CN103233946B - A kind of Pneumatic Position Servo System backstepping control method - Google Patents

A kind of Pneumatic Position Servo System backstepping control method Download PDF

Info

Publication number
CN103233946B
CN103233946B CN201310116468.2A CN201310116468A CN103233946B CN 103233946 B CN103233946 B CN 103233946B CN 201310116468 A CN201310116468 A CN 201310116468A CN 103233946 B CN103233946 B CN 103233946B
Authority
CN
China
Prior art keywords
msub
mover
mrow
mtd
mtr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310116468.2A
Other languages
Chinese (zh)
Other versions
CN103233946A (en
Inventor
任海鹏
黄超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xi'an Bit Lianchuang Technology Co ltd
Original Assignee
Xian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Technology filed Critical Xian University of Technology
Priority to CN201310116468.2A priority Critical patent/CN103233946B/en
Publication of CN103233946A publication Critical patent/CN103233946A/en
Application granted granted Critical
Publication of CN103233946B publication Critical patent/CN103233946B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Feedback Control In General (AREA)

Abstract

The invention discloses a kind of Pneumatic Position Servo System backstepping control method, the method is specifically implemented according to following steps: step 1, set up the model of controlled Pneumatic Position Servo System, and each above-mentioned variable parameter detects in real time respectively by respective detecting instrument and obtains; Negligible friction, obtain three rank linear models of pneumatic system, control objectives is the desired output made required by Model output tracking; Step 2, set up the Backstepping Controller model of Pneumatic Position Servo System; Step 3, estimate Pneumatic Position Servo System unknown parameters ' value, by the numerical value input computer estimating to obtain, for the parameter of real-time update Backstepping Controller model, the signal of computer control amplifier exports, the displacement amount of real-time regulating piston.The inventive method does not need to increase Pressure testing hardware or algorithm, can obtain the control accuracy of better tracking effect and Geng Gao.

Description

Reverse control method for pneumatic position servo system
Technical Field
The invention belongs to the technical field of high-precision position tracking control of a pneumatic system, and relates to a backstepping control method of a pneumatic position servo system.
Background
The pneumatic system takes compressed air as a working medium, is fireproof, explosion-proof and electromagnetic interference resistant, is not influenced by radioactive rays and noise, is insensitive to vibration and impact, has the advantages of long service life, safety, cleanness, high power-to-weight ratio and the like, and is widely applied to various fields.
However, due to the compressibility of the gas, the complex flow characteristics of the gas through the valve port, and the relatively large friction force between the cylinder and the slider, these factors make the high-precision tracking control of the pneumatic position servo system difficult.
Disclosure of Invention
The invention aims to provide a backstepping control method of a pneumatic position servo system, which solves the problem that the tracking control precision of the pneumatic position servo system in the prior art is not high enough.
The technical scheme adopted by the invention is that the method for controlling the backstepping of the pneumatic position servo system is implemented according to the following steps:
step 1, establishing a model of a controlled pneumatic position servo system
The mathematical model of the proportional valve control pneumatic position servo system is as follows (1):
<math> <mrow> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mover> <mi>m</mi> <mo>&CenterDot;</mo> </mover> <mi>a</mi> </msub> <mo>=</mo> <msub> <mi>f</mi> <mi>a</mi> </msub> <mrow> <mo>(</mo> <mi>u</mi> <mo>,</mo> <msub> <mi>p</mi> <mi>a</mi> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>m</mi> <mo>&CenterDot;</mo> </mover> <mi>b</mi> </msub> <mo>=</mo> <msub> <mi>f</mi> <mi>b</mi> </msub> <mrow> <mo>(</mo> <mi>u</mi> <mo>,</mo> <msub> <mi>p</mi> <mi>b</mi> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>KRT</mi> <msub> <mover> <mi>m</mi> <mo>&CenterDot;</mo> </mover> <mi>a</mi> </msub> <mo>=</mo> <mi>K</mi> <msub> <mi>p</mi> <mi>a</mi> </msub> <msub> <mi>A</mi> <mi>a</mi> </msub> <mover> <mi>y</mi> <mo>&CenterDot;</mo> </mover> <mo>+</mo> <msub> <mi>A</mi> <mi>a</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>y</mi> <mn>0</mn> </msub> <mo>+</mo> <mi>y</mi> <mo>)</mo> </mrow> <msub> <mover> <mi>p</mi> <mo>&CenterDot;</mo> </mover> <mi>a</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mi>KRT</mi> <msub> <mover> <mi>m</mi> <mo>&CenterDot;</mo> </mover> <mi>b</mi> </msub> <mo>=</mo> <mi>K</mi> <msub> <mi>p</mi> <mi>b</mi> </msub> <msub> <mi>A</mi> <mi>b</mi> </msub> <mover> <mi>y</mi> <mo>&CenterDot;</mo> </mover> <mo>+</mo> <msub> <mi>A</mi> <mi>b</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>y</mi> <mn>0</mn> </msub> <mo>-</mo> <mi>y</mi> <mo>)</mo> </mrow> <msub> <mover> <mi>p</mi> <mo>&CenterDot;</mo> </mover> <mi>b</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mi>M</mi> <mover> <mi>y</mi> <mrow> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mrow> </mover> <mo>=</mo> <msub> <mi>p</mi> <mi>a</mi> </msub> <msub> <mi>A</mi> <mi>a</mi> </msub> <mo>-</mo> <msub> <mi>p</mi> <mi>b</mi> </msub> <msub> <mi>A</mi> <mi>b</mi> </msub> <mo>-</mo> <msub> <mi>F</mi> <mi>f</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </math>
whereinAndmass flow rates of gas flowing into the A side and B side of the cylinder, u is a control signal, and paAnd pbThe pressure of the side A and the side B of the cylinder, AaAnd AbAre respectively cylindersThe sectional areas of the pistons at the A side and the B side, y is the piston displacement, y0Is the piston initial position, M is the slide mass, FfIs friction force, fa(. and f)b() are respectively nonlinear functions related to the internal and external pressures of the side A and the side B of the cylinder, K, R and T are correlation constants, and the piston displacement y is obtained by a displacement detector;
neglecting the friction force, and linearizing the nonlinear function of the formula (1), a third-order linear model of the pneumatic system is obtained as the following formula (2):
<math> <mrow> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mover> <mi>x</mi> <mo>&CenterDot;</mo> </mover> <mn>1</mn> </msub> <mo>=</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>x</mi> <mo>&CenterDot;</mo> </mover> <mn>2</mn> </msub> <mo>=</mo> <msub> <mi>x</mi> <mn>3</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>x</mi> <mo>&CenterDot;</mo> </mover> <mn>3</mn> </msub> <mo>=</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo>+</mo> <msub> <mi>a</mi> <mn>3</mn> </msub> <msub> <mi>x</mi> <mn>3</mn> </msub> <mo>+</mo> <mi>bu</mi> </mtd> </mtr> <mtr> <mtd> <mi>y</mi> <mo>=</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein x1,x2,x3Is the system state, u is the control input, a1,a2,a3B is an unknown model parameter, and the control objective is to make the model output y track the desired output y requiredd
Step 2, establishing a backstepping controller model of the pneumatic position servo system
Selecting a backstepping controller from the pneumatic position servo system model formula (2) obtained in the previous step, wherein the control model of the backstepping controller is as follows (3):
<math> <mrow> <msup> <mi>u</mi> <mo>&prime;</mo> </msup> <mo>=</mo> <mfrac> <mn>1</mn> <mover> <mi>b</mi> <mo>^</mo> </mover> </mfrac> <mrow> <mo>(</mo> <mo>-</mo> <msub> <mi>z</mi> <mn>2</mn> </msub> <mo>-</mo> <msub> <mover> <mi>a</mi> <mo>^</mo> </mover> <mn>1</mn> </msub> <msub> <mi>z</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mover> <mi>a</mi> <mo>^</mo> </mover> <mn>1</mn> </msub> <msub> <mi>y</mi> <mi>d</mi> </msub> <mo>-</mo> <msub> <mover> <mi>a</mi> <mo>^</mo> </mover> <mn>2</mn> </msub> <msub> <mi>z</mi> <mn>2</mn> </msub> <mo>-</mo> <msub> <mover> <mi>a</mi> <mo>^</mo> </mover> <mn>2</mn> </msub> <msub> <mi>&alpha;</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mover> <mi>a</mi> <mo>^</mo> </mover> <mn>3</mn> </msub> <msub> <mi>&alpha;</mi> <mn>2</mn> </msub> <mo>+</mo> <msub> <mover> <mi>&alpha;</mi> <mo>&CenterDot;</mo> </mover> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>,</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein <math> <mrow> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>z</mi> <mn>1</mn> </msub> <mo>=</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>y</mi> <mi>d</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>z</mi> <mn>2</mn> </msub> <mo>=</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo>-</mo> <msub> <mi>&alpha;</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>z</mi> <mn>3</mn> </msub> <mo>=</mo> <msub> <mi>x</mi> <mn>3</mn> </msub> <mo>-</mo> <msub> <mi>&alpha;</mi> <mn>2</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <msub> <mi>&alpha;</mi> <mn>1</mn> </msub> <mo>=</mo> <msub> <mover> <mi>y</mi> <mo>&CenterDot;</mo> </mover> <mi>d</mi> </msub> <mo>-</mo> <msub> <mi>c</mi> <mn>1</mn> </msub> <msub> <mi>z</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>&alpha;</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>-</mo> <msub> <mi>z</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mover> <mi>&alpha;</mi> <mo>&CenterDot;</mo> </mover> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>c</mi> <mn>2</mn> </msub> <msub> <mi>z</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mover> <mi>a</mi> <mo>^</mo> </mover> <mn>1</mn> </msub> <mo>,</mo> <msub> <mover> <mi>a</mi> <mo>^</mo> </mover> <mn>2</mn> </msub> <mo>,</mo> <msub> <mover> <mi>a</mi> <mo>^</mo> </mover> <mn>3</mn> </msub> <mo>,</mo> <mover> <mi>b</mi> <mo>^</mo> </mover> </mrow> </math> Are all estimates of system unknown parameters, ydTo obtain the desired output, the derivative of the variable is determined by the Euler equation, which is expressed in the following formula (4):
<math> <mrow> <mover> <mi>x</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mo>(</mo> <mi>k&Delta;T</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mi>x</mi> <mrow> <mo>(</mo> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>&Delta;T</mi> <mo>)</mo> </mrow> <mo>-</mo> <mi>x</mi> <mrow> <mo>(</mo> <mi>k&Delta;T</mi> <mo>)</mo> </mrow> </mrow> <mi>&Delta;T</mi> </mfrac> <mo>,</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow> </math>
where at is the sampling time,to representThe values at k sampling instants;
the actual output control quantity is limited as shown in formula (5):
<math> <mrow> <mi>u</mi> <mo>=</mo> <mfenced open='{' close='' separators=' '> <mtable> <mtr> <mtd> <msub> <mi>U</mi> <mi>max</mi> </msub> </mtd> <mtd> <msup> <mi>u</mi> <mo>&prime;</mo> </msup> <mo>></mo> <msub> <mi>U</mi> <mi>max</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msup> <mi>u</mi> <mo>&prime;</mo> </msup> </mtd> <mtd> <mo>-</mo> <msub> <mi>U</mi> <mi>max</mi> </msub> <mo>&le;</mo> <msup> <mi>u</mi> <mo>&prime;</mo> </msup> <mo>&le;</mo> <msub> <mi>U</mi> <mi>max</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <msub> <mi>U</mi> <mi>max</mi> </msub> </mtd> <mtd> <msup> <mi>u</mi> <mo>&prime;</mo> </msup> <mo>&lt;</mo> <mo>-</mo> <msub> <mi>U</mi> <mi>max</mi> </msub> </mtd> </mtr> </mtable> <mrow> <mo>;</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow> </mfenced> </mrow> </math>
step 3, estimating unknown parameter values of the pneumatic position servo system
The estimation method refers to the following formula (6):
<math> <mrow> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <mfrac> <mn>1</mn> <mover> <mi>b</mi> <mo>^</mo> </mover> </mfrac> <mo>=</mo> <mo>&Integral;</mo> <mrow> <mo>(</mo> <mo>-</mo> <mi>&lambda;</mi> <mo>)</mo> </mrow> <msub> <mi>z</mi> <mn>1</mn> </msub> <msub> <mi>y</mi> <mi>d</mi> </msub> <mi>dt</mi> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mover> <mi>a</mi> <mo>^</mo> </mover> <mo>&CenterDot;</mo> </mover> <mn>1</mn> </msub> <mo>=</mo> <mo>-</mo> <msub> <mi>&beta;</mi> <mn>1</mn> </msub> <msub> <mi>z</mi> <mn>1</mn> </msub> <msub> <mi>x</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mover> <mi>a</mi> <mo>^</mo> </mover> <mo>&CenterDot;</mo> </mover> <mn>2</mn> </msub> <mo>=</mo> <mo>-</mo> <msub> <mi>&beta;</mi> <mn>2</mn> </msub> <msub> <mi>z</mi> <mn>1</mn> </msub> <msub> <mi>x</mi> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mover> <mi>a</mi> <mo>^</mo> </mover> <mo>&CenterDot;</mo> </mover> <mn>3</mn> </msub> <mo>=</mo> <mo>-</mo> <msub> <mi>&beta;</mi> <mn>3</mn> </msub> <msub> <mi>z</mi> <mn>1</mn> </msub> <msub> <mi>x</mi> <mn>3</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein λ > 0, βiAdaptive gain > 0, i-1, 2,3, estimatedThe numerical value is used for updating the parameters of the backstepping controller model formula (3) in real time, and the computer controls the signal output of the amplifier through the D/A and adjusts the displacement of the piston of the rodless cylinder in real time, so that the method is obtained.
The method has the beneficial effects that: 1) no additional pressure detection hardware or algorithm is required; 2) effective control can be implemented without prior knowledge of the object; 3) compared with the existing control methods, the method can obtain better tracking effect and higher control precision.
Drawings
FIG. 1 is a schematic diagram of the structure of the control object (proportional valve control rodless cylinder) of the method of the present invention;
FIG. 2 is a steady state experimental result of tracking an S-curve using the method of the present invention;
FIG. 3 is a steady state experimental result of tracking a sinusoidal signal using the method of the present invention;
FIG. 4 is a steady state experimental result of tracking a multi-frequency sinusoidal signal using the method of the present invention;
FIG. 5 is a steady state experimental result of tracking an S curve by using a sliding mode variable structure 1 method;
FIG. 6 is a steady state experiment result of tracking a sinusoidal signal by using a sliding mode variable structure 1 method;
FIG. 7 is a steady-state experimental result of tracking multi-frequency sinusoidal signals by using a sliding mode variable structure 1 method;
FIG. 8 is a steady state experimental result of tracking an S-curve by using a sliding mode variable structure 2 method;
FIG. 9 is a steady state experimental result of tracking a sinusoidal signal by using a sliding mode variable structure 2 method;
fig. 10 is a steady-state experimental result of tracking a multi-frequency sinusoidal signal by using a sliding mode variable structure 2 method.
In the figure, 1, a piston, 2, a load, 3, a rodless cylinder, 4, a displacement detector, 5, a proportional valve, 6, an amplifier, 7, a computer, 8, a pressure reducing valve and 9, an air pump.
Detailed Description
The invention is described in detail below with reference to the figures and specific embodiments.
The invention relates to a reverse control method of a pneumatic position servo system, which is implemented according to the following three steps:
step 1, establishing a model of a controlled pneumatic position servo system
Referring to fig. 1, the structure of a controlled pneumatic position servo system relied on by the method of the invention is that a piston 1 of a rodless cylinder 3 is fixedly connected with a load 2, the piston 1 is correspondingly contacted with a displacement detector 4, and an output signal of the position detector 4 is transmitted to a computer 7 through A/D conversion; the proportional valve 5 is a five-way valve, the air cavity A side and the air cavity B side of the rodless cylinder 3 are respectively and correspondingly communicated with two air outlet ends (two po ends) of the proportional valve 5, the air inlet end (pu end) of the proportional valve 5 is communicated with an air pump 9 through a pressure reducing valve 8, the valve core position of the proportional valve 5 is connected with a controller of an amplifier 6, and the amplifier 6 is connected with a computer 7 through a signal line.
The following conditions are assumed to be satisfied by the pneumatic system: 1) the working medium (air) used by the system is ideal gas; 2) the flowing state of the gas flowing through the valve port or other throttling ports is an isentropic heat insulation process; 3) the gas pressure and temperature in the same cavity are equal everywhere; 4) ignoring the unaccounted for leaks; 5) when the piston moves, the change processes of the gas in the two cavities are both heat insulation processes; 6) the air source pressure and the atmospheric pressure are constant; 7) the inertia of the proportional valve is negligible compared to the system dynamics. Therefore, the mathematical model of the proportional valve control pneumatic position servo system is obtained as the following formula (1):
<math> <mrow> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mover> <mi>m</mi> <mo>&CenterDot;</mo> </mover> <mi>a</mi> </msub> <mo>=</mo> <msub> <mi>f</mi> <mi>a</mi> </msub> <mrow> <mo>(</mo> <mi>u</mi> <mo>,</mo> <msub> <mi>p</mi> <mi>a</mi> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>m</mi> <mo>&CenterDot;</mo> </mover> <mi>b</mi> </msub> <mo>=</mo> <msub> <mi>f</mi> <mi>b</mi> </msub> <mrow> <mo>(</mo> <mi>u</mi> <mo>,</mo> <msub> <mi>p</mi> <mi>b</mi> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>KRT</mi> <msub> <mover> <mi>m</mi> <mo>&CenterDot;</mo> </mover> <mi>a</mi> </msub> <mo>=</mo> <mi>K</mi> <msub> <mi>p</mi> <mi>a</mi> </msub> <msub> <mi>A</mi> <mi>a</mi> </msub> <mover> <mi>y</mi> <mo>&CenterDot;</mo> </mover> <mo>+</mo> <msub> <mi>A</mi> <mi>a</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>y</mi> <mn>0</mn> </msub> <mo>+</mo> <mi>y</mi> <mo>)</mo> </mrow> <msub> <mover> <mi>p</mi> <mo>&CenterDot;</mo> </mover> <mi>a</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mi>KRT</mi> <msub> <mover> <mi>m</mi> <mo>&CenterDot;</mo> </mover> <mi>b</mi> </msub> <mo>=</mo> <mi>K</mi> <msub> <mi>p</mi> <mi>b</mi> </msub> <msub> <mi>A</mi> <mi>b</mi> </msub> <mover> <mi>y</mi> <mo>&CenterDot;</mo> </mover> <mo>+</mo> <msub> <mi>A</mi> <mi>b</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>y</mi> <mn>0</mn> </msub> <mo>-</mo> <mi>y</mi> <mo>)</mo> </mrow> <msub> <mover> <mi>p</mi> <mo>&CenterDot;</mo> </mover> <mi>b</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mi>M</mi> <mover> <mi>y</mi> <mrow> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mrow> </mover> <mo>=</mo> <msub> <mi>p</mi> <mi>a</mi> </msub> <msub> <mi>A</mi> <mi>a</mi> </msub> <mo>-</mo> <msub> <mi>p</mi> <mi>b</mi> </msub> <msub> <mi>A</mi> <mi>b</mi> </msub> <mo>-</mo> <msub> <mi>F</mi> <mi>f</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </math>
whereinAndrespectively, the mass flow rates of gas flowing into the side A of the cylinder (air chamber A in FIG. 1) and the side B of the cylinder (air chamber B in FIG. 1), u is a control signal, paAnd pbThe pressure of the side A and the side B of the cylinder, AaAnd AbPiston cross-sectional areas for cylinder sides A and B (equal for rodless cylinders in this system), respectively, y is piston displacement, y is0Is the piston initial position, M is the slide mass, FfIs friction force, fa(. and f)b() are respectively nonlinear functions related to the internal and external pressures of the side A and the side B of the cylinder, K, R and T are correlation constants, and the piston displacement y is obtained by a displacement detector 4;
neglecting the friction force, and linearizing the nonlinear function of the formula (1), a third-order linear model of the pneumatic system is obtained as the following formula (2):
<math> <mrow> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mover> <mi>x</mi> <mo>&CenterDot;</mo> </mover> <mn>1</mn> </msub> <mo>=</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>x</mi> <mo>&CenterDot;</mo> </mover> <mn>2</mn> </msub> <mo>=</mo> <msub> <mi>x</mi> <mn>3</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>x</mi> <mo>&CenterDot;</mo> </mover> <mn>3</mn> </msub> <mo>=</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo>+</mo> <msub> <mi>a</mi> <mn>3</mn> </msub> <msub> <mi>x</mi> <mn>3</mn> </msub> <mo>+</mo> <mi>bu</mi> </mtd> </mtr> <mtr> <mtd> <mi>y</mi> <mo>=</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein x1,x2,x3Is the system state, u is the control input, a1,a2,a3B is an unknown model parameter, and the control objective is to make the model output y track the desired output y requiredd
Step 2, establishing a backstepping controller model of the pneumatic position servo system
Selecting a backstepping (self-adaptive) controller from the pneumatic position servo system model formula (2) obtained in the previous step, wherein the control model of the backstepping controller is as follows (3):
<math> <mrow> <msup> <mi>u</mi> <mo>&prime;</mo> </msup> <mo>=</mo> <mfrac> <mn>1</mn> <mover> <mi>b</mi> <mo>^</mo> </mover> </mfrac> <mrow> <mo>(</mo> <mo>-</mo> <msub> <mi>z</mi> <mn>2</mn> </msub> <mo>-</mo> <msub> <mover> <mi>a</mi> <mo>^</mo> </mover> <mn>1</mn> </msub> <msub> <mi>z</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mover> <mi>a</mi> <mo>^</mo> </mover> <mn>1</mn> </msub> <msub> <mi>y</mi> <mi>d</mi> </msub> <mo>-</mo> <msub> <mover> <mi>a</mi> <mo>^</mo> </mover> <mn>2</mn> </msub> <msub> <mi>z</mi> <mn>2</mn> </msub> <mo>-</mo> <msub> <mover> <mi>a</mi> <mo>^</mo> </mover> <mn>2</mn> </msub> <msub> <mi>&alpha;</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mover> <mi>a</mi> <mo>^</mo> </mover> <mn>3</mn> </msub> <msub> <mi>&alpha;</mi> <mn>2</mn> </msub> <mo>+</mo> <msub> <mover> <mi>&alpha;</mi> <mo>&CenterDot;</mo> </mover> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>,</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein <math> <mrow> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>z</mi> <mn>1</mn> </msub> <mo>=</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>y</mi> <mi>d</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>z</mi> <mn>2</mn> </msub> <mo>=</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo>-</mo> <msub> <mi>&alpha;</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>z</mi> <mn>3</mn> </msub> <mo>=</mo> <msub> <mi>x</mi> <mn>3</mn> </msub> <mo>-</mo> <msub> <mi>&alpha;</mi> <mn>2</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <msub> <mi>&alpha;</mi> <mn>1</mn> </msub> <mo>=</mo> <msub> <mover> <mi>y</mi> <mo>&CenterDot;</mo> </mover> <mi>d</mi> </msub> <mo>-</mo> <msub> <mi>c</mi> <mn>1</mn> </msub> <msub> <mi>z</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>&alpha;</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>-</mo> <msub> <mi>z</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mover> <mi>&alpha;</mi> <mo>&CenterDot;</mo> </mover> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>c</mi> <mn>2</mn> </msub> <msub> <mi>z</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mover> <mi>a</mi> <mo>^</mo> </mover> <mn>1</mn> </msub> <mo>,</mo> <msub> <mover> <mi>a</mi> <mo>^</mo> </mover> <mn>2</mn> </msub> <mo>,</mo> <msub> <mover> <mi>a</mi> <mo>^</mo> </mover> <mn>3</mn> </msub> <mo>,</mo> <mover> <mi>b</mi> <mo>^</mo> </mover> </mrow> </math> Are all estimates of system unknown parameters, ydTo obtain the desired output, the derivative of the variable is determined by the Euler equation, which is expressed in the following formula (4):
<math> <mrow> <mover> <mi>x</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mo>(</mo> <mi>k&Delta;T</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mi>x</mi> <mrow> <mo>(</mo> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>&Delta;T</mi> <mo>)</mo> </mrow> <mo>-</mo> <mi>x</mi> <mrow> <mo>(</mo> <mi>k&Delta;T</mi> <mo>)</mo> </mrow> </mrow> <mi>&Delta;T</mi> </mfrac> <mo>,</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow> </math>
where at is the sampling time,to representThe values at k sampling instants, e.g. for equation (3)Then there is <math> <mrow> <msub> <mover> <mi>&alpha;</mi> <mo>&CenterDot;</mo> </mover> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>k&Delta;T</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msub> <mi>&alpha;</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>&Delta;T</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>&alpha;</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>k&Delta;T</mi> <mo>)</mo> </mrow> </mrow> <mi>&Delta;T</mi> </mfrac> <mo>;</mo> </mrow> </math>
The actual output control quantity is limited as shown in formula (5):
<math> <mrow> <mi>u</mi> <mo>=</mo> <mfenced open='{' close='' separators=' '> <mtable> <mtr> <mtd> <msub> <mi>U</mi> <mi>max</mi> </msub> </mtd> <mtd> <msup> <mi>u</mi> <mo>&prime;</mo> </msup> <mo>></mo> <msub> <mi>U</mi> <mi>max</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msup> <mi>u</mi> <mo>&prime;</mo> </msup> </mtd> <mtd> <mo>-</mo> <msub> <mi>U</mi> <mi>max</mi> </msub> <mo>&le;</mo> <msup> <mi>u</mi> <mo>&prime;</mo> </msup> <mo>&le;</mo> <msub> <mi>U</mi> <mi>max</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <msub> <mi>U</mi> <mi>max</mi> </msub> </mtd> <mtd> <msup> <mi>u</mi> <mo>&prime;</mo> </msup> <mo>&lt;</mo> <mo>-</mo> <msub> <mi>U</mi> <mi>max</mi> </msub> </mtd> </mtr> </mtable> <mrow> <mo>;</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow> </mfenced> </mrow> </math>
step 3, estimating unknown parameter values of the pneumatic position servo system
The estimation method refers to the following formula (6):
<math> <mrow> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <mfrac> <mn>1</mn> <mover> <mi>b</mi> <mo>^</mo> </mover> </mfrac> <mo>=</mo> <mo>&Integral;</mo> <mrow> <mo>(</mo> <mo>-</mo> <mi>&lambda;</mi> <mo>)</mo> </mrow> <msub> <mi>z</mi> <mn>1</mn> </msub> <msub> <mi>y</mi> <mi>d</mi> </msub> <mi>dt</mi> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mover> <mi>a</mi> <mo>^</mo> </mover> <mo>&CenterDot;</mo> </mover> <mn>1</mn> </msub> <mo>=</mo> <mo>-</mo> <msub> <mi>&beta;</mi> <mn>1</mn> </msub> <msub> <mi>z</mi> <mn>1</mn> </msub> <msub> <mi>x</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mover> <mi>a</mi> <mo>^</mo> </mover> <mo>&CenterDot;</mo> </mover> <mn>2</mn> </msub> <mo>=</mo> <mo>-</mo> <msub> <mi>&beta;</mi> <mn>2</mn> </msub> <msub> <mi>z</mi> <mn>1</mn> </msub> <msub> <mi>x</mi> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mover> <mi>a</mi> <mo>^</mo> </mover> <mo>&CenterDot;</mo> </mover> <mn>3</mn> </msub> <mo>=</mo> <mo>-</mo> <msub> <mi>&beta;</mi> <mn>3</mn> </msub> <msub> <mi>z</mi> <mn>1</mn> </msub> <msub> <mi>x</mi> <mn>3</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein λ > 0, βiThe adaptive gain is more than 0, i is 1,2 and 3, and the estimated value is used for updating the backstepping in real timeAnd (3) controlling the parameters of the model formula (3), and outputting the signals of the amplifier 6 through the D/A control by the computer to adjust the displacement of the piston 1 of the rodless cylinder 3 in real time.
Examples
Each part in the pneumatic position servo system structure is selected and used respectively: a rodless cylinder (the adopted model is DGPL-25-450-PPV-A-B-KF-GK-SV) of the FESTO company; a five-way proportional valve (the adopted model is MPYE-5-1/8-HF-010-B); a sliding resistance type linear displacement detector (the adopted model is MLO-POT-450-TLF, and the position detection precision is 0.15mm after the sliding resistance type linear displacement detector is matched with an acquisition card); a computer (adopting a model of P21.2GHz for a CPU); a universal data acquisition card (the adopted model is PCI 2306); other elements such as an air pump constitute a pneumatic position servo system. The control software built in the computer is compiled by VB, and the change curve of the relevant variable in the control process is displayed through a screen.
Control targets are respectively set to
Reference signal 1: s curve
yd=-(A/ω2)sin(ωt)+(A/ω)t, (7)
A has a value of 55.825 and w has a value of 0.5 π.
Reference signal 2: single frequency sinusoidal signal
yd=111.65sin0.5πt, (8)
Reference signal 3: multi-frequency sinusoidal signal
yd=167.475sinπt+167.475sin0.5πt+167.475sin(2πt/7), (9)
+167.475sin(πt/6)+167.475sin(2πt/17)
The control experiment is carried out by adopting the inverse step adaptive controllers of the formula (3) to the formula (6), and the control parameter c in the formula (3) to the formula (6)1,c2,λ,β123The values of (a) may be subjected to iterative experimental trials.
In the present embodiment, 50,1,1,1,1, 1 is set, and the limiter U is controlledmaxWhen the tracking target is the formula (7) to the formula (9), the steady-state tracking curve is as shown in fig. 2,3, and 4.
Fig. 5-10 show the control effect when tracking the same expected output by using two ways in the prior art (i.e. sliding mode variable structure 1 and sliding mode variable structure 2), and the tracking precision of the method of the present invention is higher by comparison.
The sliding mode variable structure 1 method is referred to in the literature [ Gary M. bone, Shu Ning. Experimental compatibility of Position transporting Control Algorithms for Pneumatic cylinder actuators [ J ]. IEEE/ASME Transactions on mechanics, 2007,12(5): 557) 561], and the variable structure controller is represented as follows:
<math> <mrow> <mi>S</mi> <mo>=</mo> <mover> <mi>y</mi> <mrow> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mrow> </mover> <mo>-</mo> <msub> <mover> <mi>y</mi> <mrow> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mrow> </mover> <mi>d</mi> </msub> <mo>+</mo> <mn>2</mn> <mi>&lambda;</mi> <mrow> <mo>(</mo> <mover> <mi>y</mi> <mo>&CenterDot;</mo> </mover> <mo>-</mo> <msub> <mover> <mi>y</mi> <mo>&CenterDot;</mo> </mover> <mi>d</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mi>&lambda;</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mi>y</mi> <mo>-</mo> <msub> <mi>y</mi> <mi>d</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>u</mi> <mi>eq</mi> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <msub> <mi>m</mi> <mn>0</mn> </msub> </mfrac> <mo>[</mo> <msub> <mover> <mi>y</mi> <mrow> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mrow> </mover> <mi>d</mi> </msub> <mo>+</mo> <msub> <mi>n</mi> <mn>2</mn> </msub> <mover> <mi>y</mi> <mrow> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mrow> </mover> <mo>+</mo> <msub> <mi>n</mi> <mn>1</mn> </msub> <mover> <mi>y</mi> <mo>&CenterDot;</mo> </mover> <mo>+</mo> <msub> <mi>n</mi> <mn>0</mn> </msub> <mi>y</mi> <mo>-</mo> <mn>2</mn> <mi>&lambda;</mi> <mrow> <mo>(</mo> <mover> <mi>y</mi> <mrow> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mrow> </mover> <mo>-</mo> <msub> <mover> <mi>y</mi> <mrow> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mrow> </mover> <mi>d</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msup> <mi>&lambda;</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mover> <mi>y</mi> <mo>&CenterDot;</mo> </mover> <mo>-</mo> <msub> <mover> <mi>y</mi> <mo>&CenterDot;</mo> </mover> <mi>d</mi> </msub> <mo>)</mo> </mrow> <mo>]</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> </mrow> </math>
us=-ks1sat(S/φ) (12)
u′=ueq+us (13)
the actual control is given by equation (12) and the limiting of the control output is given by equation (5) as in the method of the invention, where the model nominal parameter n2=29.5544,n1=218.436,n0=0,m05531.3305, the controller parameter λ is 50, ks1=2.44×104And phi is 0.05, and the control result curves are shown in fig. 5 to 7.
Reference is made to the literature [ T.Nguyen, J.Leavitt, F.Jabbari, J.E.Bobrow.Accurate Slide-Mode Control of Pneumatic Systems Using Low-costSolenoid Valves [ J ]. IEEE/ASME Transactions on mechanics, 2007,12(2):216-219], methods for the Control of sliding Mode variants 2, which are given by the following formula:
<math> <mrow> <mi>S</mi> <mo>=</mo> <mover> <mi>y</mi> <mrow> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mrow> </mover> <mo>-</mo> <msub> <mover> <mi>y</mi> <mrow> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mrow> </mover> <mi>d</mi> </msub> <mo>+</mo> <mn>2</mn> <mi>&zeta;&omega;</mi> <mrow> <mo>(</mo> <mover> <mi>y</mi> <mo>&CenterDot;</mo> </mover> <mo>-</mo> <msub> <mover> <mi>y</mi> <mo>&CenterDot;</mo> </mover> <mi>d</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mi>&omega;</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mi>y</mi> <mo>-</mo> <msub> <mi>y</mi> <mi>d</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> </mrow> </math>
u=-ks2sgn(S) (15)
this prior art method controls the cylinder for a switching valve, the actual control being given by equation (15), ks21, u-1 corresponds to valve open and u-1 corresponds to valve closed.
In the present invention, a proportional valve is adopted, so k is takens2The opening amplitude of the proportional valve is controlled to 1.56 (volt), the controller parameter ξ is 1, ω is 50, the control is realized, and the control result curve is shown with reference to fig. 8-10.
TABLE 1 comparison of the error of the method of the present invention with the error of the prior art control method in tracking the output signal of equation (7)
TABLE 2 comparison of the error of the present invention method with the error of the prior art control method in tracking the output signal of equation (8)
In order to more intuitively illustrate the control effect of the method of the present invention, the tracking error is quantitatively calculated under the condition of tracking different desired targets, and the error is defined as defining the root mean square error as:
<math> <mrow> <mi>RMSE</mi> <mo>=</mo> <msqrt> <mfrac> <mn>1</mn> <mrow> <msub> <mi>N</mi> <mn>2</mn> </msub> <mo>-</mo> <msub> <mi>N</mi> <mn>1</mn> </msub> </mrow> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <msub> <mi>N</mi> <mn>1</mn> </msub> </mrow> <msub> <mi>N</mi> <mn>2</mn> </msub> </munderover> <msubsup> <mi>e</mi> <mi>k</mi> <mn>2</mn> </msubsup> </msqrt> <mo>,</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5.7</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein N is1For comparing the starting times, N2To compare the end times, ek=y(kΔT)-yd(k Δ T), Δ T being the sampling time interval. To avoid the effects of different initial values of adaptive control and random interference, multiple experiments were performed on the tracking of each input signal, five of which gave the results shown in tables 1-3.
The results in the comparison table show that the average tracking error of the method of the present invention is smaller than that of the existing method under various expected target conditions.
TABLE 3 comparison of the error of the method of the present invention with the error of the prior art control method in tracking the output signal of equation (9)

Claims (2)

1. A reverse control method of a pneumatic position servo system is characterized by comprising the following steps:
step 1, establishing a model of a controlled pneumatic position servo system
The mathematical model of the proportional valve control pneumatic position servo system is as follows (1):
<math> <mrow> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mover> <mi>m</mi> <mo>&CenterDot;</mo> </mover> <mi>a</mi> </msub> <mo>=</mo> <msub> <mi>f</mi> <mi>a</mi> </msub> <mrow> <mo>(</mo> <mi>u</mi> <mo>,</mo> <msub> <mi>p</mi> <mi>a</mi> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>m</mi> <mo>&CenterDot;</mo> </mover> <mi>b</mi> </msub> <mo>=</mo> <msub> <mi>f</mi> <mi>b</mi> </msub> <mrow> <mo>(</mo> <mi>u</mi> <mo>,</mo> <msub> <mi>p</mi> <mi>b</mi> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mrow> <mi>kRT</mi> <mover> <mi>m</mi> <mo>&CenterDot;</mo> </mover> </mrow> <mi>a</mi> </msub> <mo>=</mo> <msub> <mi>Kp</mi> <mi>a</mi> </msub> <msub> <mi>A</mi> <mi>a</mi> </msub> <mover> <mi>y</mi> <mo>&CenterDot;</mo> </mover> <mo>+</mo> <msub> <mi>A</mi> <mi>a</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>y</mi> <mn>0</mn> </msub> <mo>+</mo> <mi>y</mi> <mo>)</mo> </mrow> <msub> <mover> <mi>p</mi> <mo>&CenterDot;</mo> </mover> <mi>a</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mrow> <mi>KPT</mi> <mover> <mi>m</mi> <mo>&CenterDot;</mo> </mover> </mrow> <mi>b</mi> </msub> <mo>=</mo> <msub> <mi>Kp</mi> <mi>b</mi> </msub> <msub> <mi>a</mi> <mi>b</mi> </msub> <mover> <mi>y</mi> <mo>&CenterDot;</mo> </mover> <mo>+</mo> <msub> <mi>A</mi> <mi>b</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>y</mi> <mn>0</mn> </msub> <mo>-</mo> <mi>y</mi> <mo>)</mo> </mrow> <msub> <mover> <mi>p</mi> <mo>&CenterDot;</mo> </mover> <mi>b</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mi>M</mi> <mover> <mi>y</mi> <mrow> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mrow> </mover> <mo>=</mo> <msub> <mi>p</mi> <mi>a</mi> </msub> <msub> <mi>A</mi> <mi>a</mi> </msub> <mo>-</mo> <msub> <mi>p</mi> <mi>b</mi> </msub> <msub> <mi>A</mi> <mi>b</mi> </msub> <mo>-</mo> <msub> <mi>F</mi> <mi>f</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein,andthe mass flow rates of the gas flowing into the side of the air cavity A and the side of the air cavity B respectively,and pbThe pressure of the air cavity A and the pressure of the air cavity B are respectively,andare respectively asAnd pbThe first derivative of (a) is,is a non-linear function related to the pressure inside and outside the air cavity A side, fb(u,pb) As a non-linear function related to the pressure inside and outside the side of the air cavity B,and AbThe sectional areas of the pistons at the air cavity A side and the air cavity B side, y0Is the piston initial position, y is the piston displacement,andfirst and second derivatives of y, u is the control signal, M is the slider mass, FfK, R and T are related constants for friction force, and the piston displacement y is obtained by a displacement detector (4);
neglecting the friction force, and linearizing the nonlinear function of the formula (1), wherein the pneumatic position servo system model after the linearization treatment is as the formula (2):
<math> <mrow> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mover> <mi>x</mi> <mo>&CenterDot;</mo> </mover> <mn>1</mn> </msub> <mo>=</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>x</mi> <mo>&CenterDot;</mo> </mover> <mn>2</mn> </msub> <mo>=</mo> <msub> <mi>x</mi> <mn>3</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>x</mi> <mo>&CenterDot;</mo> </mover> <mn>3</mn> </msub> <mo>=</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>a</mi> <mn>3</mn> </msub> <msub> <mi>x</mi> <mn>3</mn> </msub> <mo>+</mo> <msub> <mi>a</mi> <mn>3</mn> </msub> <msub> <mi>x</mi> <mn>3</mn> </msub> <mo>+</mo> <mi>bu</mi> </mtd> </mtr> <mtr> <mtd> <mi>y</mi> <mo>=</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein x1、x2、x3All of the above-mentioned states are the system states,respectively correspond to x1、x2、x3The first derivative of (a) is,for unknown model parameters, the control objective is to make the piston displacement y track the desired output y requiredd
Step 2, establishing a backstepping controller model of the pneumatic position servo system
Selecting a backstepping controller from the pneumatic position servo system model formula (2) obtained in the previous step, wherein the backstepping controller model is as follows (3):
<math> <mrow> <msup> <mi>u</mi> <mo>&prime;</mo> </msup> <mo>=</mo> <mfrac> <mn>1</mn> <mover> <mi>b</mi> <mo>^</mo> </mover> </mfrac> <mrow> <mo>(</mo> <msub> <mrow> <mo>-</mo> <mi>z</mi> </mrow> <mn>2</mn> </msub> <mo>-</mo> <msub> <mover> <mi>a</mi> <mo>^</mo> </mover> <mn>1</mn> </msub> <msub> <mi>z</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mover> <mi>a</mi> <mo>^</mo> </mover> <mn>1</mn> </msub> <msub> <mi>y</mi> <mi>d</mi> </msub> <mo>-</mo> <msub> <mover> <mi>a</mi> <mo>^</mo> </mover> <mn>2</mn> </msub> <msub> <mi>z</mi> <mn>2</mn> </msub> <mo>-</mo> <msub> <mover> <mi>a</mi> <mo>^</mo> </mover> <mn>2</mn> </msub> <msub> <mi>&alpha;</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mover> <mi>a</mi> <mo>^</mo> </mover> <mn>3</mn> </msub> <msub> <mi>&alpha;</mi> <mn>2</mn> </msub> <mo>+</mo> <msub> <mover> <mi>&alpha;</mi> <mo>&CenterDot;</mo> </mover> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>,</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein <math> <mrow> <msub> <mi>&alpha;</mi> <mn>1</mn> </msub> <mo>=</mo> <msub> <mover> <mi>y</mi> <mo>&CenterDot;</mo> </mover> <mi>d</mi> </msub> <mo>-</mo> <msub> <mi>c</mi> <mn>1</mn> </msub> <msub> <mi>z</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>&alpha;</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>-</mo> <msub> <mi>z</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mover> <mi>&alpha;</mi> <mo>&CenterDot;</mo> </mover> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>c</mi> <mn>2</mn> </msub> <msub> <mi>z</mi> <mn>2</mn> </msub> <mo>,</mo> </mrow> </math> z1=x1-ydu' is the control signal prior to clipping,to a desired output ydThe first derivative of (a) is,z1、z2is an intermediate variable, c1And c2In order to design the parameters of the device,is composed ofThe first derivative of (a) is,is composed ofThe first derivative of (a) is, andare all unknown model parametersIs determined by the estimated value of (c),
clipping the control signal u, as in equation (4):
<math> <mrow> <mi>u</mi> <mo>=</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>U</mi> <mi>max</mi> </msub> </mtd> <mtd> <msup> <mi>u</mi> <mo>&prime;</mo> </msup> <mo>></mo> <msub> <mi>U</mi> <mi>max</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msup> <mi>u</mi> <mo>&prime;</mo> </msup> </mtd> <mtd> <msub> <mrow> <mo>-</mo> <mi>U</mi> </mrow> <mi>max</mi> </msub> <mo>&le;</mo> <msup> <mi>u</mi> <mo>&prime;</mo> </msup> <msub> <mi>U</mi> <mi>max</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mrow> <mo>-</mo> <mi>U</mi> </mrow> <mi>max</mi> </msub> </mtd> <mtd> <msup> <mi>u</mi> <mo>&prime;</mo> </msup> <mo>&lt;</mo> <mo>-</mo> <msub> <mi>U</mi> <mi>max</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein,is the amplitude limit value of the control signal u;
step 3, calculating the estimation value of the unknown model parameter
The calculation method of the estimated values of the four unknown model parameters is referred to the following formula (5):
<math> <mrow> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <mfrac> <mn>1</mn> <mover> <mi>b</mi> <mo>^</mo> </mover> </mfrac> <mo>=</mo> <mo>&Integral;</mo> <mrow> <mo>(</mo> <mo>-</mo> <mi>&lambda;</mi> <mo>)</mo> </mrow> <msub> <mi>z</mi> <mn>1</mn> </msub> <msub> <mi>y</mi> <mi>d</mi> </msub> <mi>dt</mi> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mover> <mi>a</mi> <mo>^</mo> </mover> <mo>&CenterDot;</mo> </mover> <mn>1</mn> </msub> <mo>=</mo> <mo>-</mo> <msub> <mi>&beta;</mi> <mn>1</mn> </msub> <msub> <mi>z</mi> <mn>1</mn> </msub> <msub> <mi>x</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mover> <mi>a</mi> <mo>^</mo> </mover> <mo>&CenterDot;</mo> </mover> <mn>2</mn> </msub> <mo>=</mo> <msub> <mrow> <mo>-</mo> <mi>&beta;</mi> </mrow> <mn>2</mn> </msub> <msub> <mi>z</mi> <mn>1</mn> </msub> <msub> <mi>x</mi> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mover> <mi>a</mi> <mo>^</mo> </mover> <mo>&CenterDot;</mo> </mover> <mn>3</mn> </msub> <mo>=</mo> <mo>-</mo> <msub> <mi>&beta;</mi> <mn>3</mn> </msub> <msub> <mi>z</mi> <mn>1</mn> </msub> <msub> <mi>x</mi> <mn>3</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow> </math>
thereinAndare respectivelyAndderivative of, λ, β1、β2、β3Adaptive gain for estimated values of four unknown model parameters, and λ > 0, β1>0,β2>0,β3> 0, will be estimated using equation (5)Andthe numerical value of the numerical value is used for updating the parameters of the backstepping controller model formula (3) in real time, and the computer controls the signal output of the amplifier (6) through the D/A and adjusts the displacement of the piston (1) of the rodless cylinder (3) in real time, so that the method is obtained.
2. The pneumatic position servo system back-stepping control method according to claim 1, wherein: in the step 1, the controlled pneumatic position servo system is structurally characterized in that a five-way valve is selected as the proportional valve (5), a piston (1) of the rodless cylinder (3) is fixedly connected with the load (2), and meanwhile, the piston (1) of the rodless cylinder (3) is correspondingly arranged in contact with the displacement detector (4); the air cavity A side and the air cavity B side of the rodless cylinder (3) are respectively and correspondingly communicated with two pressure control ends of the proportional valve (5), the tail ends of double piston rods of the proportional valve (5) are connected with a controller of the amplifier (6), and the air inlet end in the middle of the double piston rods of the proportional valve (5) is communicated with an air pump (9) through a pressure reducing valve (8); the pressure relief chambers at two ends of the double piston rods of the proportional valve (5) are provided with air outlet ends; the amplifier (6) is connected with the computer (7) through a signal wire, and the computer (7) is connected with the displacement detector (4) through another signal wire.
CN201310116468.2A 2013-04-03 2013-04-03 A kind of Pneumatic Position Servo System backstepping control method Active CN103233946B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310116468.2A CN103233946B (en) 2013-04-03 2013-04-03 A kind of Pneumatic Position Servo System backstepping control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310116468.2A CN103233946B (en) 2013-04-03 2013-04-03 A kind of Pneumatic Position Servo System backstepping control method

Publications (2)

Publication Number Publication Date
CN103233946A CN103233946A (en) 2013-08-07
CN103233946B true CN103233946B (en) 2015-07-29

Family

ID=48882004

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310116468.2A Active CN103233946B (en) 2013-04-03 2013-04-03 A kind of Pneumatic Position Servo System backstepping control method

Country Status (1)

Country Link
CN (1) CN103233946B (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9879667B2 (en) 2014-03-03 2018-01-30 Danfoss Power Solutions Inc. Variable load sense spring setting for axial piston open circuit pump
CN105697463B (en) * 2016-03-22 2017-08-25 西安理工大学 A kind of Hydraulic Position Servo exports feedback adaptive control method
CN105573125B (en) * 2016-03-22 2018-04-10 西安理工大学 A kind of pneumatic system position self-adaptation control method unknown for control direction
CN106194903B (en) * 2016-09-28 2018-02-02 西安理工大学 A kind of fractional order sliding mode variable structure control method of Pneumatic Position Servo System
CN106371311B (en) * 2016-10-17 2019-02-01 燕山大学 A kind of Auto-disturbance-rejection Control of rodless cylinder positional servosystem
CN106640809B (en) * 2016-11-07 2018-04-17 同济大学 Variable displacement and variable power adjusts load matched electro-hydraulic position tracking and controlling method
CN107939785B (en) * 2017-11-21 2019-09-20 中国兵器装备集团自动化研究所 One kind being used for cylinder movement control method
CN108679042B (en) * 2018-05-18 2020-07-10 安徽工程大学 Optimization method of diving suit tightness detection automatic control system
CN109595223B (en) * 2018-12-12 2020-09-04 长沙航空职业技术学院 Control method of asymmetric electro-hydraulic proportional system based on precise modeling of proportional valve
CN110081046B (en) * 2019-05-27 2020-07-31 电子科技大学 Multi-hydraulic servo actuator tracking synchronous control method based on backstepping control
CN110515302B (en) * 2019-08-13 2022-04-15 西安理工大学 Reverse step self-adaptive neural network control method for hydraulic position servo system
CN112462598B (en) * 2020-11-30 2022-07-22 河北工业大学 Force control method for flexible polishing end effector
CN114673711B (en) * 2022-03-28 2023-04-21 北京理工大学 Cylinder position control method based on five-mode switching of high-speed switch valve
CN114769711A (en) * 2022-05-13 2022-07-22 深圳市信宇人科技股份有限公司 Method capable of digitally adjusting axial pressure of upper blade and lower blade, upper blade module and slitting device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19632914A1 (en) * 1996-08-16 1998-02-19 Festo Ag & Co Method for positioning servopneumatic drives using adaptive control
JPH11148502A (en) * 1997-11-18 1999-06-02 Sharp Corp Locating method for air cylinder
DE19923610A1 (en) * 1999-05-25 2000-12-21 Daimler Chrysler Ag Regulating device for optimum control of a technical system includes a control unit for generating a control output signal by relying on the system's condition and using a controlling law to optimize a preset optimal value.
CN1676950A (en) * 2004-03-30 2005-10-05 Smc株式会社 Air servo cylinder apparatus and controlling method therefor
CN102063061A (en) * 2010-11-24 2011-05-18 西安理工大学 Adaptive compensation method of friction in pneumatic servo system
CN102662323A (en) * 2012-04-23 2012-09-12 南车株洲电力机车研究所有限公司 Adoptive sliding mode control method and adoptive sliding mode control system of wind power generation variable-pitch actuator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19632914A1 (en) * 1996-08-16 1998-02-19 Festo Ag & Co Method for positioning servopneumatic drives using adaptive control
JPH11148502A (en) * 1997-11-18 1999-06-02 Sharp Corp Locating method for air cylinder
DE19923610A1 (en) * 1999-05-25 2000-12-21 Daimler Chrysler Ag Regulating device for optimum control of a technical system includes a control unit for generating a control output signal by relying on the system's condition and using a controlling law to optimize a preset optimal value.
CN1676950A (en) * 2004-03-30 2005-10-05 Smc株式会社 Air servo cylinder apparatus and controlling method therefor
CN102063061A (en) * 2010-11-24 2011-05-18 西安理工大学 Adaptive compensation method of friction in pneumatic servo system
CN102662323A (en) * 2012-04-23 2012-09-12 南车株洲电力机车研究所有限公司 Adoptive sliding mode control method and adoptive sliding mode control system of wind power generation variable-pitch actuator

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
全局自适应模糊反步控制在火箭炮伺服系统中的应用;郭亚军等;《兵工学报》;20120630;第33卷(第6期);第658-662页 *
模糊神经滑膜控制在气动位置伺服系统中的应用;张远深等;《机床与液压》;20080531;第36卷(第5期);第58-64页 *

Also Published As

Publication number Publication date
CN103233946A (en) 2013-08-07

Similar Documents

Publication Publication Date Title
CN103233946B (en) A kind of Pneumatic Position Servo System backstepping control method
Taleb et al. Pneumatic actuator control: Solution based on adaptive twisting and experimentation
CN105697463B (en) A kind of Hydraulic Position Servo exports feedback adaptive control method
CN110515302B (en) Reverse step self-adaptive neural network control method for hydraulic position servo system
CN111290276B (en) Fractional order integral sliding mode control method for neural network of hydraulic position servo system
Meng et al. Modeling of a pneumatic system for high-accuracy position control
CN106194903B (en) A kind of fractional order sliding mode variable structure control method of Pneumatic Position Servo System
Yang et al. A novel sliding mode control framework for electrohydrostatic position actuation system
Pournazeri et al. Precise lift control in a new variable valve actuation system using discrete-time sliding mode control
Gulati et al. Non-linear pressure observer design for pneumatic actuators
Mandali et al. Modeling and cascade control of a pneumatic positioning system
Meng et al. Adaptive robust output force tracking control of pneumatic cylinder while maximizing/minimizing its stiffness
Meng et al. Adaptive robust motion trajectory tracking control of pneumatic cylinders
Salim et al. Position control of pneumatic actuator using an enhancement of NPID controller based on the characteristic of rate variation nonlinear gain
Falcão Carneiro et al. Pneumatic servo valve models based on artificial neural networks
Najafi et al. Dynamic modelling of servo pneumatic actuators with cushioning
CN111781834B (en) Self-adaptive fuzzy neural network control method for pneumatic position servo system
CN112965387B (en) Pneumatic servo system adaptive neural network control method considering state limitation
Prabel et al. Model-based control of an electro-pneumatic clutch using a sliding-mode approach
CN105573125B (en) A kind of pneumatic system position self-adaptation control method unknown for control direction
Van der Merwe et al. Parameter identification and evaluation of a proportional directional flow control valve model
Zhao et al. Synchronous position control strategy for bi-cylinder electro-pneumatic systems
Qian et al. Compound sliding mode motion trajectory tracking control of an electro-pneumatic clutch actuator while maximizing its stiffness
Rosas-Flores et al. Optimal linearization of the dynamic behavior of an on/off actuated single pneumatic cylinder
Liu et al. Adaptive Identification and Application of Flow Mapping for Electrohydraulic Valves

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20161019

Address after: 710100, Xi'an, Shaanxi Aerospace base Shenzhou four road sailing International Plaza C-210

Patentee after: XI'AN BITELIANCHUANG MICROWAVE TECHNOLOGY CO.,LTD.

Address before: 710048 Shaanxi city of Xi'an Province Jinhua Road No. 5

Patentee before: Xi'an University of Technology

CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: 710000, Room L104, 1st Floor, R&D Building, China Putian Xi'an Industrial Park, Aerospace South Road, National Civil Aerospace Industry Base, Xi'an City, Shaanxi Province

Patentee after: Xi'an Bit Lianchuang Technology Co.,Ltd.

Address before: 710100 Aerospace Base, Xi'an City, Shaanxi Province Shenzhou Fourth Road, Aviation Innovation International Plaza C-210

Patentee before: XI'AN BITELIANCHUANG MICROWAVE TECHNOLOGY CO.,LTD.