CN103245124A - Thermomagnetic exchange device - Google Patents
Thermomagnetic exchange device Download PDFInfo
- Publication number
- CN103245124A CN103245124A CN2012103896534A CN201210389653A CN103245124A CN 103245124 A CN103245124 A CN 103245124A CN 2012103896534 A CN2012103896534 A CN 2012103896534A CN 201210389653 A CN201210389653 A CN 201210389653A CN 103245124 A CN103245124 A CN 103245124A
- Authority
- CN
- China
- Prior art keywords
- alloy
- heat exchange
- magnetic field
- sectional area
- cross
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B21/00—Machines, plants or systems, using electric or magnetic effects
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2321/00—Details of machines, plants or systems, using electric or magnetic effects
- F25B2321/002—Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects
- F25B2321/0023—Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects with modulation, influencing or enhancing an existing magnetic field
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
- Hard Magnetic Materials (AREA)
- Containers, Films, And Cooling For Superconductive Devices (AREA)
Abstract
Description
技术领域technical field
本发明主要关于一种热磁交换装置,尤指一种包括产生磁场于热交换元件的磁场单元的热磁交换装置。The present invention mainly relates to a thermomagnetic exchange device, especially a thermomagnetic exchange device including a magnetic field unit that generates a magnetic field for a heat exchange element.
背景技术Background technique
一般而言,磁冷冻机为一高效能与一环保的冷冻技术。磁冷冻技术利用了热磁材料(magnetocaloric materials,MCM)的热磁效应来达成冷冻循环(refrigeration cycles)。In general, a magnetic refrigerator is a high-efficiency and an environmentally friendly refrigeration technology. Magnetic freezing technology utilizes the thermomagnetic effect of magnetocaloric materials (MCM) to achieve refrigeration cycles.
如图1所示,现有的热磁交换装置1包括一热交换元件10以及一磁性单元20。热交换元件10包括一流道11以及多个流道12。流道11位于两流道12之间。于此例子中,携热流体流过流道11、12,且流道11、12的截面积相等,两相邻的流道11、12之间的距离也相同。磁性单元20产生磁场于热交换元件10。由于磁场为非均匀的,因此于流道11内的磁场大于流道12内的磁场,导致热交换元件10对于流道11内携热流体之间的热交换率大于热交换元件10对于流道12内携热流体之间的热交换率,且热磁交换装置1的效率因此而降低。As shown in FIG. 1 , a conventional
发明内容Contents of the invention
为了解决上述现有技术的缺失,本发明的目的为提供一种热磁交换装置,包括一热交换元件以及一磁性单元。热交换元件具有至少一流道,磁性单元产生一磁场于热交换元件。当携热流体流经流道时,热交换元件上不同点的温度梯度(temperature gradient)大致相同。In order to solve the above shortcomings of the prior art, the object of the present invention is to provide a thermo-magnetic exchange device, which includes a heat exchange element and a magnetic unit. The heat exchanging element has at least one channel, and the magnetic unit generates a magnetic field on the heat exchanging element. When the heat-carrying fluid flows through the flow channel, the temperature gradient at different points on the heat exchange element is approximately the same.
为了达到上述的目的,本发明提供了一种热磁交换装置,包括一热交换元件以及一磁性单元。热交换元件具有至少一用以输送一携热流体的流道以及两端。磁性单元设置于热交换元件的周围,并提供一磁场于热交换元件,其中磁场的强度为非均匀的。流道的截面积大小对应于磁场强度,以使当携热流体流过流道时,热交换元件的两端上的不同点的温度梯度大致相同。In order to achieve the above object, the present invention provides a thermomagnetic exchange device, which includes a heat exchange element and a magnetic unit. The heat exchanging element has at least one channel for delivering a heat-carrying fluid and two ends. The magnetic unit is arranged around the heat exchange element and provides a magnetic field to the heat exchange element, wherein the strength of the magnetic field is non-uniform. The size of the cross-sectional area of the flow channel corresponds to the strength of the magnetic field, so that when the heat-carrying fluid flows through the flow channel, the temperature gradients at different points on both ends of the heat exchange element are approximately the same.
为了达到上述的目的,本发明另提供了一热磁交换装置,包括一热交换元件以及一磁性单元。热交换元件具有一第一流道以及一第二流道,用以输送一携热流体,其中第一流道具有一第一截面积,第二流道具有一第二截面积,且第一截面积大于第二截面积。磁性单元设置于热交换元件的周围,并提供一磁场于热交换元件。施加于第一流道的磁场的强度大于施加于第二流道的磁场的强度。In order to achieve the above object, the present invention further provides a thermo-magnetic exchange device, which includes a heat exchange element and a magnetic unit. The heat exchange element has a first flow channel and a second flow channel for transporting a heat-carrying fluid, wherein the first flow channel has a first cross-sectional area, and the second flow channel has a second cross-sectional area, and the first cross-sectional area is larger than the first cross-sectional area Second cross-sectional area. The magnetic unit is arranged around the heat exchange element and provides a magnetic field to the heat exchange element. The intensity of the magnetic field applied to the first flow channel is greater than the intensity of the magnetic field applied to the second flow channel.
为了达到上述的目的,本发明另提供了一热磁交换装置,包括一热交换元件以及一磁性单元。热交换元件具有多个第一流道以及至少一第二流道,用以输送一携热流体,其中两相邻的第一流道之间的距离小于相邻的第一流道以及第二流道之间的距离。磁性单元设置于热交换元件的周围,并提供一磁场于热交换元件。施加于每一第一流道的磁场的强度大于施加于第二流道的磁场的强度。In order to achieve the above object, the present invention further provides a thermo-magnetic exchange device, which includes a heat exchange element and a magnetic unit. The heat exchange element has a plurality of first flow channels and at least one second flow channel for transporting a heat-carrying fluid, wherein the distance between two adjacent first flow channels is smaller than the distance between the adjacent first flow channels and the second flow channels distance between. The magnetic unit is arranged around the heat exchange element and provides a magnetic field to the heat exchange element. The intensity of the magnetic field applied to each first flow channel is greater than the intensity of the magnetic field applied to the second flow channel.
综上所述,当携热流体流过流道时,热交换元件上不同点的温度梯度大致相同,进而使得热磁交换装置的热交换效率增加。To sum up, when the heat-carrying fluid flows through the flow channel, the temperature gradients at different points on the heat exchange element are approximately the same, thereby increasing the heat exchange efficiency of the thermomagnetic exchange device.
附图说明Description of drawings
图1为现有的热磁交换装置的示意图;Fig. 1 is the schematic diagram of existing thermomagnetic exchange device;
图2为本发明的热磁交换装置的第一实施例的示意图;Fig. 2 is the schematic diagram of the first embodiment of the thermomagnetic exchange device of the present invention;
图3为本发明的热交换元件的第一实施例的立体图;Figure 3 is a perspective view of the first embodiment of the heat exchange element of the present invention;
图4为图3的A-A’剖面的剖视图;Fig. 4 is the sectional view of A-A ' section of Fig. 3;
图5为本发明的热磁交换装置的第二实施例的示意图;以及5 is a schematic diagram of a second embodiment of the thermomagnetic exchange device of the present invention; and
图6为本发明的热磁交换装置的第三实施例的分解示意图。FIG. 6 is an exploded schematic diagram of a third embodiment of the thermomagnetic exchange device of the present invention.
其中,附图标记说明如下:Wherein, the reference signs are explained as follows:
热磁交换装置1Thermomagnetic Exchange
热交换元件10
流道11、12Runner 11, 12
磁性单元20
热磁交换装置2、2a、2b
热交换元件30、30a、30b
第一流道31、31a、The
第二流道32、32a
流道部311、312、321、322
热交换部33、34
磁性单元40、40b
磁性部41、42
第一延伸方向D1First extension direction D1
第二延伸方向D2Second extension direction D2
纵向D3Vertical D3
截面S1Section S1
第一截面区域Z1First cross-sectional area Z1
第二截面区域Z2Second cross-sectional area Z2
具体实施方式Detailed ways
图2为本发明的热磁交换装置2的第一实施例的示意图,图3为本发明的热交换元件30的第一实施例的立体图,图4为图3的A-A’剖面的剖视图。热磁交换装置(thermo-magnetic exchanging device)2包括一热交换元件30以及二磁性单元40。热交换元件30可为一管状结构。Fig. 2 is a schematic diagram of the first embodiment of the
热交换元件30可选自于由至少一热磁材料(magnetocaloric material)所组成的族群中的材质所构成。举例而言,前述磁热材料可包括,但不予以限制,Mn-Fe-P-As合金、Mn-Fe-P-Si合金、Mn-Fe-P-Ge合金、Mn-As-Sb合金、Mn-Fe-Co-Ge合金、Mn-Ge-Sb合金、Mn-Ge-Si合金、La-Fe-Co-Si合金、La-Fe-Si-H合金、La-Na-Mn-O合金、La-K-Mn-O合金、La-Ca-Sr-Mn-O合金、La-Ca-Pb-Mn-O合金、La-Ca-Ba-Mn-O合金、Gd合金、Gd-Si-Ge、Gd-Yb合金、Gd-Si-Sb合金、Gd-Dy-Al-Co合金、或是Ni-Mn-Ga合金。The
热交换元件30包括一第一流道31以及二第二流道32,然而,第一流道31与第二流道32的数目并不予以限制。于本实施例中,第一流道31位于两第二流道32之间,且第一流道31与第二流道32可沿一第一延伸方向D1排列。前述的第一延伸方向D1平行于热交换元件30的一截面S1。热交换元件30、第一流道31、以及第二流道32可沿一纵向D3延伸。第一流道31以及第二流道32可用以输送一携热流体(heat-carrying fluid)。The
磁性单元40可为一永久磁铁、一超导磁铁、或是一电磁圈。磁性单元40设置于热交换元件30的两相对侧。于本实施例中,热交换元件30位于磁性单元40之间。磁性单元40与热交换元件30沿一第二延伸方向D2排列。前述的第一延伸方向D1、第二延伸方向D2、以及纵向D3相互垂直。每一磁性单元40用以提供一磁场于热交换元件30,前述磁场的强度(magnitude of themagnetic field)可为时变(time-varying)和非均匀(non-uniform)。因此,当磁场施加于热交换元件30时,热交换元件30的热交换能力(heat exchangeability)可以被改变。The
如图2所示,于热交换元件30的截面S1上设有一第一截面区域Z1以及二第二截面区域Z2。第一流道31分布于第一截面区域Z1内、且第二流道32分别分布于第二截面区域Z2内。第一截面区域Z1以及第二截面区域Z2的面积可相同。第一截面区域Z1位于两第二截面区域Z2之间。于本实施例中,第一截面区域Z1以及两第二截面区域Z2可沿第一延伸方向D1排列。As shown in FIG. 2 , a first cross-sectional area Z1 and two second cross-sectional areas Z2 are provided on the cross-section S1 of the
由于第一截面区域Z1以及第二截面区域Z2的排列大致平行于磁性单元40,以及第一截面区域Z1邻近于磁性单元40的中央部位,第二截面区域Z2分别邻近于磁性单元40的两端,于第一截面区域Z1的磁场分别大于第二截面区域Z2的磁场。换句话说,施加于第一流道31的磁场的强度大于分别施加于第二流道32的磁场的强度。Since the arrangement of the first cross-sectional area Z1 and the second cross-sectional area Z2 is approximately parallel to the
一般而言,较强的磁场强度会使得热交换元件30具有较强的热交换能力。由于第一流道31、第二流道32的截面积大小对应于热交换元件30内的磁场分布,因此当携热流体流经第一流道31、第二流道32时,热交换元件30的截面S1上不同点的温度梯度大致相同。Generally speaking, a stronger magnetic field strength will make the
于本实施例中,第一流道31的截面S1大于第二流道32的截面S1,且第一截面区域Z1以及第二截面区域Z2的面积相同。由于热交换元件30的第一截面区域Z1具有较强的磁场,因此第一流道31的截面积大于第二流道32的截面积。In this embodiment, the cross-section S1 of the
当携热流体于第一流道31以及第二流道32内流动时,于第一流道31内的携热流体的流速大于第二流道32内的携热流体的流速。由于第二截面区域Z2的磁场强度较第一截面区域Z1的磁场强度弱,因此于第二截面区域Z2内的热交换元件30的热交换能力相对较差。然而,通过携热流体于第二流道32的较慢流速可使得第二截面区域Z2内的热交换元件30能对第二流道32内的携热流体进行较充足的热交换,进而使得第二截面区域Z2的温度梯度能大致与第一截面区域Z1的温度梯度相同。When the heat-carrying fluid flows in the
图5为本发明的热磁交换装置2a的第二实施例的示意图。于本实施例中,热交换元件30a的第一截面区域Z1内具有多个第一流道31a,且第二截面区域Z2内具有至少一第二流道32a,于另一实施例中,第二流道32a可具有多个。每一热交换元件30a的第一流道31a以及第二流道32a的截面积相等。然而,于第一截面区域Z1内第一流道31a的数目多于第二截面区域Z2内第二流道32a的数目。换句话说,第一截面区域Z1内第一流道31a的总截面积大于第二截面区域Z2内第二流道32a的总截面积。然而,如图5所示,相邻两第一流道31a之间的距离小于相邻的第一流道31a与第二流道32a之间的距离。因此,第一截面区域Z1内第一流道31a的总截面积以及第二截面区域Z2内第二流道32a的总截面积对应于磁场的强度。FIG. 5 is a schematic diagram of a second embodiment of the
图6为本发明的热磁交换装置2b的第三实施例的分解示意图。热交换元件30b包括一热交换部33以及一热交换部34。热交换部33耦接于热交换部34。每一磁性单元40b包括一磁性部41以及一磁性部42。磁性部41耦接于磁性部42。FIG. 6 is an exploded schematic diagram of a third embodiment of the
第一流道31包括一流道部311以及一流道部312。每一第二流道32包括一流道部321以及一流道部322。流道部311与流道部312相互连通,且流道部321与流道部322相互连通。The
于本实施例中,磁性部41产生的磁场大于磁性部42产生的磁场。流道部311的截面积大于流道部312的截面积,且流道部321的截面积大于流道部322的截面积。因此,热交换部33的第一流道31、第二流道32的总截面积大于热交换部34的第一流道31、第二流道32的总截面积。换句话说,第一流道31、第二流道32的截面积大致对应于磁场的强度。因此,当携热流体流过第一流道31、第二流道32时,热交换元件30b的两端上的不同点的温度梯度大致相同。In this embodiment, the magnetic field generated by the
综上所述,当携热流体流过流道时,热交换元件上不同点的温度梯度大致相同,进而使得热磁交换装置的热交换效率增加。To sum up, when the heat-carrying fluid flows through the flow channel, the temperature gradients at different points on the heat exchange element are approximately the same, thereby increasing the heat exchange efficiency of the thermomagnetic exchange device.
本发明虽以各种实施例揭露如上,然而其仅为范例参考而非用以限定本发明的范围,任何熟习此技艺者,在不脱离本发明的精神和范围内,当可做些许的更动与润饰。因此上述实施例并非用以限定本发明的范围,本发明的保护范围当视后附的权利要求范围所界定者为准。Although the present invention has been disclosed above with various embodiments, they are only exemplary references rather than limiting the scope of the present invention. Anyone skilled in the art can make some modifications without departing from the spirit and scope of the present invention. Move and retouch. Therefore, the above-mentioned embodiments are not intended to limit the scope of the present invention, and the protection scope of the present invention should be defined by the appended claims.
Claims (12)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/367,906 | 2012-02-07 | ||
US13/367,906 US20130199754A1 (en) | 2012-02-07 | 2012-02-07 | Thermo-magnetic exchanging device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103245124A true CN103245124A (en) | 2013-08-14 |
CN103245124B CN103245124B (en) | 2015-06-24 |
Family
ID=48794577
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210389653.4A Expired - Fee Related CN103245124B (en) | 2012-02-07 | 2012-10-15 | Thermal Magnetic Exchange Device |
Country Status (3)
Country | Link |
---|---|
US (1) | US20130199754A1 (en) |
CN (1) | CN103245124B (en) |
DE (1) | DE102012110465A1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102012106252A1 (en) * | 2011-07-12 | 2013-01-17 | Delta Electronics, Inc. | Magnetocaloric material structure |
FR2994252B1 (en) * | 2012-08-01 | 2014-08-08 | Cooltech Applications | MONOBLOC PIECE COMPRISING A MAGNETOCALORIC MATERIAL NOT COMPRISING AN ALLOY COMPRISING IRON AND SILICON AND A LANTHANIDE, AND A THERMIC GENERATOR COMPRISING SAID PIECE |
FR2994253B1 (en) * | 2012-08-01 | 2018-10-05 | Cooltech Applications | MONOBLOC PIECE COMPRISING A MAGNETOCALORIC MATERIAL COMPRISING AN ALLOY COMPRISING IRON AND SILICON AND AT LEAST ONE LANTHANIDE, AND PROCESS FOR PRODUCING SAID MONOBLOC PIECE |
DE102015108954A1 (en) * | 2015-06-08 | 2016-12-08 | Eberspächer Climate Control Systems GmbH & Co. KG | Temperature control unit, in particular Fahrzeugtemperiergerät |
EP3839379A3 (en) * | 2016-11-02 | 2021-06-30 | Ngk Insulators, Ltd. | Magnetic member for magnetic refrigerator |
JP6884296B1 (en) * | 2020-07-17 | 2021-06-09 | 三菱電機株式会社 | Magnetic refrigerator |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19955277A1 (en) * | 1999-11-17 | 2001-05-23 | Suthoff Erika | Method to influence thermal economy of body, e.g. electronic equipment |
CN2433561Y (en) * | 2000-07-07 | 2001-06-06 | 顾仲夫 | Semiconductor air conditioner |
US6272866B1 (en) * | 1999-12-08 | 2001-08-14 | Industrial Technology Research Institute | Micro cooling engine array system |
US20110139404A1 (en) * | 2009-12-16 | 2011-06-16 | General Electric Company | Heat exchanger and method for making the same |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2517415A1 (en) * | 1981-11-27 | 1983-06-03 | Commissariat Energie Atomique | METHOD FOR REFRIGERATING OR HEAT PUMPING AND DEVICE FOR CARRYING OUT SAID METHOD |
TW575158U (en) * | 2003-03-20 | 2004-02-01 | Ind Tech Res Inst | Heat transfer structure for magnetic heat energy |
US20040261420A1 (en) * | 2003-06-30 | 2004-12-30 | Lewis Laura J. Henderson | Enhanced magnetocaloric effect material |
JP4533838B2 (en) * | 2005-12-06 | 2010-09-01 | 株式会社東芝 | Heat transport device, refrigerator and heat pump |
JP4660412B2 (en) * | 2006-03-30 | 2011-03-30 | 株式会社東芝 | refrigerator |
JP4703699B2 (en) * | 2008-09-04 | 2011-06-15 | 株式会社東芝 | Magnetic material for magnetic refrigeration, magnetic refrigeration device and magnetic refrigeration system |
-
2012
- 2012-02-07 US US13/367,906 patent/US20130199754A1/en not_active Abandoned
- 2012-10-15 CN CN201210389653.4A patent/CN103245124B/en not_active Expired - Fee Related
- 2012-10-31 DE DE102012110465A patent/DE102012110465A1/en not_active Withdrawn
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19955277A1 (en) * | 1999-11-17 | 2001-05-23 | Suthoff Erika | Method to influence thermal economy of body, e.g. electronic equipment |
US6272866B1 (en) * | 1999-12-08 | 2001-08-14 | Industrial Technology Research Institute | Micro cooling engine array system |
CN2433561Y (en) * | 2000-07-07 | 2001-06-06 | 顾仲夫 | Semiconductor air conditioner |
US20110139404A1 (en) * | 2009-12-16 | 2011-06-16 | General Electric Company | Heat exchanger and method for making the same |
Also Published As
Publication number | Publication date |
---|---|
CN103245124B (en) | 2015-06-24 |
US20130199754A1 (en) | 2013-08-08 |
DE102012110465A1 (en) | 2013-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103245124B (en) | Thermal Magnetic Exchange Device | |
CN103095183B (en) | magnetothermal generator | |
CN106240304B (en) | Thermosistor, particularly vehicle thermosistor | |
KR101843700B1 (en) | Magnetic refrigeration system with separated inlet and outlet flow | |
CN105307456B (en) | A kind of pyromagnetic cooling system and electronic equipment | |
Vasile et al. | Innovative design of a magnetocaloric system | |
US20150206638A1 (en) | Magnetic field generator for a magnetocaloric thermal device, and magnetocaloric thermal device equipped with such a generator | |
WO2009046325A1 (en) | Permanent magnet device | |
CN107112103A (en) | The method that magnetic thermal level joins and manufacture magnetic thermal level joins | |
TW200936029A (en) | Two phase micro-channel heat sink | |
CN1980563B (en) | Heat sink device for cooling electronic element and method thereof | |
CN103368468B (en) | Magnetothermal Power Generation System | |
JP2008544200A (en) | Continuous rotating magnetic refrigerator or heat pump | |
US20120139676A1 (en) | Magnetic field generator and magnetocaloric device comprising said magnetic field generator | |
JP6183662B2 (en) | Magnetic field generator for heat appliances by magnetocaloric quantity | |
CN1995898A (en) | Thermomagnetic convection type magnetic fluid heat-convection system | |
US20080264068A1 (en) | Magnetic Convection Heat Circulation Pump | |
CN102967172B (en) | Magnetic thermal module and magnetic thermal device | |
JP2016003836A (en) | Magnetic structure, heat exchanger, and refrigeration cycle system | |
CN204718476U (en) | Thermomagnetic convection is utilized to strengthen the device of low temperature oxygen-bearing fluid heat transfer | |
CN102317710B (en) | Magnetocaloric heat generator | |
Xiao et al. | Constructal entransy dissipation rate and flow-resistance minimizations for cooling channels | |
CN105849479B (en) | Magnetothermal heater and its cooling means | |
CN104792218B (en) | Strengthen the method and device of low temperature oxygen-bearing fluid heat transfer using thermomagnetic convection | |
JP2005279168A5 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150624 Termination date: 20171015 |