ 是电导率 是热导,T是绝对温度。在实际应用中,一个单对热电器件的热电效率为 。目前,国际上研究较多的热电材料主要是半导体及其合金,如Bi2Te3基材料、PbTe基材料、AgSbTe2及(AgSbTe2)1-x(GeTe)x固溶体、金属硅化物(Mg/Mn/Fe)、以及SiGe合金等。90年代出现一类统称“声子玻璃电子晶体”(PGEC)的材料,这类热电材料主要有方钴矿、笼合物、-Zn4Sb3、Half-Heusler等。然而,所有这些热电材料的热电优值ZT都会出现一个峰值,温度稍微偏离这个峰值,ZT值就会迅速的降低。这对热电材料实际应用非常不利,从热电转换效率我们可以看出,其转换效率不但和热电优值ZT有关,还和加在热电器件两端的温度差相关。为了提高热电器件的效率,科学家们把梯度功能材料的概念引入热电器件制作,日本甚至在90年代启动了第二个梯度功能材料的国家研究计划,主要目的就是通过梯度功能材料的研究提高热电材料的热电转换效率。虽然很多对梯度功能热电材料的理论研究表明,在某些情况下通过梯度功能材料可以热电转换效率提高50 ~ 100%,但是实验的结果往往只有10%左右,而且研制梯度功能热电材料的难度很大,例如,要考虑各层间杂志扩散引起的热电性能的衰减问题, 为了避免各层间的杂质扩散,通常在各层间插入过渡层,这又要解决过渡层与基体材料热膨胀系数匹配、过渡层热阻和电阻增加的等问题,因此对于实际应用来说,因组装工艺复杂、制作成本昂贵、可靠性低等原因,限制了梯度功能材料的使用寿命和应用化。因此,若能探索出热电性能随温度变化平缓或基本不随温度变化的热电材料,对于提高热电转换效率有很重大的实际应用意义。
超离子导体AgCuSe具有两个不同相的存在,即低温的正交相(Cu离子在结构中是无序的)和高温的立方相(Ag和Cu离子在结构中都是高度无序的),其超离子转变温度约为473K,在这个转变过程中同时伴随着结构相变。近来的研究表明,含过渡元素(如Cu和Ag)的超离子导体硫属化合物的热电性能引起了广泛研究,主要是由于超离子导体中Ag和Cu离子的高度无序,而导致该体系出现非常低的热导,进而导致较高的热电优值ZT。基于已报道的研究,我们在AgCuSe体系中通过调节Ag空位改变载流子浓度,从而优化热电优值ZT,通过实验我们发现当Ag空位含量为0.03时,ZT值在超离子相转变温度附近达到一个最大值约1.4,并且不同Ag空位的ZT值在高温立方相时随温度基本不变,这对于实际应用意义非常重大,且相关工作,至今未见文献报道。
发明内容
本发明目的: (1) 提供一种Ag空位Ag1-xCuSe热电材料(x = 0.01-0.03) 的制备方法;(2) 提供Ag1-xCuSe热电材料(x = 0.01-0.03)的热电性能指标; (3) 提供Ag1-xCuSe热电材料(x = 0.01-0.03)的用途。
本发明的技术方案如下:
本发明提供了该化合物的制备方法,包括如下步骤:
(1)将Ag, Cu和 Se三种原料按化学计量比混合,采用高温固相法,在1173~1373K烧结,制得Ag1-xCuSe的熔融体。
(2)将熔融体研磨,然后在50-70 MPa,773-853K下进行热压烧结20-40分钟,获得目标材料。
本发明提供了Ag1-xCuSe热电材料(x = 0.01-0.03)的热电性能指标(见表1)。
表1 Ag1-xCuSe (x = 0.01-0.03)的热电性能指标
本发明提供了该热电材料的用途,其特征在于:Ag1-xCuSe在高温立方相中热电优值ZT基本不随温度变化,且当x=0.03时,热电优值ZT在473K附近可高达1.4,因此可应用于高效热-电转换器件的制作。
附图说明
图1是Ag1-xCuSe (x = 0, 0.01-0.03)热电材料X射线粉末衍射图谱,a-d分别对应0、0.01、0.025、0.03的X射线粉末衍射的图谱。所用X射线粉末衍射仪的型号为D/MAX2500,生产厂家:Rigaku Corporation。
图2是Ag1-xCuSe (x = 0.01-0.03)的电阻率。
图3是Ag1-xCuSe (x = 0.01-0.03)的塞贝克系数。
图4是Ag1-xCuSe (x = 0.01-0.03)的热导率。
其中,圆形的曲线为空位0.01Ag的样品,三角形的曲线为掺杂0.025Ag的样品,方形的曲线为空位0.03Ag的样品。图2热导率的测试采用德国耐驰(Netzsch,LFA427)热导仪,图3和图4的电阻率和Seebeck系数采用热电性能测定仪ZEM-3(ULAC-RIKO,Inc.。
图5是Ag1-xCuSe (x = 0.01-0.03)的热电优值与温度的关系。其中,圆形的曲线为空位0.01Ag的样品,三角形的曲线为掺杂0.025Ag的样品,方形的曲线为空位0.03Ag的样品。
具体实施方式
实施例1
采用高温固相合成法合成化合物Ag1-xCuSe (x = 0.01-0.03)。
具体操作步骤如下:将Ag, Cu和 Se三种原料按化学计量比混合,封于石英管中并置于管式炉,从室温缓慢加热至1273K,保温5天,然后缓慢降温,得到熔融块体,将制得的熔融块体研磨,然后在60 MPa下进行热压烧结,在823K保温30分钟,即可获得目标材料。
Claims (3)
1.化学式为Ag1-xCuSe的热电材料,其特征在于,x=0.01-0.03,该热电材料在温度低于473K时为正交相结构;在温度高于473K时为立方相结构。
2.权利要求1所述的热电材料的制备方法,包括如下步骤:
(1)将Ag,Cu和Se三种原料按化学计量比混合,采用高温固相法,在1173~1373K烧结,制得Ag1-xCuSe的熔融体。
(2)将熔融体研磨,然后在50-70MPa,773-853K下进行热压烧结20-40分钟,获得目标材料。
3.权利要求1所述的热电材料用于制备热-电转换器件。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310174940.8A CN103258949B (zh) | 2013-05-13 | 2013-05-13 | Ag1‑xCuSe热电材料及其制备和用途 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310174940.8A CN103258949B (zh) | 2013-05-13 | 2013-05-13 | Ag1‑xCuSe热电材料及其制备和用途 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103258949A CN103258949A (zh) | 2013-08-21 |
CN103258949B true CN103258949B (zh) | 2017-10-24 |
Family
ID=48962759
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310174940.8A Active CN103258949B (zh) | 2013-05-13 | 2013-05-13 | Ag1‑xCuSe热电材料及其制备和用途 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103258949B (zh) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102102224A (zh) * | 2011-01-07 | 2011-06-22 | 许昌学院 | 银铜硒三元化合物树枝晶薄膜材料及其制备方法 |
WO2012157904A1 (ko) * | 2011-05-13 | 2012-11-22 | 주식회사 엘지화학 | 신규한 화합물 반도체 및 그 활용 |
-
2013
- 2013-05-13 CN CN201310174940.8A patent/CN103258949B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102102224A (zh) * | 2011-01-07 | 2011-06-22 | 许昌学院 | 银铜硒三元化合物树枝晶薄膜材料及其制备方法 |
WO2012157904A1 (ko) * | 2011-05-13 | 2012-11-22 | 주식회사 엘지화학 | 신규한 화합물 반도체 및 그 활용 |
Also Published As
Publication number | Publication date |
---|---|
CN103258949A (zh) | 2013-08-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4726747B2 (ja) | マグネシウム、珪素、スズからなる金属間化合物の焼結体およびその製造方法 | |
US6660926B2 (en) | Thermoelectric devices based on materials with filled skutterudite structures | |
JP6219386B2 (ja) | 熱電装置のための四面銅鉱構造に基づく熱電材料 | |
JP6266099B2 (ja) | 可逆的相転移を有する高性能p型熱電材料及びその製造方法 | |
Zhu et al. | High pressure synthesis, structure and thermoelectric properties of BiCuChO (Ch= S, Se, Te) | |
JP5468554B2 (ja) | 熱電応用のためのドープテルル化スズを含む半導体材料 | |
Lu et al. | Synergistically enhanced thermoelectric and mechanical performance of Bi2Te3 via industrial scalable hot extrusion method for cooling and power generation applications | |
JPH10510677A (ja) | 高性能熱電材料およびその調製法 | |
CN108238796A (zh) | 铜硒基固溶体热电材料及其制备方法 | |
JP2012521648A (ja) | 自己組織化熱電材料 | |
KR101663183B1 (ko) | 열전재료, 이를 포함하는 열전모듈과 열전장치 | |
CN113421959B (zh) | 一种n型碲化铋基室温热电材料及其制备方法 | |
JP2007523998A (ja) | 高性能熱電材料インジウム−コバルト−アンチモンの製造方法 | |
CN108701749A (zh) | 镁系热电转换材料的制造方法、镁系热电转换元件的制造方法、镁系热电转换材料、镁系热电转换元件及热电转换装置 | |
CN107408618A (zh) | 化合物半导体热电材料及其制造方法 | |
CN101101954A (zh) | 一种镉锑基p型热电材料及其制备方法 | |
CN104032194A (zh) | 共掺杂Mg-Si-Sn 基热电材料及其制备方法 | |
JP2001044519A (ja) | クラスレート化合物と高効率熱電材料およびそれらの製造方法と高効率熱電材料を用いた熱電モジュール | |
JP2024150770A (ja) | 熱電材料、その製造方法、および、熱電発電素子 | |
Zhu et al. | Composition-dependent thermoelectric properties of PbTe doped with Bi2Te3 | |
Haruna et al. | High thermoelectric performance in multiscale Ag8SnSe6 included n-type bismuth telluride for cooling application | |
Sun et al. | High symmetry structure and large strain field fluctuation lead enhancement of thermoelectric performance of quaternary alloys by tuning configurational entropy | |
Jana et al. | Metal to insulator transition in Ba2Ge2Te5: Synthesis, crystal structure, resistivity, thermal conductivity, and electronic structure | |
CN103258949B (zh) | Ag1‑xCuSe热电材料及其制备和用途 | |
JP7448259B2 (ja) | 熱電材料、その製造方法、および、熱電発電素子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |