CN103236814A - Fractional integral sliding mode-based speed control method and device for permanent magnet synchronous motor - Google Patents

Fractional integral sliding mode-based speed control method and device for permanent magnet synchronous motor Download PDF

Info

Publication number
CN103236814A
CN103236814A CN2013101535979A CN201310153597A CN103236814A CN 103236814 A CN103236814 A CN 103236814A CN 2013101535979 A CN2013101535979 A CN 2013101535979A CN 201310153597 A CN201310153597 A CN 201310153597A CN 103236814 A CN103236814 A CN 103236814A
Authority
CN
China
Prior art keywords
synchronous motor
motor
speed
fractional order
sliding mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013101535979A
Other languages
Chinese (zh)
Other versions
CN103236814B (en
Inventor
黄家才
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Institute of Technology
Original Assignee
Nanjing Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Institute of Technology filed Critical Nanjing Institute of Technology
Priority to CN201310153597.9A priority Critical patent/CN103236814B/en
Publication of CN103236814A publication Critical patent/CN103236814A/en
Application granted granted Critical
Publication of CN103236814B publication Critical patent/CN103236814B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

本发明公开了一种基于分数阶积分滑模的永磁同步电机速度控制方法,包括构造分数阶积分滑模面S,并设计分数阶积分滑模转速控制器进行转速调节,本发明还设计了一种基于分数阶积分滑模的永磁同步电机速度控制装置;本发明所设计的基于分数阶积分滑模的永磁同步电机速度控制方法及装置能够在永磁同步电机控制系统存在参数摄动、负载扰动情况下,实现对电机的高性能速度跟随控制,并克服现有积分滑模控制中由于大的初始误差或执行器饱和所导致的积分饱和效应以及暂态性能下降。

Figure 201310153597

The invention discloses a speed control method of a permanent magnet synchronous motor based on a fractional integral sliding mode, which includes constructing a fractional integral sliding mode surface S, and designing a fractional integral sliding mode speed controller for speed adjustment. The invention also designs A permanent magnet synchronous motor speed control device based on fractional integral sliding mode; the permanent magnet synchronous motor speed control method and device based on fractional integral sliding mode designed by the present invention can be used in the presence of parameter perturbation in the permanent magnet synchronous motor control system 1. In the case of load disturbance, realize high-performance speed following control of the motor, and overcome the integral saturation effect and transient performance degradation caused by large initial errors or actuator saturation in the existing integral sliding mode control.

Figure 201310153597

Description

基于分数阶积分滑模的永磁同步电机速度控制方法及装置Method and device for speed control of permanent magnet synchronous motor based on fractional integral sliding mode

技术领域technical field

本发明涉及一种基于分数阶积分滑模的永磁同步电机速度控制方法及装置,属于交流伺服电机控制技术领域。The invention relates to a method and device for controlling the speed of a permanent magnet synchronous motor based on a fractional-order integral sliding mode, and belongs to the technical field of AC servo motor control.

背景技术Background technique

永磁同步电机具有结构紧凑、功率密度高、能量转换效率高、调速范围广、重量轻等优点,在工业、民用、军事等领域得到广泛的应用。Permanent magnet synchronous motor has the advantages of compact structure, high power density, high energy conversion efficiency, wide speed range, light weight, etc., and has been widely used in industrial, civil, military and other fields.

由于永磁同步电机是一个典型的非线性、多变量耦合系统,且其性能受到外部负载扰动、内部参数变化、对象未建模和非线性动态特性等不确定性的影响。为了获得良好的动态响应,一些鲁棒控制策略如非线性控制、自适应控制、H控制、滑模控制等相继被引入到交流伺服系统的研究中。其中滑模控制以其鲁棒性强、响应快速、物理实现简单等优点而得到研究人员的重视。Since the permanent magnet synchronous motor is a typical nonlinear, multivariable coupling system, its performance is affected by uncertainties such as external load disturbance, internal parameter changes, unmodeled objects, and nonlinear dynamic characteristics. In order to obtain a good dynamic response, some robust control strategies such as nonlinear control, adaptive control, H control, sliding mode control, etc. have been introduced into the research of AC servo system. Among them, the sliding mode control has attracted the attention of researchers because of its strong robustness, fast response, and simple physical implementation.

滑模控制作为一种变结构控制方法,当系统相轨迹在所设计的滑模面上运动时,对系统参数的不确定项以及外界干扰有着很强的鲁棒性。从20世纪90年代中期开始,先后有研究将滑模变结构控制应用到交流伺服系统的控制中。为了进一步解决传统滑模控制中存在的稳态误差问题,可以在滑模面的设计中引入积分项。滑模面中加入积分项可以让系统稳态误差减少、有效削弱抖振的效果、增强控制器的稳定性。Sliding mode control is a variable structure control method. When the system phase trajectory moves on the designed sliding mode surface, it has strong robustness to uncertain items of system parameters and external disturbances. Since the mid-1990s, there have been researches on applying sliding mode variable structure control to the control of AC servo system. In order to further solve the problem of steady-state error in the traditional sliding mode control, an integral term can be introduced in the design of the sliding mode surface. Adding the integral term to the sliding surface can reduce the steady-state error of the system, effectively weaken the chattering effect, and enhance the stability of the controller.

针对永磁同步电机的速度控制,现有技术所设计的积分滑模面S定义如下:For the speed control of permanent magnet synchronous motor, the integral sliding mode surface S designed in the prior art is defined as follows:

SS == ee (( tt )) ++ CC 11 ∫∫ 00 tt ee (( ττ )) dτdτ ,,

可以看出现有技术所设计的积分滑模面S是基于速度误差的整数阶积分,因此得到的积分滑模控制器也是整数阶的,在大的初始误差或执行器饱和时,会导致积分饱和效应以及暂态性能下降等问题。It can be seen that the integral sliding mode surface S designed in the prior art is based on the integer-order integral of the velocity error, so the obtained integral sliding mode controller is also of integer order, which will lead to integral saturation when the initial error is large or the actuator is saturated. effects and transient performance degradation.

本发明中,基于状态变量的分数阶微积分,构造了非线性分数阶积分滑模面,并设计一种新的分数阶积分滑模控制器,应用到永磁同步电机的速度跟随控制系统中,在保持传统整数阶积分滑模控制器的同时,有效的克服了积分饱和效应以及暂态性能下降等问题。In the present invention, based on the fractional calculus of the state variables, a nonlinear fractional integral sliding mode surface is constructed, and a new fractional integral sliding mode controller is designed, which is applied to the speed following control system of the permanent magnet synchronous motor , while maintaining the traditional integer-order integral sliding mode controller, it effectively overcomes the problems of integral saturation effect and transient performance degradation.

发明内容Contents of the invention

本发明所要解决的技术问题是提供一种能够在永磁同步电机控制系统存在参数摄动、负载扰动情况下,实现对电机的高性能速度跟随控制,并克服现有积分滑模控制中由于大的初始误差或执行器饱和所导致的积分饱和效应以及暂态性能下降的基于分数阶积分滑模的永磁同步电机速度控制方法及装置。The technical problem to be solved by the present invention is to provide a method that can realize high-performance speed following control of the motor under the condition of parameter perturbation and load disturbance in the permanent magnet synchronous motor control system, and overcome the large A permanent magnet synchronous motor speed control method and device based on a fractional integral sliding mode based on the integral saturation effect caused by the initial error of the initial error or the saturation of the actuator and the transient performance degradation.

本发明采用如下技术方案解决上述技术问题:本发明设计了一种基于分数阶积分滑模的永磁同步电机速度控制方法,包括如下具体步骤:The present invention adopts the following technical solutions to solve the above-mentioned technical problems: the present invention designs a permanent magnet synchronous motor speed control method based on fractional integral sliding mode, including the following specific steps:

步骤(1):采集永磁同步电机的三相电流ia、ib、ic,并进行Clark变换,转换成为α-β坐标系下的等效电流ia和iβStep (1): Collect the three-phase currents i a , i b , and i c of the permanent magnet synchronous motor, and perform Clark transformation to convert them into equivalent currents i a and i β in the α-β coordinate system;

步骤(2):通过位置传感器获得永磁同步电机的电机实际运行速度ω和转子位置θ;Step (2): Obtain the actual running speed ω and rotor position θ of the permanent magnet synchronous motor through the position sensor;

步骤(3):根据步骤(2)中的电机转子位置θ,将电机转子位置θ和步骤(1)中α-β坐标系下的等效电流ia和iβ进行PARK变换,产生d-q坐标系下的实际输出电流值id和iqStep (3): According to the motor rotor position θ in step (2), perform PARK transformation on the motor rotor position θ and the equivalent current i a and i β in the α-β coordinate system in step (1) to generate dq coordinates The actual output current values i d and i q under the system;

步骤(4):利用步骤(2)中的电机实际运行速度ω与速度给定值ωref比较后的差值e(t),构造分数阶积分滑模面S;Step (4): Use the difference e(t) between the actual running speed ω of the motor in step (2) and the given speed ω ref to construct the fractional-order integral sliding mode surface S;

步骤(5):根据步骤(4)中的分数阶积分滑模面S设计分数阶积分滑模转速控制器进行转速调节,从而得到d-q坐标系下q轴电流给定值

Figure BDA00003116383600021
;Step (5): According to the fractional-order integral sliding mode surface S in step (4), design a fractional-order integral sliding-mode speed controller to adjust the speed, so as to obtain the given value of the q-axis current in the dq coordinate system
Figure BDA00003116383600021
;

步骤(6):对q轴电流给定值

Figure BDA00003116383600033
与q轴实际输出电流值iq比较后的差值进行q轴电流调节处理,产生q轴电压输出值uq,对d轴电流给定值与d轴实际输出电流值id比较后的差值进行d轴电流调节处理,产生d轴电压输出值ud,将上述d-q坐标系下的电压输出值ud和uq进行PARK逆变换处理,从而得到α-β坐标系下的等效电压控制给定值uα和uβ,对所述等效电压控制给定值uα和uβ进行空间矢量脉宽调制,产生PWM信号,利用所述PWM信号控制三相逆变器产生三相电压信号,并利用所述三相电压信号控制永磁同步电机运行。Step (6): Set the value of the q-axis current
Figure BDA00003116383600033
The difference after comparison with the actual output current value i q of the q-axis is adjusted for the q-axis current to generate the q-axis voltage output value u q , and the given value of the d-axis current The difference between the d-axis actual output current value i d is compared with the d-axis current adjustment process to generate the d-axis voltage output value u d , and the above-mentioned voltage output values u d and u q in the dq coordinate system are subjected to PARK inverse transformation processing , so as to obtain the equivalent voltage control given values u α and u β in the α-β coordinate system, and perform space vector pulse width modulation on the equivalent voltage control given values u α and u β to generate a PWM signal, using The PWM signal controls the three-phase inverter to generate a three-phase voltage signal, and uses the three-phase voltage signal to control the operation of the permanent magnet synchronous motor.

作为本发明的一种优化方法:所述步骤(1)中的Clark变换表示为如下矩阵:As an optimization method of the present invention: the Clark transformation in the step (1) is expressed as the following matrix:

ii αα ii ββ == 22 33 11 -- 11 22 -- 11 22 00 33 22 -- 33 22 ii aa ii bb ii cc ..

作为本发明的一种优化方法:所述步骤(3)中的PARK变换表示为如下矩阵:As an optimization method of the present invention: the PARK transformation in the step (3) is expressed as the following matrix:

ii dd ii qq == coscos θθ sinsin θθ -- sinsin θθ coscos θθ ii αα ii ββ ..

作为本发明的一种优化方法:所述步骤(4)中构造的分数阶积分滑模面S用如下公式表示:As an optimization method of the present invention: the fractional-order integral sliding mode surface S constructed in the step (4) is expressed by the following formula:

SS == ee (( tt )) ++ CC 11 ·&Center Dot; DD. tt -- uu 00 ee (( tt )) ++ φφ (( tt )) == ee (( tt )) ++ CC 11 CC -- uu ee (( tt )) ++ φφ (( tt )) ,,

其中,e(t)定义为速度给定值ωref与电机实际转速ω比较后的差值,t定义为时间变量,滑模系数C1>0,

Figure BDA00003116383600035
定义为差值e(t)的分数阶积分值,u定义为分数阶积分滑模面的阶次,且0<u<1;Among them, e(t) is defined as the difference between the speed reference value ω ref and the actual motor speed ω, t is defined as a time variable, and the sliding mode coefficient C 1 >0,
Figure BDA00003116383600035
Defined as the fractional integral value of the difference e(t), u is defined as the order of the fractional integral sliding mode surface, and 0<u<1;

φ(t)定义为衰减函数,φ(t)=φ(0)e-t/n,n是衰减速度常数,且n>0,且

Figure BDA00003116383600046
Figure BDA00003116383600047
分别为差值e(t)在t=0时的初始值和分数阶积分值。φ(t) is defined as the decay function, φ(t)=φ(0)e -t/n , n is the decay rate constant, and n>0, and
Figure BDA00003116383600046
and
Figure BDA00003116383600047
are the initial value and fractional integral value of the difference e(t) at t=0, respectively.

作为本发明的一种优化方法:所述步骤(5)中设计的分数阶积分滑模转速控制器的模型为:As an optimization method of the present invention: the model of the fractional-order integral sliding mode speed controller designed in the step (5) is:

ii qq ** == 11 hh (( &omega;&omega; &CenterDot;&Center Dot; refref ++ g&omega;g&omega; refref -- gethe ge (( tt )) ++ CC 11 DD. 11 -- uu ee (( tt )) ++ &phi;&phi; &CenterDot;&Center Dot; (( tt )) ++ &epsiv;sgn&epsiv;sgn (( SS )) )) ,,

其中,电机第一特征系数

Figure BDA00003116383600042
电机第二特征系数P定义为永磁同步电机的极对数,J定义为永磁同步电机的转动惯量,ψf定义为永磁体与定子交链的磁链,B定义为阻尼系数;
Figure BDA00003116383600044
定义为速度给定值的导数,sgn(·)为符号函数,ε定义为切换增益,且ε>0。Among them, the first characteristic coefficient of the motor
Figure BDA00003116383600042
The second characteristic coefficient of the motor P is defined as the number of pole pairs of the permanent magnet synchronous motor, J is defined as the moment of inertia of the permanent magnet synchronous motor, ψ f is defined as the flux linkage between the permanent magnet and the stator, and B is defined as the damping coefficient;
Figure BDA00003116383600044
Defined as the derivative of the speed given value, sgn(·) is a sign function, ε is defined as switching gain, and ε>0.

作为本发明的一种优化方法:所述步骤(6)中PARK逆变换表示为如下矩阵:As an optimization method of the present invention: the PARK inverse transformation in the step (6) is expressed as the following matrix:

ii &alpha;&alpha; ii &beta;&beta; == coscos &theta;&theta; -- sinsin &theta;&theta; sinsin &theta;&theta; coscos &theta;&theta; ii dd ii qq ..

本发明还设计了一种基于分数阶积分滑模的永磁同步电机速度控制装置,包括电流采集模块、位置传感器、Clark变换模块、第一比较器、第二比较器、第三比较器、PARK变换模块、q轴电流控制器、d轴电流控制器、PARK逆变换模块、空间矢量脉宽调制模块、三相逆变器和永磁同步电机,还包括分数阶积分滑模转速控制器,其中:The present invention also designs a permanent magnet synchronous motor speed control device based on fractional-order integral sliding mode, including a current acquisition module, a position sensor, a Clark transformation module, a first comparator, a second comparator, a third comparator, a PARK Transformation module, q-axis current controller, d-axis current controller, PARK inverse transformation module, space vector pulse width modulation module, three-phase inverter and permanent magnet synchronous motor, also including fractional order integral sliding mode speed controller, where :

所述电流采集模块用于采集电机三相定子电流ia、ib和ic,并传输至Clark变换模块;The current collection module is used to collect the three-phase stator currents ia , ib and ic of the motor, and transmit them to the Clark transformation module;

所述Clark变换模块用于将电机三相定子电流ia、ib和ic变换为α-β坐标系下的等效电流ia和iβ,并将ia和iβ传输至PARK变换模块;The Clark transformation module is used to transform the motor three-phase stator currents i a , i b and i c into equivalent currents i a and i β in the α-β coordinate system, and transmit i a and i β to the PARK transformation module;

所述位置传感器获取永磁同步电机的电机实际运行速度ω和转子位置θ,并将所述电机转子位置θ分别传输至PARK变换模块和PARK逆变换模块,将所述电机运行速度ω传输至第一比较器;The position sensor obtains the motor actual running speed ω and the rotor position θ of the permanent magnet synchronous motor, and transmits the motor rotor position θ to the PARK transformation module and the PARK inverse transformation module respectively, and transmits the motor running speed ω to the first a comparator;

所述PARK变换模块将接收到的转子位置θ和α-β坐标系下的等效电流ia、iβ进行PARK变换,产生d-q坐标系下的实际输出电流值id和iq,并将d轴实际输出电流值id传输至第三比较器,将q轴实际输出电流值iq传输至第二比较器;The PARK transformation module performs PARK transformation on the received rotor position θ and the equivalent currents i a and i β in the α-β coordinate system to generate actual output current values i d and i q in the dq coordinate system, and The actual output current value i d of the d-axis is transmitted to the third comparator, and the actual output current value i q of the q-axis is transmitted to the second comparator;

所述第一比较器将速度给定值ωref与电机实际运行速度ω比较后的差值e(t)传输至分数阶积分滑模转速控制器,所述分数阶积分滑模转速控制器进行转速调节处理,输出d-q坐标系下q轴电流给定值并传输至第二比较器,所述q轴电流给定值

Figure BDA00003116383600052
与q轴实际输出电流值iq经过第二比较器比较后的差值输入至q轴电流控制器,所述q轴电流控制器产生q轴电压输出值uq,并传输至PARK逆变换模块;The first comparator transmits the difference e(t) between the given speed value ω ref and the actual operating speed ω of the motor to the fractional-order integral sliding mode speed controller, and the fractional-order integral sliding mode speed controller performs Speed adjustment processing, output q-axis current given value in dq coordinate system and transmitted to the second comparator, the q-axis current given value
Figure BDA00003116383600052
The difference between the actual output current value i q of the q-axis and the second comparator is input to the q-axis current controller, and the q-axis current controller generates the q-axis voltage output value u q and transmits it to the PARK inverse transformation module ;

d轴电流给定值

Figure BDA00003116383600053
与d轴实际输出电流值id经过第三比较器比较后的差值输入至d轴电流控制器,所述d轴电流控制器产生d轴电压输出值ud,并传输至PARK逆变换模块;d-axis current given value
Figure BDA00003116383600053
The difference between the d-axis actual output current value i d and the third comparator is input to the d-axis current controller, and the d-axis current controller generates the d-axis voltage output value u d and transmits it to the PARK inverse transformation module ;

所述PARK逆变换模块将接收到的q轴电压输出值uq和d轴电压输出值ud进行PARK逆变换,产生α-β坐标系下的等效电压控制给定值uα和uβ,并将uα和uβ传输至空间矢量脉宽调制模块;The PARK inverse transformation module performs PARK inverse transformation on the received q-axis voltage output value u q and d-axis voltage output value u d to generate equivalent voltage control given values u α and u β in the α-β coordinate system , and transmit u α and u β to the space vector pulse width modulation module;

所述空间矢量脉宽调制模块利用接收到的α-β坐标系下的等效电压控制给定值uα和uβ产生PWM信号,并传输至三相逆变器,所述PWM信号控制三相逆变器产生三相电压信号,三相逆变器利用所述三相电压信号控制永磁同步电机运行。The space vector pulse width modulation module uses the received equivalent voltage control given values u α and u β in the α-β coordinate system to generate a PWM signal and transmit it to the three-phase inverter. The PWM signal controls the three-phase The phase inverter generates three-phase voltage signals, and the three-phase inverter uses the three-phase voltage signals to control the operation of the permanent magnet synchronous motor.

本发明与现有技术相比具有如下优点:Compared with the prior art, the present invention has the following advantages:

1.本发明中所提出的基于分数阶积分滑模的永磁同步电机速度控制方法中,分数阶积分滑模转速控制器的阶次u可调,通过选取适当的阶次u可以获得最佳的控制性能;1. In the permanent magnet synchronous motor speed control method based on the fractional-order integral sliding mode proposed in the present invention, the order u of the fractional-order integral sliding mode speed controller is adjustable, and the optimum order u can be obtained by selecting an appropriate order u control performance;

2.本发明中所提出的基于分数阶积分滑模的永磁同步电机速度控制方法,可以克服传统整数阶积分滑模控制方法中,由于大的初始误差或执行器饱和所导致的积分饱和效应以及暂态性能下降;2. The permanent magnet synchronous motor speed control method based on fractional-order integral sliding mode proposed in the present invention can overcome the integral saturation effect caused by large initial error or actuator saturation in the traditional integer-order integral sliding mode control method and transient performance degradation;

3.本发明中所提出的基于分数阶积分滑模的永磁同步电机速度控制方法,当系统存在负载扰动和参数摄动时,具有更好的动态性能和抗扰动能力,以及更精确的速度跟随精度。3. The permanent magnet synchronous motor speed control method based on fractional integral sliding mode proposed in the present invention has better dynamic performance and anti-disturbance ability, and more accurate speed when the system has load disturbance and parameter perturbation Follow precision.

附图说明Description of drawings

图1是本发明的原理框图;Fig. 1 is a block diagram of the present invention;

图2是本发明中分数阶积分滑模转速控制器的的原理框图;Fig. 2 is the functional block diagram of the fractional order integral sliding mode speed controller in the present invention;

图3是本发明中分数阶积分滑模控制与传统积分滑模控制、PI控制的斜坡响应比较图;Fig. 3 is the slope response comparative figure of fractional order integral sliding mode control and traditional integral sliding mode control, PI control in the present invention;

图4为图3中a部分的局部放大图;Fig. 4 is a partial enlarged view of part a in Fig. 3;

图5是本发明中分数阶积分滑模控制与传统积分滑模控制的正弦响应比较图;Fig. 5 is the sinusoidal response comparative figure of fractional order integral sliding mode control and traditional integral sliding mode control in the present invention;

图6是图5中b部分的局部放大图;Fig. 6 is a partially enlarged view of part b in Fig. 5;

图7是本发明中分数阶积分滑模控制与传统积分滑模控制的正弦跟踪误差图。Fig. 7 is a sinusoidal tracking error diagram of the fractional-order integral sliding mode control in the present invention and the traditional integral sliding mode control.

具体实施方式Detailed ways

下面结合附图对本发明做进一步的详细说明:Below in conjunction with accompanying drawing, the present invention is described in further detail:

如图1所示,本发明设计了一种基于分数阶积分滑模的永磁同步电机速度控制方法,包括如下具体步骤:As shown in Figure 1, the present invention has designed a kind of permanent magnet synchronous motor speed control method based on fractional order integral sliding mode, comprises following concrete steps:

步骤(1):采集永磁同步电机的三相电流ia、ib、ic,并进行Clark变换,转换成为α-β坐标系下的等效电流ia和iβStep (1): Collect the three-phase currents i a , i b , and i c of the permanent magnet synchronous motor, and perform Clark transformation to convert them into equivalent currents i a and i β in the α-β coordinate system;

步骤(2):通过位置传感器获得永磁同步电机的电机实际运行速度ω和转子位置θ;Step (2): Obtain the actual running speed ω and rotor position θ of the permanent magnet synchronous motor through the position sensor;

步骤(3):根据步骤(2)中的电机转子位置θ,将电机转子位置θ和步骤(1)中α-β坐标系下的等效电流ia和iβ进行PARK变换,产生d-q坐标系下的实际输出电流值id和iqStep (3): According to the motor rotor position θ in step (2), perform PARK transformation on the motor rotor position θ and the equivalent current i a and i β in the α-β coordinate system in step (1) to generate dq coordinates The actual output current values i d and i q under the system;

步骤(4):利用步骤(2)中的电机实际运行速度ω与速度给定值ωref比较后的差值e(t),构造分数阶积分滑模面S;Step (4): Use the difference e(t) between the actual running speed ω of the motor in step (2) and the given speed ω ref to construct the fractional-order integral sliding mode surface S;

步骤(5):根据步骤(4)中的分数阶积分滑模面S设计分数阶积分滑模转速控制器进行转速调节,从而得到d-q坐标系下q轴电流给定值

Figure BDA00003116383600071
Step (5): According to the fractional-order integral sliding mode surface S in step (4), design a fractional-order integral sliding-mode speed controller to adjust the speed, so as to obtain the given value of the q-axis current in the dq coordinate system
Figure BDA00003116383600071

步骤(6):对q轴电流给定值

Figure BDA00003116383600072
与q轴实际输出电流值iq比较后的差值进行q轴电流调节处理,产生q轴电压输出值uq,对d轴电流给定值
Figure BDA00003116383600073
与d轴实际输出电流值id比较后的差值进行d轴电流调节处理,产生d轴电压输出值ud,将上述d-q坐标系下的电压输出值ud和uq进行PARK逆变换处理,从而得到α-β坐标系下的等效电压控制给定值uα和uβ,对所述等效电压控制给定值uα和uβ进行空间矢量脉宽调制,产生PWM信号,利用所述PWM信号控制三相逆变器产生三相电压信号,并利用所述三相电压信号控制永磁同步电机运行。Step (6): Set the value of the q-axis current
Figure BDA00003116383600072
The difference after comparison with the actual output current value i q of the q-axis is adjusted for the q-axis current to generate the q-axis voltage output value u q , and the given value of the d-axis current
Figure BDA00003116383600073
The difference between the d-axis actual output current value i d is compared with the d-axis current adjustment process to generate the d-axis voltage output value u d , and the above-mentioned voltage output values u d and u q in the dq coordinate system are subjected to PARK inverse transformation processing , so as to obtain the equivalent voltage control given values u α and u β in the α-β coordinate system, perform space vector pulse width modulation on the equivalent voltage control given values u α and u β to generate PWM signals, and use The PWM signal controls the three-phase inverter to generate a three-phase voltage signal, and uses the three-phase voltage signal to control the operation of the permanent magnet synchronous motor.

作为本发明的一种优化方法:所述步骤(1)中的Clark变换表示为如下矩阵:As an optimization method of the present invention: the Clark transformation in the step (1) is expressed as the following matrix:

ii &alpha;&alpha; ii &beta;&beta; == 22 33 11 -- 11 22 -- 11 22 00 33 22 -- 33 22 ii aa ii bb ii cc ..

作为本发明的一种优化方法:所述步骤(3)中的PARK变换表示为如下矩阵:As an optimization method of the present invention: the PARK transformation in the step (3) is expressed as the following matrix:

ii dd ii qq == coscos &theta;&theta; sinsin &theta;&theta; -- sinsin &theta;&theta; coscos &theta;&theta; ii &alpha;&alpha; ii &beta;&beta; ..

作为本发明的一种优化方法:所述步骤(4)中构造的分数阶积分滑模面S用如下公式表示:As an optimization method of the present invention: the fractional-order integral sliding mode surface S constructed in the step (4) is expressed by the following formula:

SS == ee (( tt )) ++ CC 11 &CenterDot;&Center Dot; DD. tt -- uu 00 ee (( tt )) ++ &phi;&phi; (( tt )) == ee (( tt )) ++ CC 11 CC -- uu ee (( tt )) ++ &phi;&phi; (( tt )) ,,

其中,e(t)定义为速度给定值ωref与电机实际转速ω比较后的差值,t定义为时间变量,滑模系数C1>0,

Figure BDA00003116383600084
定义为差值e(t)的分数阶积分值,u定义为分数阶积分滑模面的阶次,且0<u<1;Among them, e(t) is defined as the difference between the speed reference value ω ref and the actual motor speed ω, t is defined as a time variable, and the sliding mode coefficient C 1 >0,
Figure BDA00003116383600084
Defined as the fractional integral value of the difference e(t), u is defined as the order of the fractional integral sliding mode surface, and 0<u<1;

φ(t)定义为衰减函数,φ(t)=φ(0)e-t/n,n是衰减速度常数,且n>0,且

Figure BDA00003116383600085
Figure BDA00003116383600086
分别为差值e(t)在t=0时的初始值和分数阶积分值,综上所述,对任意的初始状态e(0),在t=0时刻有S=0,即系统的初始状态就处在滑模面上,消除了到达过程。φ(t) is defined as the decay function, φ(t)=φ(0)e -t/n , n is the decay rate constant, and n>0, and
Figure BDA00003116383600085
and
Figure BDA00003116383600086
are the initial value and fractional integral value of the difference e(t) at t=0, respectively. In summary, for any initial state e(0), there is S=0 at time t=0, that is, the system The initial state is on the sliding surface, eliminating the arrival process.

作为本发明的一种优化方法:所述步骤(5)中设计的分数阶积分滑模转速控制器的模型为:As an optimization method of the present invention: the model of the fractional-order integral sliding mode speed controller designed in the step (5) is:

ii qq ** == 11 hh (( &omega;&omega; &CenterDot;&Center Dot; refref ++ g&omega;g&omega; refref -- gethe ge (( tt )) ++ CC 11 DD. 11 -- uu ee (( tt )) ++ &phi;&phi; &CenterDot;&Center Dot; (( tt )) ++ &epsiv;sgn&epsiv;sgn (( SS )) )) ,,

其中,电机第一特征系数电机第二特征系数

Figure BDA00003116383600093
P定义为永磁同步电机的极对数,J定义为永磁同步电机的转动惯量,ψf定义为永磁体与定子交链的磁链,B定义为阻尼系数;
Figure BDA00003116383600094
定义为速度给定值的导数,sgn(·)为符号函数,ε定义为切换增益,且ε>0。Among them, the first characteristic coefficient of the motor The second characteristic coefficient of the motor
Figure BDA00003116383600093
P is defined as the number of pole pairs of the permanent magnet synchronous motor, J is defined as the moment of inertia of the permanent magnet synchronous motor, ψ f is defined as the flux linkage between the permanent magnet and the stator, and B is defined as the damping coefficient;
Figure BDA00003116383600094
Defined as the derivative of the speed given value, sgn(·) is a sign function, ε is defined as switching gain, and ε>0.

作为本发明的一种优化方法:所述步骤(6)中PARK逆变换表示为如下矩阵:As an optimization method of the present invention: the PARK inverse transformation in the step (6) is expressed as the following matrix:

ii &alpha;&alpha; ii &beta;&beta; == coscos &theta;&theta; -- sinsin &theta;&theta; sinsin &theta;&theta; coscos &theta;&theta; ii dd ii qq ..

在具体实施例中,我们设计分数阶积分滑模转速控制器的步骤如图2所示:In a specific embodiment, we design the steps of the fractional-order integral sliding mode speed controller as shown in Figure 2:

步骤a:永磁同步电机在d-q坐标系下的机械运动方程可写为Step a: The mechanical motion equation of the permanent magnet synchronous motor in the d-q coordinate system can be written as

&omega;&omega; &CenterDot;&Center Dot; ++ g&omega;g&omega; ++ &Gamma;&Gamma; == hihi qq ,,

其中,电机第三特征系数

Figure BDA00003116383600097
TL定义为永磁同步电机的负载转矩,考虑到电机运行过程中的参数不确定量,永磁同步电机的机械运动方程可进一步写为Among them, the third characteristic coefficient of the motor
Figure BDA00003116383600097
T L is defined as the load torque of the permanent magnet synchronous motor. Considering the parameter uncertainties during the operation of the motor, the mechanical motion equation of the permanent magnet synchronous motor can be further written as

&omega;&omega; &CenterDot;&CenterDot; ++ (( gg ++ &Delta;g&Delta; g )) &omega;&omega; ++ (( &Gamma;&Gamma; ++ &Delta;&Gamma;&Delta;&Gamma; )) == (( hh ++ &Delta;h&Delta;h )) ii qq ,,

其中,Δh定义为电机第一特征系数h的变化量,Δg定义为电机第二特征系数g的变化量,ΔΓ定义为电机第三特征系数Γ的变化量;Among them, Δh is defined as the variation of the first characteristic coefficient h of the motor, Δg is defined as the variation of the second characteristic coefficient g of the motor, and ΔΓ is defined as the variation of the third characteristic coefficient Γ of the motor;

对永磁同步电机速度给定值ωref与电机实际转速ω比较后的差值e(t)求导数Calculate the derivative of the difference e(t) between the given speed value ω ref of the permanent magnet synchronous motor and the actual speed ω of the motor

Figure BDA00003116383600101
Figure BDA00003116383600101

Figure BDA00003116383600102
Figure BDA00003116383600102

其中,过程函数扰动函数δ(t)=Δgω+ΔΓ+Γ-ΔhiqAmong them, the process function Disturbance function δ(t)=Δgω+ΔΓ+Γ-Δhi q ;

步骤b:对分数阶积分滑模面S求导数可得:Step b: Calculate the derivative of the fractional integral sliding mode surface S to get:

SS &CenterDot;&Center Dot; == ee &CenterDot;&Center Dot; (( tt )) ++ CC 11 DD. 11 -- uu ee (( tt )) ++ &phi;&phi; &CenterDot;&Center Dot; (( tt )) ;;

步骤c:当系统在滑模面上运动时有并利用步骤a中得到的

Figure BDA00003116383600107
则有:Step c: When the system moves on the sliding surface, there is And use the obtained in step a
Figure BDA00003116383600107
Then there are:

Figure BDA00003116383600108
Figure BDA00003116383600108

从而得到,

Figure BDA00003116383600109
thus get,
Figure BDA00003116383600109

步骤d:采用等速趋近率,设计分数阶积分滑模控制律如下:Step d: Using the constant velocity approach rate, design the fractional-order integral sliding mode control law as follows:

Figure BDA000031163836001010
Figure BDA000031163836001010

步骤e:通过如下公式求得q轴电流控制量输出为:Step e: The output of the q-axis current control quantity is obtained by the following formula:

ii qq ** == 11 hh (( &omega;&omega; &CenterDot;&Center Dot; refref ++ g&omega;g&omega; refref -- gethe ge (( tt )) ++ CC 11 DD. 11 -- uu ee (( tt )) ++ &phi;&phi; &CenterDot;&CenterDot; (( tt )) ++ &epsiv;sgn&epsiv;sgn (( SS )) )) ;;

步骤f:证明所设计的分数阶积分滑模转速控制器的稳定性,定义如下Lyapunov函数为:Step f: To prove the stability of the designed fractional-order integral sliding mode speed controller, the Lyapunov function is defined as follows:

VV == 11 22 SS 22 ,,

对上述Lyapunov函数边求导数,并利用步骤e中得到的q轴电流控制量输出,可得:Calculate the derivative of the above Lyapunov function, and use the output of the q-axis current control value obtained in step e, it can be obtained:

Figure BDA00003116383600111
Figure BDA00003116383600111

Figure BDA00003116383600112
Figure BDA00003116383600112

Figure BDA00003116383600113
Figure BDA00003116383600113

Figure BDA00003116383600114
Figure BDA00003116383600114

我们能够看出,当切换增益ε满足ε>|δ(t)|时,有

Figure BDA00003116383600116
则根据Lyapunov稳定性理论可知,此时所设计的分数阶积分滑模转速控制器是稳定的,系统能从任意初始状态在有限时间内达到切换面。We can see that when the switching gain ε satisfies ε>|δ(t)|, there is
Figure BDA00003116383600116
According to the Lyapunov stability theory, the fractional-order integral sliding mode speed controller designed at this time is stable, and the system can reach the switching surface within a limited time from any initial state.

本发明还设计了一种基于分数阶积分滑模的永磁同步电机速度控制装置,包括电流采集模块、位置传感器、Clark变换模块、第一比较器、第二比较器、第三比较器、PARK变换模块、q轴电流控制器、d轴电流控制器、PARK逆变换模块、空间矢量脉宽调制模块、三相逆变器和永磁同步电机,还包括分数阶积分滑模转速控制器,其中:The present invention also designs a permanent magnet synchronous motor speed control device based on fractional-order integral sliding mode, including a current acquisition module, a position sensor, a Clark transformation module, a first comparator, a second comparator, a third comparator, a PARK Transformation module, q-axis current controller, d-axis current controller, PARK inverse transformation module, space vector pulse width modulation module, three-phase inverter and permanent magnet synchronous motor, also includes fractional order integral sliding mode speed controller, where :

所述电流采集模块用于采集电机三相定子电流ia、ib和ic,并传输至Clark变换模块;The current collection module is used to collect the three-phase stator currents ia , ib and ic of the motor, and transmit them to the Clark transformation module;

所述Clark变换模块用于将电机三相定子电流ia、ib和ic变换为α-β坐标系下的等效电流ia和iβ,并将ia和iβ传输至PARK变换模块;The Clark transformation module is used to transform the motor three-phase stator currents i a , i b and i c into equivalent currents i a and i β in the α-β coordinate system, and transmit i a and i β to the PARK transformation module;

所述位置传感器获取永磁同步电机的电机实际运行速度ω和转子位置θ,并将所述电机转子位置θ分别传输至PARK变换模块和PARK逆变换模块,将所述电机运行速度ω传输至第一比较器;The position sensor obtains the motor actual running speed ω and the rotor position θ of the permanent magnet synchronous motor, and transmits the motor rotor position θ to the PARK transformation module and the PARK inverse transformation module respectively, and transmits the motor running speed ω to the first a comparator;

所述PARK变换模块将接收到的转子位置θ和α-β坐标系下的等效电流ia、iβ进行PARK变换,产生d-q坐标系下的实际输出电流值id和iq,并将d轴实际输出电流值id传输至第三比较器,将q轴实际输出电流值iq传输至第二比较器;The PARK transformation module performs PARK transformation on the received rotor position θ and the equivalent currents i a and i β in the α-β coordinate system to generate actual output current values i d and i q in the dq coordinate system, and The actual output current value i d of the d-axis is transmitted to the third comparator, and the actual output current value i q of the q-axis is transmitted to the second comparator;

所述第一比较器将速度给定值ωref与电机实际运行速度ω比较后的差值e(t)传输至分数阶积分滑模转速控制器,所述分数阶积分滑模转速控制器进行转速调节处理,输出d-q坐标系下q轴电流给定值

Figure BDA00003116383600121
,并传输至第二比较器,所述q轴电流给定值
Figure BDA00003116383600122
与q轴实际输出电流值iq经过第二比较器比较后的差值输入至q轴电流控制器,所述q轴电流控制器产生q轴电压输出值uq,并传输至PARK逆变换模块;The first comparator transmits the difference e(t) between the given speed value ω ref and the actual operating speed ω of the motor to the fractional-order integral sliding mode speed controller, and the fractional-order integral sliding mode speed controller performs Speed adjustment processing, output q-axis current given value in dq coordinate system
Figure BDA00003116383600121
, and transmitted to the second comparator, the q-axis current given value
Figure BDA00003116383600122
The difference between the actual output current value i q of the q-axis and the second comparator is input to the q-axis current controller, and the q-axis current controller generates the q-axis voltage output value u q and transmits it to the PARK inverse transformation module ;

d轴电流给定值

Figure BDA00003116383600123
与d轴实际输出电流值id经过第三比较器比较后的差值输入至d轴电流控制器,所述d轴电流控制器产生d轴电压输出值ud,并传输至PARK逆变换模块;d-axis current given value
Figure BDA00003116383600123
The difference between the d-axis actual output current value i d and the third comparator is input to the d-axis current controller, and the d-axis current controller generates the d-axis voltage output value u d and transmits it to the PARK inverse transformation module ;

所述PARK逆变换模块将接收到的q轴电压输出值uq和d轴电压输出值ud进行PARK逆变换,产生α-β坐标系下的等效电压控制给定值uα和uβ,并将uα和uβ传输至空间矢量脉宽调制模块;The PARK inverse transformation module performs PARK inverse transformation on the received q-axis voltage output value u q and d-axis voltage output value u d to generate equivalent voltage control given values u α and u β in the α-β coordinate system , and transmit u α and u β to the space vector pulse width modulation module;

所述空间矢量脉宽调制模块利用接收到的α-β坐标系下的等效电压控制给定值uα和uβ产生PWM信号,并传输至三相逆变器,所述PWM信号控制三相逆变器产生三相电压信号,三相逆变器利用所述三相电压信号控制永磁同步电机运行。The space vector pulse width modulation module uses the received equivalent voltage control given values u α and u β in the α-β coordinate system to generate a PWM signal and transmit it to the three-phase inverter. The PWM signal controls the three-phase The phase inverter generates three-phase voltage signals, and the three-phase inverter uses the three-phase voltage signals to control the operation of the permanent magnet synchronous motor.

如图3所示,为本发明中分数阶积分滑模控制与传统积分滑模控制、PI控制的斜坡响应比较图;As shown in Figure 3, it is the slope response comparison diagram of fractional order integral sliding mode control and traditional integral sliding mode control, PI control in the present invention;

图4为图3中a部分的局部放大图;Fig. 4 is a partial enlarged view of part a in Fig. 3;

如图5所示,为本发明中分数阶积分滑模控制与传统积分滑模控制的正弦响应比较图;As shown in Figure 5, it is the sinusoidal response comparison diagram of fractional-order integral sliding mode control and traditional integral sliding mode control in the present invention;

图6是图5中b部分的局部放大图;Fig. 6 is a partially enlarged view of part b in Fig. 5;

如图7所示,为本发明中分数阶积分滑模控制与传统积分滑模控制的正弦跟踪误差图;As shown in Figure 7, it is the sinusoidal tracking error diagram of fractional-order integral sliding mode control and traditional integral sliding mode control in the present invention;

从图3-图7中可以看出,当系统存在负载扰动时,所提方法比传统积分滑模控制以及常规PI控制具有更好的动态性能,更强的抗扰动能力,以及更精确的速度跟随精度。It can be seen from Fig. 3-Fig. 7 that when there is load disturbance in the system, the proposed method has better dynamic performance, stronger anti-disturbance ability, and more accurate speed than traditional integral sliding mode control and conventional PI control. Follow precision.

以上实施例仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明保护范围之内。The above embodiments are only to illustrate the technical ideas of the present invention, and can not limit the protection scope of the present invention with this. All technical ideas proposed in accordance with the present invention, any changes made on the basis of technical solutions, all fall within the protection scope of the present invention. Inside.

Claims (7)

1. the permagnetic synchronous motor method for control speed based on the fractional order integration sliding formwork is characterized in that, comprises following concrete steps:
Step (1): the three-phase current i that gathers permagnetic synchronous motor a, i b, i c, and carry out the Clark conversion, be converted into the equivalent current i under the alpha-beta coordinate system aAnd i β
Step (2): the motor actual motion speed omega and the rotor position that obtain permagnetic synchronous motor by position transducer;
Step (3): according to the motor rotor position θ in the step (2), with the equivalent current i under the alpha-beta coordinate system in motor rotor position θ and the step (1) aAnd i βCarry out the PARK conversion, produce the actual output current value i under the d-q coordinate system dAnd i q
Step (4): utilize motor actual motion speed omega and speed set-point ω in the step (2) RefDifference e (t) relatively, structure fractional order integration sliding-mode surface S;
Step (5): carry out rotational speed regulation according to the design of the fractional order integration sliding-mode surface S in the step (4) fractional order integration sliding formwork rotational speed governor, thereby obtain q shaft current set-point under the d-q coordinate system
Figure FDA00003116383500011
Step (6): to q shaft current set-point
Figure FDA00003116383500012
With q axle actual output current value i qDifference is relatively carried out the q shaft current and is regulated processing, produces q shaft voltage output valve u q, to d shaft current set-point
Figure FDA00003116383500013
With d axle actual output current value i dDifference is relatively carried out the d shaft current and is regulated processing, produces d shaft voltage output valve u d, with the voltage output value u under the above-mentioned d-q coordinate system dAnd u qCarry out the PARK inversion process, thereby obtain the equivalent voltage control set-point u under the alpha-beta coordinate system αAnd u β, to described equivalent voltage control set-point u αAnd u βCarry out space vector pulse width modulation, produce pwm signal, utilize described pwm signal control three-phase inverter to produce three-phase voltage signal, and utilize the operation of described three-phase voltage signal control permagnetic synchronous motor.
2. the permagnetic synchronous motor method for control speed based on the fractional order integration sliding formwork according to claim 1 is characterized in that, the Clark conversion in the described step (1) is expressed as matrix:
i &alpha; i &beta; = 2 3 1 - 1 2 - 1 2 0 3 2 - 3 2 i a i b i c .
3. the permagnetic synchronous motor method for control speed based on the fractional order integration sliding formwork according to claim 1 is characterized in that, the PARK conversion in the described step (3) is expressed as matrix:
i d i q = cos &theta; sin &theta; - sin &theta; cos &theta; i &alpha; i &beta; .
4. the permagnetic synchronous motor method for control speed based on the fractional order integration sliding formwork according to claim 1 is characterized in that, the fractional order integration sliding-mode surface S of structure represents with following formula in the described step (4):
S = e ( t ) + C 1 &CenterDot; D t - u 0 e ( t ) + &phi; ( t ) = e ( t ) + C 1 C - u e ( t ) + &phi; ( t ) ,
Wherein, e (t) is defined as speed set-point ω RefWith the difference of motor actual speed ω after relatively, t is defined as time variable, sliding formwork coefficient C 10,
Figure FDA00003116383500025
Be defined as the fractional order integration value of difference e (t), u is defined as the order of fractional order integration sliding-mode surface, and 0<u<1;
φ (t) is defined as attenuation function, φ (t)=φ (0) e -t/n, n is rate of decay constant, and n〉and 0, and
Figure FDA00003116383500026
With
Figure FDA00003116383500027
Be respectively initial value and the fractional order integration value of difference e (t) when t=0.
5. the permagnetic synchronous motor method for control speed based on the fractional order integration sliding formwork according to claim 1 is characterized in that, the model of the fractional order integration sliding formwork rotational speed governor of design is in the described step (5):
i q * = 1 h ( &omega; &CenterDot; ref + g&omega; ref - ge ( t ) + C 1 D 1 - u e ( t ) + &phi; &CenterDot; ( t ) + &epsiv;sgn ( S ) ) ,
Wherein, motor first characteristic coefficient Motor second characteristic coefficient P is defined as the number of pole-pairs of permagnetic synchronous motor, and J is defined as the moment of inertia of permagnetic synchronous motor, ψ fBe defined as the magnetic linkage of permanent magnet and stator interlinkage, B is defined as damping coefficient;
Figure FDA00003116383500033
Be defined as the derivative of speed set-point, sgn () is sign function, and ε is defined as handoff gain, and ε〉0.
6. the permagnetic synchronous motor method for control speed based on the fractional order integration sliding formwork according to claim 1 is characterized in that, the PARK inverse transformation is expressed as matrix in the described step (6):
i &alpha; i &beta; = cos &theta; - sin &theta; sin &theta; cos &theta; i d i q .
7. permagnetic synchronous motor speed control unit based on the fractional order integration sliding formwork, comprise current acquisition module, position transducer, Clark conversion module, first comparator, second comparator, the 3rd comparator, PARK conversion module, q shaft current controller, d shaft current controller, PARK inverse transform module, space vector pulse width modulation module, three-phase inverter and permagnetic synchronous motor, it is characterized in that, also comprise fractional order integration sliding formwork rotational speed governor, wherein:
Described current acquisition module is used for gathering motor threephase stator current i a, i bAnd i c, and transfer to the Clark conversion module;
Described Clark conversion module is used for motor threephase stator current i a, i bAnd i cBe transformed to the equivalent current i under the alpha-beta coordinate system aAnd i β, and with i aAnd i βTransfer to the PARK conversion module;
Described position transducer obtains motor actual motion speed omega and the rotor position of permagnetic synchronous motor, and described motor rotor position θ transferred to PARK conversion module and PARK inverse transform module respectively, described motor speed of service ω is transferred to first comparator;
Described PARK conversion module is with the rotor position that receives and the equivalent current i under the alpha-beta coordinate system a, i βCarry out the PARK conversion, produce the actual output current value i under the d-q coordinate system dAnd i q, and with d axle actual output current value i dTransfer to the 3rd comparator, with q axle actual output current value i qTransfer to second comparator;
Described first comparator is with speed set-point ω RefTransfer to fractional order integration sliding formwork rotational speed governor with the difference e (t) of motor actual motion speed omega after relatively, described fractional order integration sliding formwork rotational speed governor carries out rotational speed regulation to be handled, q shaft current set-point under the output d-q coordinate system
Figure FDA00003116383500041
And transfer to second comparator, described q shaft current set-point With q axle actual output current value i qInput to q shaft current controller through the difference of second comparator after relatively, described q shaft current controller produces q shaft voltage output valve u q, and transfer to the PARK inverse transform module;
D shaft current set-point
Figure FDA00003116383500043
With d axle actual output current value i dInput to d shaft current controller through the difference of the 3rd comparator after relatively, described d shaft current controller produces d shaft voltage output valve u d, and transfer to the PARK inverse transform module;
Described PARK inverse transform module is with the q shaft voltage output valve u that receives qWith d shaft voltage output valve u dCarry out the PARK inverse transformation, produce the equivalent voltage control set-point u under the alpha-beta coordinate system αAnd u β, and with u αAnd u βTransfer to the space vector pulse width modulation module;
Equivalent voltage control set-point u under the alpha-beta coordinate system that the utilization of described space vector pulse width modulation module receives αAnd u βProduce pwm signal, and transfer to three-phase inverter, described pwm signal control three-phase inverter produces three-phase voltage signal, and three-phase inverter utilizes the operation of described three-phase voltage signal control permagnetic synchronous motor.
CN201310153597.9A 2013-04-27 2013-04-27 Fractional integral sliding mode-based speed control method and device for permanent magnet synchronous motor Expired - Fee Related CN103236814B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310153597.9A CN103236814B (en) 2013-04-27 2013-04-27 Fractional integral sliding mode-based speed control method and device for permanent magnet synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310153597.9A CN103236814B (en) 2013-04-27 2013-04-27 Fractional integral sliding mode-based speed control method and device for permanent magnet synchronous motor

Publications (2)

Publication Number Publication Date
CN103236814A true CN103236814A (en) 2013-08-07
CN103236814B CN103236814B (en) 2015-07-01

Family

ID=48884837

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310153597.9A Expired - Fee Related CN103236814B (en) 2013-04-27 2013-04-27 Fractional integral sliding mode-based speed control method and device for permanent magnet synchronous motor

Country Status (1)

Country Link
CN (1) CN103236814B (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104270054A (en) * 2014-10-24 2015-01-07 哈尔滨工业大学 Anti-rest Windup smooth nonsingular terminal sliding mode control method for permanent magnet synchronous motor based on relative order
CN104639009A (en) * 2013-11-11 2015-05-20 北京动力源科技股份有限公司 Vector control frequency converter and control method and device thereof
CN105182741A (en) * 2015-07-15 2015-12-23 北京理工大学 Non-overshot fractional order time-varying sliding mode control method
CN105337546A (en) * 2015-12-09 2016-02-17 南京工程学院 Permanent magnet synchronous motor control device and method based on variable-order fractional-order sliding mold
CN105549383A (en) * 2016-02-29 2016-05-04 南京工程学院 Linear motor precision trajectory tracking device and method
CN105608266A (en) * 2015-12-10 2016-05-25 河南理工大学 Fractional calculus-based PWM rectifier modeling method
CN105786021A (en) * 2016-05-27 2016-07-20 天津工业大学 Quadrotor unmanned aerial vehicle control method
CN105827168A (en) * 2016-05-10 2016-08-03 华中科技大学 PMSM control method and system based on sliding mode observation
CN106655938A (en) * 2017-01-11 2017-05-10 华中科技大学 Permanent magnet synchronous machine control system and permanent magnet synchronous machine control method based on high-order sliding mode method
CN107070341A (en) * 2017-03-24 2017-08-18 中国科学院长春光学精密机械与物理研究所 Permagnetic synchronous motor method for suppressing torque ripple based on Robust Iterative Learning Control
CN108008653A (en) * 2017-11-14 2018-05-08 江西理工大学 A kind of direction Control System and process equipment towards repeating motion
CN108429508A (en) * 2018-03-13 2018-08-21 西南石油大学 Design method and control system of fractional order sliding mode controller for switched reluctance motor
CN108712119A (en) * 2018-04-09 2018-10-26 江苏大学 Induction-type bearingless motor anti-disturbance control system based on sliding moding structure
CN109445448A (en) * 2018-10-31 2019-03-08 中国人民解放军战略支援部队航天工程大学 A kind of wheel control moonlet Adaptive Integral Sliding Mode Attitude controller
CN111355409A (en) * 2020-03-13 2020-06-30 南瑞集团有限公司 A control method, system and storage medium of a permanent magnet synchronous motor
CN111711396A (en) * 2020-04-13 2020-09-25 山东科技大学 Tuning Method of Speed Loop Control Parameters of Permanent Magnet Synchronous Motor Based on Fractional Sliding Mode Controller
CN111865169A (en) * 2020-07-21 2020-10-30 南京航空航天大学 A Model-Free Integral Sliding Mode Control Method for Ultrasonic Motor Servo System
CN111987955A (en) * 2020-09-01 2020-11-24 长沙贝士德电气科技有限公司 Self-adaptive sliding mode control system and method for salient pole type permanent magnet synchronous motor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009017706A (en) * 2007-07-05 2009-01-22 Aisin Seiki Co Ltd Motor control device and motor control method
US20130038266A1 (en) * 2011-08-10 2013-02-14 Samsung Electronics Co., Ltd. Apparatus and method for controlling actuator
CN102969968A (en) * 2012-11-15 2013-03-13 西安理工大学 Permanent magnet synchronous motor control method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009017706A (en) * 2007-07-05 2009-01-22 Aisin Seiki Co Ltd Motor control device and motor control method
US20130038266A1 (en) * 2011-08-10 2013-02-14 Samsung Electronics Co., Ltd. Apparatus and method for controlling actuator
CN102969968A (en) * 2012-11-15 2013-03-13 西安理工大学 Permanent magnet synchronous motor control method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
张碧陶等: "基于分数阶滑模控制技术的永磁同步电机控制", 《控制理论与应用》 *
石燕宏等: "Clark和Park变换在DSP上的实现", 《基础自动化》 *

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104639009A (en) * 2013-11-11 2015-05-20 北京动力源科技股份有限公司 Vector control frequency converter and control method and device thereof
CN104639009B (en) * 2013-11-11 2018-02-06 北京动力源科技股份有限公司 A kind of control method of vector control type frequency converter, device and a kind of vector control type frequency converter
CN104270054A (en) * 2014-10-24 2015-01-07 哈尔滨工业大学 Anti-rest Windup smooth nonsingular terminal sliding mode control method for permanent magnet synchronous motor based on relative order
CN104270054B (en) * 2014-10-24 2016-09-21 哈尔滨工业大学 Permagnetic synchronous motor Anti-reset Windup based on Relative order smooths non-singular terminal sliding-mode control
CN105182741A (en) * 2015-07-15 2015-12-23 北京理工大学 Non-overshot fractional order time-varying sliding mode control method
CN105337546A (en) * 2015-12-09 2016-02-17 南京工程学院 Permanent magnet synchronous motor control device and method based on variable-order fractional-order sliding mold
CN105337546B (en) * 2015-12-09 2018-01-23 南京工程学院 Based on the permanent magnet synchronous motor control device and method for becoming order fractional order sliding formwork
CN105608266A (en) * 2015-12-10 2016-05-25 河南理工大学 Fractional calculus-based PWM rectifier modeling method
CN105608266B (en) * 2015-12-10 2018-10-02 河南理工大学 PWM rectifier modeling method based on fractional calculus
CN105549383A (en) * 2016-02-29 2016-05-04 南京工程学院 Linear motor precision trajectory tracking device and method
CN105549383B (en) * 2016-02-29 2019-04-09 南京工程学院 Linear motor precision trajectory tracking device and method
CN105827168A (en) * 2016-05-10 2016-08-03 华中科技大学 PMSM control method and system based on sliding mode observation
CN105827168B (en) * 2016-05-10 2018-06-12 华中科技大学 Method for controlling permanent magnet synchronous motor and system based on sliding formwork observation
CN105786021A (en) * 2016-05-27 2016-07-20 天津工业大学 Quadrotor unmanned aerial vehicle control method
CN105786021B (en) * 2016-05-27 2018-06-12 天津工业大学 A kind of quadrotor unmanned aerial vehicle (UAV) control method
CN106655938A (en) * 2017-01-11 2017-05-10 华中科技大学 Permanent magnet synchronous machine control system and permanent magnet synchronous machine control method based on high-order sliding mode method
CN107070341A (en) * 2017-03-24 2017-08-18 中国科学院长春光学精密机械与物理研究所 Permagnetic synchronous motor method for suppressing torque ripple based on Robust Iterative Learning Control
CN108008653A (en) * 2017-11-14 2018-05-08 江西理工大学 A kind of direction Control System and process equipment towards repeating motion
CN108429508A (en) * 2018-03-13 2018-08-21 西南石油大学 Design method and control system of fractional order sliding mode controller for switched reluctance motor
CN108429508B (en) * 2018-03-13 2020-11-24 西南石油大学 Design method and control system of fractional-order sliding mode controller for switched reluctance motor
CN108712119A (en) * 2018-04-09 2018-10-26 江苏大学 Induction-type bearingless motor anti-disturbance control system based on sliding moding structure
CN109445448A (en) * 2018-10-31 2019-03-08 中国人民解放军战略支援部队航天工程大学 A kind of wheel control moonlet Adaptive Integral Sliding Mode Attitude controller
CN109445448B (en) * 2018-10-31 2021-08-17 中国人民解放军战略支援部队航天工程大学 An Adaptive Integral Sliding Mode Attitude Controller for Wheel Control Small Satellites
CN111355409A (en) * 2020-03-13 2020-06-30 南瑞集团有限公司 A control method, system and storage medium of a permanent magnet synchronous motor
CN111711396A (en) * 2020-04-13 2020-09-25 山东科技大学 Tuning Method of Speed Loop Control Parameters of Permanent Magnet Synchronous Motor Based on Fractional Sliding Mode Controller
CN111865169A (en) * 2020-07-21 2020-10-30 南京航空航天大学 A Model-Free Integral Sliding Mode Control Method for Ultrasonic Motor Servo System
CN111987955A (en) * 2020-09-01 2020-11-24 长沙贝士德电气科技有限公司 Self-adaptive sliding mode control system and method for salient pole type permanent magnet synchronous motor

Also Published As

Publication number Publication date
CN103236814B (en) 2015-07-01

Similar Documents

Publication Publication Date Title
CN103236814B (en) Fractional integral sliding mode-based speed control method and device for permanent magnet synchronous motor
CN109560736B (en) Permanent magnet synchronous motor control method based on second-order terminal sliding mode
CN104242769B (en) Permanent magnet synchronous motor speed composite control method based on continuous terminal slip form technology
CN103117703B (en) A kind of permagnetic synchronous motor sensorless strategy method and control device thereof
CN104953915B (en) A kind of permagnetic synchronous motor sliding mode control strategy based on Reaching Law
CN110022105A (en) Permanent magnet synchronous motor predictive-current control method and system based on FOSMC
CN100420147C (en) Control system of permanent magnet synchronous motor based on adaptive sliding mode variable structure
CN209844868U (en) Dead beat current prediction control system of permanent magnet synchronous motor
CN103051274B (en) Variable damping-based passive control method for two-degree-of-freedom permanent magnetic synchronous motor
CN102684592B (en) Torque and flux linkage control method for permanent synchronous motor
CN106487304A (en) A kind of permagnetic synchronous motor method for estimating state based on sliding formwork back-EMF observer device
CN104393798B (en) A kind of control method of electric bicycle based on Integral Sliding Mode and disturbance observer
CN105827168A (en) PMSM control method and system based on sliding mode observation
CN105790660A (en) Rotary speed adaptive robust control system and method for ultra-high-speed permanent magnet synchronous motor
CN105262393B (en) A kind of fault-tolerant magneto method for control speed using novel transition process
CN110752806A (en) Sliding mode rotating speed control method of built-in permanent magnet synchronous motor with improved approach law
CN103199787A (en) Load disturbance resistant method and device thereof based on hybrid regulator
CN108377117B (en) Compound current control system and method for permanent magnet synchronous motor based on predictive control
CN105337546B (en) Based on the permanent magnet synchronous motor control device and method for becoming order fractional order sliding formwork
CN108258946A (en) A kind of Speed Sensorless Control Method of permanent magnetic linear synchronous motor
CN101860294A (en) A debounce method for sliding mode control of permanent magnet synchronous motor
CN106788054A (en) A kind of Speed Sensorless Control Method based on rotation high-frequency signal injection and fuzzy PI hybrid control
CN104967382A (en) A sensorless control method for permanent magnet synchronous motor
CN104104301A (en) Passivity-based control method for speed-senseless interpolating permanent magnet synchronous motor
CN103895832A (en) Ship electric servo fin and wing fin rolling stabilization intelligent vector control method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150701

Termination date: 20160427