CN103258112A - 一种基于mde和分形优化svm的周期来压预测方法 - Google Patents

一种基于mde和分形优化svm的周期来压预测方法 Download PDF

Info

Publication number
CN103258112A
CN103258112A CN2013100937221A CN201310093722A CN103258112A CN 103258112 A CN103258112 A CN 103258112A CN 2013100937221 A CN2013100937221 A CN 2013100937221A CN 201310093722 A CN201310093722 A CN 201310093722A CN 103258112 A CN103258112 A CN 103258112A
Authority
CN
China
Prior art keywords
curve
dimension
mde
periodic weighting
svm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013100937221A
Other languages
English (en)
Other versions
CN103258112B (zh
Inventor
赫飞
赵东洋
崔铁军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liaoning Technical University
Original Assignee
Liaoning Technical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liaoning Technical University filed Critical Liaoning Technical University
Priority to CN201310093722.1A priority Critical patent/CN103258112B/zh
Publication of CN103258112A publication Critical patent/CN103258112A/zh
Application granted granted Critical
Publication of CN103258112B publication Critical patent/CN103258112B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Complex Calculations (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明公开了一种基于MDE和分形优化SVM的周期来压预测方法,主要步骤包括对已知支架周期来压荷载曲线使用多重差异进化算法(MDE)进行拟合,将每重拟合形成的单一正弦曲线与上次差余曲线(
Figure DEST_PATH_IMAGE002
)再作差余曲线(
Figure DEST_PATH_IMAGE004
)。将这些
Figure 238477DEST_PATH_IMAGE002
图通过分形几何的盒子法计算维度和相关系数(r)。将每条
Figure 881948DEST_PATH_IMAGE002
的维度、r和支架相对距离(L)作为输入值,对应的
Figure 685956DEST_PATH_IMAGE002
的周期
Figure DEST_PATH_IMAGE006
、缩放系数
Figure DEST_PATH_IMAGE008
和纵移系数
Figure DEST_PATH_IMAGE010
作为目标值,使用支持向量机(SVM)进行训练。通过对维度和r规律的研究得到拟设置支架处荷载各
Figure 352560DEST_PATH_IMAGE002
的维度和r,带入训练后的SVM模拟得到
Figure DEST_PATH_IMAGE012
Figure 149484DEST_PATH_IMAGE006
Figure 647461DEST_PATH_IMAGE008
,进而得到
Figure 838588DEST_PATH_IMAGE012
的表达式。将上述
Figure 189935DEST_PATH_IMAGE012
求和即为所求拟设置支架处的周期来压荷载。可广泛用于液压支架周期来压拟合和预测。

Description

一种基于MDE和分形优化SVM的周期来压预测方法
技术领域
本发明涉及 地下采矿工程周期荷载预测问题, 特别是涉及 基于MDE和分形优化SVM的周期来压预测方法。
背景技术
在巷道内的液压支架是承受顶板压力的主要构件,在设置支架时要考虑很多因素,其中荷载的形式和变化规律是主要的考察因素。如何了解将要设置液压支架处的周期来压荷载形式和变化规律成为关键问题。当然,这个问题在未设置液压支架前是不可测的,这样只能通过预测来解决上述问题。
现有技术中没有解决在不可测情况下,如何预测将要设置液压支架所受到的荷载形式和变化规律的问题。通过已知的液压支架的荷载表示未设置液压支架的荷载,由于未设置液压支架处的荷载不可测,无法进行分析。在这种情况下,根据已有的研究和模型的分析,可以确定以设置的液压支架之间的荷载形式和变化规律存在着一些联系,而且他们的荷载是可测的。根据模型对不同相对位置支架周期来压荷载图像的分析,发现就支架相对位置而言,差余曲线图形的维数和相关系数r有一定的线性关系。根据所求支架与已知支架的相对位置关系和该线性关系即可求得所求支架周期来压荷载图像各对应差余曲线的维数和相关系数r。这样就可将所求支架荷载与已知支架荷载联系起来,再通过一定方法进行映射。
模型通过MDE得到周期来压荷载的正弦波分解形式;分形理论计算了各差余曲线的维数和相关系数r;通过SVM模拟出未设置液压支架处荷载曲线各正弦项的参数;将各项叠加得到该荷载的预测表达式。通过与实际监测的结果对比表明了结果的正确性及方法的正确性,本发明涉及的周期来压预测方法能够解为顶板支护提供合理依据。
发明内容
1. 多重差异进化算法拟合
设原始测量的液压支架荷载数据的曲线为                                               ;对
Figure 216949DEST_PATH_IMAGE002
使用差异进化算法拟合得到的正弦曲线集合为
Figure 2013100937221100002DEST_PATH_IMAGE006
是拟合求得的参数(第3节用TSM,TZM,TDM分别表示
Figure 431898DEST_PATH_IMAGE006
各自的矩阵),分别表示周期(
Figure 2013100937221100002DEST_PATH_IMAGE008
)、缩放系数(
Figure 2013100937221100002DEST_PATH_IMAGE010
)和纵移系数(
Figure DEST_PATH_IMAGE012
);
Figure 2013100937221100002DEST_PATH_IMAGE014
n为计算的代数,即拟合的次数(拟合曲线项数)。定义差余曲线
Figure DEST_PATH_IMAGE016
为:本代差余曲线是上代差余曲线与本代数据反演得到的正弦曲线
Figure DEST_PATH_IMAGE018
的差的曲线,如
Figure DEST_PATH_IMAGE020
Figure DEST_PATH_IMAGE022
Figure DEST_PATH_IMAGE024
。那么对
Figure 393907DEST_PATH_IMAGE002
的拟合最终结果就是
Figure DEST_PATH_IMAGE026
。并通过MATLAB实现。
使用差异进化算法有两个目的,第一个是反演出
Figure 521263DEST_PATH_IMAGE006
作为SVM训练时的目标值;另一个是得到
Figure 889927DEST_PATH_IMAGE018
,进而得到
Figure 174147DEST_PATH_IMAGE016
的图像,作为分形几何计算维度和r的基础。
2. 盒子法计算
Figure 475815DEST_PATH_IMAGE016
图像的维数和相关系数r值
盒子法是利用覆盖法测量分维曲线的最基本方法之一,实现简单。通过对标准曲线的测定,结果与理论计算值一致性良好,较适合平面曲线的分维测量。该方法用边长为1的方盒覆盖曲线,将该方盒分割成含有2n个小方盒的网格集,小方盒的边长为2-n,用这个网格集覆盖轮廓曲线,统计出含有轮廓片段的小方盒数量为M(n),则曲线的分形维数为:
Figure DEST_PATH_IMAGE028
    鉴于处理二维折线图像,模型使用盒子法计算
Figure 774073DEST_PATH_IMAGE016
图像的维数和r值。使用FractalFox2.0对形成的
Figure 630033DEST_PATH_IMAGE016
图像进行处理。维数、rL作为SVM训练的输入值。
3. 支持向量机进行预测
使用Epsilon回归算法来进行训练和模拟。前文提到,维数、rL作为训练的输入值,
Figure 999835DEST_PATH_IMAGE006
作为目标值,进行训练。模拟的输入值是所求支架荷载的维数、rL,输出值为所求荷载曲线的正弦项
Figure 608540DEST_PATH_IMAGE018
Figure 874436DEST_PATH_IMAGE006
。对于没有数据的所求支架荷载的
Figure 483272DEST_PATH_IMAGE016
图像维数和r是通过线性拟合实现的,详见实例的具体计算过程。
4. 模型算法流程
上文已经介绍了相关的方法以及在模型算法中的作用。下面用流程图的形式表示算法,如图1所示。
附图说明
图1 方法流程图。
注:长方形表示数据处理动作,斜四边形表示原始数据,箭头表示数据及其传递方向。
图2 10#、35#、60#、85#的85次循环左右两支架的荷载变化图
图3 8条曲线与其拟合曲线的对照图。
图4 
Figure DEST_PATH_IMAGE030
的第2带差余曲线图
Figure DEST_PATH_IMAGE032
图5 图4对应的分形特征曲线图。
注:
Figure DEST_PATH_IMAGE034
的差余曲线一共20个图,即
Figure DEST_PATH_IMAGE036
,这里只列出了
Figure DEST_PATH_IMAGE038
图。
图5 图4对应的分形特征曲线图。
注:
Figure 312556DEST_PATH_IMAGE034
的差余曲线一共20个图,即
Figure 792079DEST_PATH_IMAGE036
,这里只列出了
Figure 760035DEST_PATH_IMAGE038
图。
图6 8条拟合后曲线各项参数图。
图7 8条曲线第一代差余曲线维度与相对距离(L)的关系。
图8 107#支架模拟荷载与实际荷载对比图。
具体实施方式
为使本发明的上述目的、特征和优点更加明显易懂,下面结合使用到的相关理论和具体实施方式对本发明作进一步详细的说明。
实施例为某矿二采区1212回采工作面的周期来压,其位于北二12煤集运巷以西,北邻北二采区1210-1采空区,南侧为未采区。工作面设计采高4.0米,沿顶板推进。采用倾斜长壁后退式综合机械化采煤方法。进刀方式为端部斜切进刀,返往一次割两刀煤,循环进尺为0.8m。
1212工作面开切规格为8.4m×3.5m,采用8m锚索、金属网、钢带联合支护。工作面开采初期采用单向割煤,从尾往头推溜。一是为了调整运输机与转载机合理搭接长度。二是为了保证支架平行进入煤壁,支架顶梁进入煤壁后开始对支架大柱压力表进行读数记录。
在工作面建五条测线监测支架工作阻力变化情况,测线位置分别布置在10#、35#、60#、85#、107#左右支架,每个循环未对支架柱压力表读数一次,并作为记录结果。
原始数据如图2所示,为10#、35#、60#、85#的85次循环左右两支架的荷载变化图。
对图2中8条曲线进行拟合,拟合的方法是MDE。8条实际数据曲线分别为
Figure DEST_PATH_IMAGE040
Figure DEST_PATH_IMAGE042
Figure DEST_PATH_IMAGE044
Figure DEST_PATH_IMAGE046
Figure DEST_PATH_IMAGE048
Figure DEST_PATH_IMAGE050
Figure DEST_PATH_IMAGE052
,其中z表示左,y表示右,
Figure DEST_PATH_IMAGE058
Figure DEST_PATH_IMAGE060
Figure DEST_PATH_IMAGE062
Figure DEST_PATH_IMAGE064
Figure DEST_PATH_IMAGE066
Figure DEST_PATH_IMAGE068
Figure DEST_PATH_IMAGE070
表示对应的拟合曲线。现以
Figure 574276DEST_PATH_IMAGE040
为例说明拟合函数
Figure 754722DEST_PATH_IMAGE056
的建立过程。基于傅里叶拟合思想和8条曲线都表现为某种正弦曲线的形式,将
Figure 619910DEST_PATH_IMAGE040
分解为多项正弦函数的和,如式(1)所示。
Figure DEST_PATH_IMAGE072
                      (1)
式中:
Figure DEST_PATH_IMAGE074
表示周期,对
Figure 945718DEST_PATH_IMAGE056
i代拟合(第i项)的正弦曲线的周期;
Figure DEST_PATH_IMAGE076
表示缩放系数,对i代拟合(第i项)的正弦曲线的振幅程度;
Figure DEST_PATH_IMAGE078
表示纵移系数,对
Figure 716545DEST_PATH_IMAGE056
i代拟合(第i项)的正弦曲线的纵向平移量;x为掘进深度/m。TZMTSMTDM分别表示周期
Figure 701818DEST_PATH_IMAGE008
、缩放系数和纵移系数
Figure 800410DEST_PATH_IMAGE012
矩阵。
使用差异进化(DE)进行反演的方法,通过计算
Figure 322658DEST_PATH_IMAGE056
的第一项进行说明,第一项如式(2)所示。
Figure DEST_PATH_IMAGE080
                        (2)
参数识别过程如下:
1)收集现场检测数据,进行数据处理。对数据有效性进行分析,形成适合的数据结构。
2)选择正弦曲线作为反演分析数学模型。
3)x作为回归函数拟合数据,选择收敛最快且值最小时的FCr
4)利用确定好的FCr和实际数据,建立二维反演参数识别与优化模型。
5)以参数
Figure DEST_PATH_IMAGE082
Figure DEST_PATH_IMAGE084
作为优化变量,构建回归模型与现场监测数据
Figure 603050DEST_PATH_IMAGE040
的最小二乘函数关系进行DE运算,即设定DE初值,按照DE步骤进行参数搜索。
6)算法达到最佳收敛后,即可输出获得的
Figure 928989DEST_PATH_IMAGE082
Figure 92117DEST_PATH_IMAGE084
Figure 743679DEST_PATH_IMAGE086
参数。
要注意的是计算第二项时第3步和第5步的
Figure 257837DEST_PATH_IMAGE040
改为
Figure DEST_PATH_IMAGE088
,以此类推。这样就可以求得,进而可以求得8条拟合曲线。关于拟合曲线的项数(差余曲线代数)还确定不了,先计算20项,然后观察其收敛值(msumM)情况。如表1所示为
Figure 919948DEST_PATH_IMAGE056
的参数;8条曲线拟合后如图3所示。拟合质量如表2所示。
 
表1 
Figure DEST_PATH_IMAGE090
的参数表
Figure DEST_PATH_IMAGE092
注:msumM表示差余曲线上各点值的平方和。
 
表2 8条曲线的拟合质量
Figure DEST_PATH_IMAGE094
注:每条曲线计算20项,但是有的曲线提前收敛,或到某项后收敛值变大,这时在它们后面的项舍掉。
 
图3显示了曲线的对比情况,从图中看出虽然有些部分的曲线符合度不佳,但是曲线的走势基本一致,拟合曲线能按照原曲线的变化而变化。10#支架左、10#支架右和60#支架右的对比图质量较差,主要原因是由于拟合的项数较小,无法体现更丰富的变化,但是其msumM最小项后的项以失去意义应舍掉。总体拟合质量如表2所示,拟合质量可以达到要求,而且这里主要关注的是变化趋势和程度,因为这些决定了图像的分形维数和r值。
上述过程得到了两个方面的数据,一方面是8条拟合曲线的
Figure DEST_PATH_IMAGE096
Figure DEST_PATH_IMAGE100
矩阵,另一方面是差余曲线。
是为了使用分形几何计算参数和r设置的,为了解决已设与未设支架处荷载不能建立数值关系的缺点,而借助图像分析建立分形几何关系。就
Figure DEST_PATH_IMAGE101
曲线的
Figure 441300DEST_PATH_IMAGE016
进行说明,第一代差余曲线,第二代
Figure DEST_PATH_IMAGE105
。用于分析的
Figure 782283DEST_PATH_IMAGE101
差余曲线图为
Figure DEST_PATH_IMAGE107
,如图4所示为
Figure DEST_PATH_IMAGE109
使用FractalFox2.0对20×8条曲线进行处理得到图的维数和r,参数为处理方式:盒子法(Box Counting)、FromBoxSize:2、To Box Size:100、StepSize:1。计算得到各曲线的各
Figure 759335DEST_PATH_IMAGE016
的维数和r。的参数如表1所示,分形特征曲线如图5所示。
专利解决问题的关键是建立在没有数据情况下,依靠图像变化规律找到图像内部和图像之间的联系。为了进行下一步的支持向量机的训练和模拟,将8条曲线得到的参数值归一到[-1,1],如图6所示为归一后
Figure 188359DEST_PATH_IMAGE110
各项参数变化图。
表1中可以看出,随着msumM的减小,即曲线拟合质量增加时曲线分形几何维度增加。这说明曲线变得粗糙了,但是更接近于的平衡位置,r随着维数的变化也有相应的变化。图6中,基本上每个图内的各参数曲线之间是有规律的,图之间相同参数曲线变化基本相同。说明在支架荷载的变化曲线中,普遍存在着某种关系,这个关系可以通过该方法计算得到的维数和r进行描述。另一方面,已知支架和未设立的支架存在着相对位置关系,按照支架之间间隔1m计算,10#、35#、60#、85#、107#相对于107#的距离分别为97m、72m、47m、22m、0m。随着距离的不同拟合曲线对应各项
Figure 180586DEST_PATH_IMAGE016
的维数显现出线性规律,如图7所示为左右两侧的四条第一代差余曲线
Figure DEST_PATH_IMAGE114
维度。
图7的维数和相对距离的线性关系比较明显,后代差余曲线维数也有形同的规律。对于另一个分形参数相关系数r,其与msumM虽然没有完全符合的对应关系,但是其变化与维数的变化频率和方向基本相同,也可以看做是与msumM的对应,且与相对距离也存在像维数那样的关系。综上,维数和r可以反映不同相对距离支架荷载曲线之间的关系,且自身的变化与相对距离也有关系,所以维数、rL就是已知与未知荷载曲线之间的桥梁。
支持向量机预测首先要有三个条件:
1)训练的输入值。上文提到的(L、维数、r)i矩阵即为输入值。首先要确定预测的107#支架荷载曲线的项数(代数),该项数与10#、35#、60#、85#的拟合曲线的项数相对应。表2中列出了各曲线的项数,最小为6,最大为20。如果选择6项,预测后的叠加结果的变化就比较简单,曲线拟合效果较差;如果选择20,那么有4个拟合曲线的有效项不足20,扩展到20项拟合曲线就不准确。综合考虑,选择15项效果较好。那么8个拟合曲线的项数都取15项。对于不到15项的拟合函数,通过添加正反项的方式补充到15项,如
Figure DEST_PATH_IMAGE115
只有6项,那么缺9项。这9项的所有参数与第6项相同,只是第7项的TSM与第6项相同,第8项的TSM与第6项相反,依次类推。这样做可以最大程度的相互抵消多余项,使msumM变化最小,保证函数图像的稳定性。
    模拟和预测都是左线和右线支架分开进行的,因为其函数图像的特征不同,各自单侧才与相对距离有对应关系。所以(L、维数、r)i Z为左线训练输入值,3×60矩阵;(L、维数、r)i Y为右线训练输入值,3×60矩阵;
2)训练目标值。因为目标值周期,缩放系数和纵移系数与训练数据构成的支持向量机结构是不同的,所以将目标值定义为(周期)i Z、(缩放系数)i Z、(纵移系数)i Z、(周期)i Y、(缩放系数)i Y、(纵移系数)i Y,6个1×60的矩阵。
3)模拟输入值。模拟输入值为
Figure DEST_PATH_IMAGE117
(L、维数、r) i 。这些只是对于107#支架而言的,所以相对距离r=0。由图7及分析可知,可通过线性拟合得到以10#、35#、60#、85#数据为基础的107#支架荷载拟合曲线各项的维数和r。使用MATLAB的polyfit函数拟合并计算。得到的结果如表3所示。
 
表3 拟合得到的107#左右支架的维数和r
Figure DEST_PATH_IMAGE119
那么
Figure 390856DEST_PATH_IMAGE117
(L、维数、r) i Z,3×15矩阵,为模拟左线的输入值;
Figure 366902DEST_PATH_IMAGE117
(L、维数、r) i Y,3×15矩阵,为模拟右线的输入值。
当然上述SVM相关数据都要进行归一处理才能满足使用要求。将上述值带入SVM进行训练和模拟,参数设置如下:使用Epsilon回归算法;拉格朗日乘子上界C=100;不敏感损失函数的参数e=0.2; ker = struct('type','gauss','width',0.6)。得到模拟输出值后进行逆归一运算,得到真实值如表4所示。
 
表4 模拟得到的107#左右两线荷载拟合曲线的各项参数
Figure DEST_PATH_IMAGE121
根据式(1)得到式(3)和(4):
Figure DEST_PATH_IMAGE123
Figure DEST_PATH_IMAGE125
               (3)
Figure DEST_PATH_IMAGE127
              (4)
将表4中数据带入得到的模拟曲线并与实际107#左右支架荷载曲线对比如图8所示。
    图8中左右两图的均方差和最大误差分别是8.8267、1.3504和6.2610、0.7982。模拟质量基本达到要求。更为关键的是在图8中,可以明显的看到模拟曲线跟随着实际监测数据的变化而变化,这对预测支架周期来压荷载变化有重要意义。同时从振幅上看,模拟曲线基本包括了实际荷载曲线,即其振幅值可以大体反映来压的最大值。综上两点可以说明,虽然模拟质量一般,但是本方法可以反映支架荷载的基本形式和变化规律。特别是在未开挖及未设置支架处,无法对数据进行测量,但已知相邻多个支架荷载变化的情况下,该方法显得尤为有效。

Claims (9)

1. 一种基于MDE和分形优化SVM的周期来压预测方法,主要步骤包括:
步骤一:对已知支架周期来压荷载曲线使用多重差异进化算法(MDE)进行拟合,将每重拟合形成的单一正弦曲线与上次差余曲线( 
Figure DEST_PATH_476561DEST_PATH_IMAGE001
)再作差余曲线(
Figure DEST_PATH_610870DEST_PATH_IMAGE002
);
步骤二:将这些
Figure DEST_PATH_99621DEST_PATH_IMAGE001
图通过分形几何的盒子法计算维度和相关系数(r);
步骤三:将每条
Figure DEST_PATH_538430DEST_PATH_IMAGE001
的维度、r和支架相对距离(L)作为输入值,对应的的周期
Figure DEST_PATH_101447DEST_PATH_IMAGE003
、缩放系数
Figure DEST_PATH_678094DEST_PATH_IMAGE004
和纵移系数
Figure DEST_PATH_94163DEST_PATH_IMAGE005
作为目标值,使用支持向量机(SVM)进行训练;
步骤四:通过对维度和r规律的研究得到拟设置支架处荷载各的维度和r,带入训练后的SVM模拟得到
Figure DEST_PATH_847727DEST_PATH_IMAGE003
Figure DEST_PATH_566022DEST_PATH_IMAGE004
Figure DEST_PATH_1683DEST_PATH_IMAGE005
,进而得到的表达式;
步骤五:将上述求和即为所求拟设置支架处的周期来压荷载。
2. 根据权利要求1所述一种基于MDE和分形优化SVM的周期来压预测方法,其特征在于, 多重差异进化算法拟合对已知支架周期来压荷载曲线使用多重差异进化算法(MDE)进行拟合,将每重拟合形成的单一正弦曲线与上次差余曲线(
Figure DEST_PATH_855741DEST_PATH_IMAGE001
)再作差余曲线(),直到差余曲线离散点方差小于规定值,拟合停止,是一种将周期来压波先拟合再分离的循环拟合方法;循环拟合方法的主要步骤:
步骤一:设原始测量的液压支架荷载数据的曲线为
Figure DEST_PATH_134462DEST_PATH_IMAGE007
步骤二:对
Figure DEST_PATH_447762DEST_PATH_IMAGE007
使用差异进化算法拟合得到的正弦曲线集合为
Figure DEST_PATH_652533DEST_PATH_IMAGE008
是拟合求得的参数(第3节用TSM,TZM,TDM分别表示
Figure DEST_PATH_139884DEST_PATH_IMAGE008
各自的矩阵),分别表示周期(
Figure DEST_PATH_878164DEST_PATH_IMAGE003
)、缩放系数(
Figure DEST_PATH_476374DEST_PATH_IMAGE004
)和纵移系数(
Figure DEST_PATH_678816DEST_PATH_IMAGE005
),
Figure DEST_PATH_337068DEST_PATH_IMAGE009
n为计算的代数,即拟合的次数(拟合曲线项数);
步骤三:定义差余曲线
Figure DEST_PATH_795600DEST_PATH_IMAGE001
为:本代差余曲线是上代差余曲线与本代数据反演得到的正弦曲线
Figure DEST_PATH_698965DEST_PATH_IMAGE006
的差的曲线,如
Figure DEST_PATH_522751DEST_PATH_IMAGE011
Figure DEST_PATH_734158DEST_PATH_IMAGE012
;直到差余曲线离散点方差小于规定值,拟合停止,那么对
Figure DEST_PATH_237952DEST_PATH_IMAGE007
的拟合最终结果就是
Figure DEST_PATH_710259DEST_PATH_IMAGE013
3. 根据权利要求2所述一种基于MDE和分形优化SVM的周期来压预测方法,其特征在于, 正弦曲线集合具体的
Figure DEST_PATH_211779DEST_PATH_IMAGE014
分解为多项正弦函数的和:
Figure DEST_PATH_271002DEST_PATH_IMAGE015
式中:表示周期,对i代拟合(第i项)的正弦曲线的周期;表示缩放系数,对
Figure DEST_PATH_888354DEST_PATH_IMAGE017
i代拟合(第i项)的正弦曲线的振幅程度;
Figure DEST_PATH_733951DEST_PATH_IMAGE019
表示纵移系数,对i代拟合(第i项)的正弦曲线的纵向平移量;x为掘进深度/m;TZMTSMTDM分别表示周期
Figure DEST_PATH_587954DEST_PATH_IMAGE003
、缩放系数
Figure DEST_PATH_120304DEST_PATH_IMAGE004
和纵移系数
Figure DEST_PATH_769592DEST_PATH_IMAGE005
矩阵。
4. 根据权利要求1所述的一种基于MDE和分形优化SVM的周期来压预测方法,其特征在于, 鉴于处理二维折线图像,模型使用盒子法计算
Figure DEST_PATH_838042DEST_PATH_IMAGE001
图像的维数和r值;差余曲线的构造,
Figure DEST_PATH_374238DEST_PATH_IMAGE001
是为了使用分形几何计算参数和r设置的,为了解决已设与未设支架处荷载不能建立数值关系的缺点,而借助图像分析建立分形几何关系,就曲线的
Figure DEST_PATH_82748DEST_PATH_IMAGE001
进行说明,第一代差余曲线,第二代
Figure DEST_PATH_627048DEST_PATH_IMAGE021
5. 根据权利要求1所述的一种基于MDE和分形优化SVM的周期来压预测方法,其特征在于, 所述差余曲线的构造,分形几何计算参数和r的设置,使用FractalFox2.0对20×8条曲线进行处理得到图的维数和r,参数处理方式:盒子法(Box Counting)、FromBoxSize:2、To Box Size:100、StepSize:1,计算得到各曲线的各
Figure DEST_PATH_369876DEST_PATH_IMAGE001
的维数和r;SVM模拟使用Epsilon回归算法来进行训练和模拟,维数、rL作为训练的输入值,
Figure DEST_PATH_797184DEST_PATH_IMAGE008
作为目标值,进行训练;模拟的输入值是所求支架荷载的维数、rL,输出值为所求荷载曲线的正弦项
Figure DEST_PATH_574647DEST_PATH_IMAGE006
Figure DEST_PATH_992990DEST_PATH_IMAGE008
;对于没有数据的所求支架荷载的
Figure DEST_PATH_924912DEST_PATH_IMAGE001
图像维数和r是通过线性拟合实现的,详见实例的具体计算过程;所述的使用Epsilon回归算法来进行训练和模拟,使用Epsilon回归算法;拉格朗日乘子上界C=100;不敏感损失函数的参数e=0.2; ker = struct('type','gauss','width',0.6)。
6. 根据权利要求1所述的一种基于MDE和分形优化SVM的周期来压预测方法,其特征在于, SVM模拟理论基础为:随着msumM的减小,即曲线拟合质量增加时曲线分形几何维度增加;这说明曲线变得粗糙了,但是更接近于
Figure DEST_PATH_454113DEST_PATH_IMAGE022
的平衡位置,r随着维数的变化也有相应的变化;基本上每个图内的各参数曲线之间是有规律的,图之间相同参数曲线变化基本相同;说明在支架荷载的变化曲线中,普遍存在着某种关系,这个关系可以通过计算得到的维数和r进行描述。
7. 根据权利要求1所述的一种基于MDE和分形优化SVM的周期来压预测方法,其特征在于, SVM模拟理论基础为:维数和相对距离的线性关系比较明显,后代差余曲线维数也有形同的规律,对于另一个分形参数相关系数r,其与msumM虽然没有完全符合的对应关系,但是其变化与维数的变化频率和方向基本相同,也可以看做是与msumM的对应,且与相对距离也存在像维数那样的关系,综上,维数和r可以反映不同相对距离支架荷载曲线之间的关系,且自身的变化与相对距离也有关系,所以维数、rL就是已知与未知荷载曲线之间的桥梁。
8. 根据权利要求1所述的一种基于MDE和分形优化SVM的周期来压预测方法,其特征在于, 所述的训练的输入值,首先要确定预测的107#支架荷载曲线的项数(代数),该项数与10#、35#、60#、85#的拟合曲线的项数相对应,模拟和预测都是左线和右线支架分开进行的,因为其函数图像的特征不同,各自单侧才与相对距离有对应关系,所以(L、维数、r)i Z为左线训练输入值,3×60矩阵;(L、维数、r)i Y为右线训练输入值,3×60矩阵;所述的训练的目标值,因为目标值周期,缩放系数和纵移系数与训练数据构成的支持向量机结构是不同的,所以将目标值定义为(周期)i Z、(缩放系数)i Z、(纵移系数)i Z、(周期)i Y、(缩放系数)i Y、(纵移系数)i Y,6个1×60的矩阵。
9. 根据权利要求8所述的一种基于MDE和分形优化SVM的周期来压预测方法,其特征在于, 所述的确定预测的支架荷载曲线的项数确定方法,确定项数的方法(该方法的描述方法为以107#支架为例进行描述):各曲线的项数,最小为6,最大为20,如果选择6项,预测后的叠加结果的变化就比较简单,曲线拟合效果较差;如果选择20,那么有4个拟合曲线的有效项不足20,扩展到20项拟合曲线就不准确,综合考虑,选择15项效果较好,那么8个拟合曲线的项数都取15项,对于不到15项的拟合函数,通过添加正反项的方式补充到15项,如
Figure DEST_PATH_351662DEST_PATH_IMAGE023
只有6项,那么缺9项,这9项的所有参数与第6项相同,只是第7项的TSM与第6项相同,第8项的TSM与第6项相反,依次类推,这样做可以最大程度的相互抵消多余项,使msumM变化最小,保证函数图像的稳定性。
CN201310093722.1A 2013-03-22 2013-03-22 一种基于mde和分形优化svm的周期来压预测方法 Expired - Fee Related CN103258112B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310093722.1A CN103258112B (zh) 2013-03-22 2013-03-22 一种基于mde和分形优化svm的周期来压预测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310093722.1A CN103258112B (zh) 2013-03-22 2013-03-22 一种基于mde和分形优化svm的周期来压预测方法

Publications (2)

Publication Number Publication Date
CN103258112A true CN103258112A (zh) 2013-08-21
CN103258112B CN103258112B (zh) 2016-02-24

Family

ID=48962024

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310093722.1A Expired - Fee Related CN103258112B (zh) 2013-03-22 2013-03-22 一种基于mde和分形优化svm的周期来压预测方法

Country Status (1)

Country Link
CN (1) CN103258112B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109815565A (zh) * 2019-01-09 2019-05-28 天地科技股份有限公司 一种综采液压支架载荷的分段预测方法
CN112711855A (zh) * 2020-12-30 2021-04-27 江铃汽车股份有限公司 一种数据处理方法、装置、存储介质及设备
CN112948755A (zh) * 2021-04-01 2021-06-11 中国空空导弹研究院 一种遥测正弦参数判读方法
CN113482677A (zh) * 2021-08-02 2021-10-08 中煤科工开采研究院有限公司 一种基于聚类算法的四柱式液压支架工况评估方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090154781A1 (en) * 2007-12-14 2009-06-18 Electro-Optical Sciences, Inc. Characterizing a Texture of an Image
CN102968641A (zh) * 2012-10-31 2013-03-13 杭州电子科技大学 基于球均值李雅普诺夫指数和关联维的肌电信号识别方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090154781A1 (en) * 2007-12-14 2009-06-18 Electro-Optical Sciences, Inc. Characterizing a Texture of an Image
CN102968641A (zh) * 2012-10-31 2013-03-13 杭州电子科技大学 基于球均值李雅普诺夫指数和关联维的肌电信号识别方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
J MIELNICZUK ET AL: "Estimation of Hurst exponent revisited", 《COMPUTATIONAL STATISTICS & DATA ANALYSIS》 *
崔铁军等: "基于差异进化支持向量机的坑外土体沉降预测", 《中国安全科学学报》 *
王会敏等: "基于MDE和分形优化SVM的周期来压预测", 《中国安全生成科学技术》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109815565A (zh) * 2019-01-09 2019-05-28 天地科技股份有限公司 一种综采液压支架载荷的分段预测方法
CN109815565B (zh) * 2019-01-09 2022-11-22 天地科技股份有限公司 一种综采液压支架载荷的分段预测方法
CN112711855A (zh) * 2020-12-30 2021-04-27 江铃汽车股份有限公司 一种数据处理方法、装置、存储介质及设备
CN112711855B (zh) * 2020-12-30 2023-04-07 江铃汽车股份有限公司 一种数据处理方法、装置、存储介质及设备
CN112948755A (zh) * 2021-04-01 2021-06-11 中国空空导弹研究院 一种遥测正弦参数判读方法
CN112948755B (zh) * 2021-04-01 2023-06-23 中国空空导弹研究院 一种遥测正弦参数判读方法
CN113482677A (zh) * 2021-08-02 2021-10-08 中煤科工开采研究院有限公司 一种基于聚类算法的四柱式液压支架工况评估方法
CN113482677B (zh) * 2021-08-02 2023-12-22 中煤科工开采研究院有限公司 一种基于聚类算法的四柱式液压支架工况评估方法

Also Published As

Publication number Publication date
CN103258112B (zh) 2016-02-24

Similar Documents

Publication Publication Date Title
Dontsov et al. An enhanced pseudo-3D model for hydraulic fracturing accounting for viscous height growth, non-local elasticity, and lateral toughness
Wattimena et al. Developing coal pillar stability chart using logistic regression
Cui et al. Improved prediction of differential subsidence caused by underground mining
US10901118B2 (en) Method and system for enhancing meshes for a subsurface model
CN102750739B (zh) 三维地质模型的构建方法
Mahmoodzadeh et al. Decision-making in tunneling using artificial intelligence tools
Guan et al. Markovian geology prediction approach and its application in mountain tunnels
CN104699995B (zh) 一种滑坡监测数据对数拟合的预测预报方法
CN103258112A (zh) 一种基于mde和分形优化svm的周期来压预测方法
Miranda et al. Geomechanical characterization of volcanic rocks using empirical systems and data mining techniques
CN111814298B (zh) 近水平钻孔轨迹约束下采煤工作面煤层迭代建模方法
Qi et al. A real-time back-analysis technique to infer rheological parameters from field monitoring
Beretta et al. Reducing coal quality attributes variability using properly designed blending piles helped by geostatistical simulation
Rezaei et al. Vertical displacement estimation in roof and floor of an underground powerhouse cavern
Dehghan et al. 3-D stability analysis and design of the primary support of Karaj metro tunnel: based on convergence data and back analysis algorithm
CN105160700A (zh) 一种用于三维模型重建的截面曲线重构方法
Liu et al. Intelligent information-based construction in tunnel engineering based on the GA and CCGPR coupled algorithm
Guan et al. Back analysis technique for mountain tunneling based on the complex variable solution
Zhang et al. MARS inverse analysis of soil and wall properties for braced excavations in clays
CN103226739B (zh) 一种基于泛函网络的周期来压预测方法
CN112946746B (zh) 用于提高薄煤层avo反演准确性的方法及装置
CN105844710A (zh) 一种地质体网格化过程中的数据检测方法
Cao et al. Predication of displacement of tunnel rock mass based on the back-analysis method-BP neural network
Dzimunya et al. Integrating the effect of abutments in estimating the average vertical stress of elastic hard rock pillars by combining numerical modelling and artificial neural networks
Nassar et al. Developing an efficient algorithm for balancing mass-haul diagrams

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160224

Termination date: 20170322

CF01 Termination of patent right due to non-payment of annual fee