CN103217644A - 感应电动机转子缺陷诊断装置、方法及媒介 - Google Patents

感应电动机转子缺陷诊断装置、方法及媒介 Download PDF

Info

Publication number
CN103217644A
CN103217644A CN2012105304875A CN201210530487A CN103217644A CN 103217644 A CN103217644 A CN 103217644A CN 2012105304875 A CN2012105304875 A CN 2012105304875A CN 201210530487 A CN201210530487 A CN 201210530487A CN 103217644 A CN103217644 A CN 103217644A
Authority
CN
China
Prior art keywords
induction motor
rotor
eccentric
reactance
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012105304875A
Other languages
English (en)
Other versions
CN103217644B (zh
Inventor
李相彬
玄斗秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Industry Academy Collaboration Foundation of Korea University
Original Assignee
Industry Academy Collaboration Foundation of Korea University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Industry Academy Collaboration Foundation of Korea University filed Critical Industry Academy Collaboration Foundation of Korea University
Publication of CN103217644A publication Critical patent/CN103217644A/zh
Application granted granted Critical
Publication of CN103217644B publication Critical patent/CN103217644B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/08Measuring resistance by measuring both voltage and current

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

本发明公开一种感应电动机的转子缺陷诊断装置、方法及媒介,该媒介存储实施所述方法的计算机可读程序。感应电动机的转子缺陷诊断装置包括电压供给部、电流测定部、电抗计算部及偏心诊断部。电压供给部向感应电动机供给单相电压;电流测定部测定由供给电压向感应电动机供给的电流;电抗计算部利用感应电动机转子旋转期间向感应电动机供给的电压和测定的电流计算感应电动机的电抗;偏心诊断部在感应电动机转子旋转一圈期间所计算出的电抗值比预先设定的电抗值总是大时将感应电动机的空隙诊断为偏心。通过这种结构,本发明感应电动机的转子缺陷诊断装置可适用于任何状态的感应电动机,即使没有高价的专门设备也可以容易地诊断感应电动机的偏心状态。

Description

感应电动机转子缺陷诊断装置、方法及媒介
技术领域
本发明涉及一种电器设备,更详细地,涉及一种实施电动机状态的诊断的装置及方法。
背景技术
图1是概略地表示感应电动机的结构的图。如图1所示,在感应电动机中,对定子的绕组3施加电压和电流,使在定子铁心1中产生的磁通量Φs在鼠笼式转子2的导条4上产生电流,由此产生磁通量Φr
此时,如果在定子的三相绕组上施加具有120°相位差的输入电源,定子磁通量Φs就会根据输入的电源以一定的速度旋转,将其称为旋转磁场。
鼠笼式电动机通过根据这种定子及转子中产生的磁通量的相互关系感应的转矩τ而运转。此时,使感应电动机旋转的转矩τ与磁通量Φs和Φr的叉积成比例。
在感应电动机的定子和转子之间存在空隙5。将此空隙5不恒定的状态称为偏心。定子和转子之间的空隙不恒定的空隙偏心故障,根据定子的中心轴和转子/旋转中心轴的相对位置,可分为静态(Static)、动态(Dynamic)及混合(Mixed)偏心。
图2是概略地表示电动机空隙的状态的图。图2中左侧的图表示正常电动机,中间图表示静态偏心状态的电动机,右侧图表示动态偏心状态的电动机。
静态偏心是转子的中心轴与定子的中心轴不一致,且转子围绕转子的中心轴旋转的情况,指电动机运转时空隙最小的部分恒定。
动态偏心指定子的中心轴与转子的中心轴不一致,且以定子的中心轴为基准旋转的情况,并且空隙最小的部分随转子旋转而不同。
静态偏心的产生原因如下:由于制造上的缺陷而导致定子变成椭圆形,及定子和转子的位置没有排列好等。动态偏心的产生原因如下:转子的轴弯曲,或轴承的退化,电动机和负荷没有排列好,或机械共振。混合偏心是指静态偏心和动态偏心同时存在的情况。
由于这些原因导致在电动机上发生空隙偏心故障的情况下,由于不均匀的空隙,使处于转子和定子之间的引力仅偏向一侧,导致很强的不平衡状态(Unbalanced magnetic pull)。
这直接导致转子的弯曲或轴承的损伤。此外,还增加电动机的转矩脉动和振动,导致电动机性能的降低,当持续时,使定子和转子相接触,引起定子及转子的铁心和绕组的故障,达到不可维修的程度。因此,能够早期诊断电动机的空隙偏心是非常重要的。
作为诊断感应电动机空隙的偏心的方法有在不运转电动机的状态下进行试验的离线试验(Off-line test)和在运转中实施的在线监控(On line monitoring)。
1)离线试验
a.TIR(总读数,Total Indicated Reading)试验
用于制造公司在首次制作电动机时诊断缺陷,是一种将电动机分解,通过刻度盘测试指示器(dial test indicator)手动地旋转转子并判别转子的圆形程度,从而诊断动态偏心(Dinamic Eccentricity)的试验。但是,存在一些困难,即为了在电动机中进行转子分离及TIR,需要制作特别的装置等。
b.RIC(转子影响检测,Rotor Influence Check)试验
一种在不分解电动机的状态下,与TIR试验一样手动地旋转转子并向定子的三相绕组输入高频率的信号,从而比较各相绕组的电感值的试验。
如果在感应电动机中存在偏心,则各相的电感值就会表现出不一致,从而能够诊断偏心。但是,这种试验因为使用低电压、高频率的信号,所以受到定子铁心的残留磁通量的影响,存在试验的结果不准确的缺点。
c.利用脉冲试验仪(Surge tester)的方法
脉冲试验仪是一种用于定子绕组的绝缘试验的设备,是通过施加比额定电压高很多的电压来诊断感应电动机的绝缘状态的设备。用这种脉冲试验仪诊断偏心的方法,与其他离线试验一样,手动地旋转转子并测出经过脉冲试验仪的输出波形(Output waveform)的零交点(zero-crossing point)为止所用的时间,从而测试偏心。在具有偏心的电动机中,本试验的结果为到零交点的时间变短。
本诊断试验需要高价的脉冲试验仪,而且需要将非常高的电压施加到定子绕组上,会对电动机的可靠性带来不利的影响。此外,由于通过记录时间来显示结果,因此需要用于处理该问题的额外的装置。
2)在线监控试验(On-line monitoring)
a.利用电容式气隙传感器(Capacitive airgap sensors)的方法
作为一种能够在电动机的运转中诊断偏心的方法,是一种在定子的空隙相接的部分设置电容式气隙传感器来判别空隙的程度的方法。但是,这种方法只能适用在感应电动机的容量及大小非常大,从而空隙宽的电动机上。
b.频率分析法
其为测定电动机运转中产生的振动、噪音、磁通量、流过定子绕组的电流,通过分析频谱,用空隙偏心故障时产生的频率成分进行诊断的试验。
振动、噪音、磁通量的频率分析法,由于额外地产生用于测定它们的传感器费用的经济上的问题,其中以MCSA(电动机电流特征分析,Motor Current Signature Analysis)分析法为代表,MCSA分析法中,通过附着在电动机上的MCC(电动机控制中心,Motor ControlCenter)的电流互感器(CT,Current Transformer)测定电流,从而分析频谱。
如果存在偏心,这将改变随电动机转子位置变化的空隙,从而扭曲电动机内磁场的空间和时间分布。此时,对测定的电流进行频谱分析产生的频率,具有在低频范围内测定的成分和在高频范围内测定的成分,如下所示。
fecc,LF=fs±kfr=fs(1±k(1-s)/p)
fecc,HF=fs[(kR±nd)(1-s)/p±v]
其中,fs为电源的基本频率,k为任意整数,s为感应电动机的转差(slip),p为感应电动机的极对(Pole pairs)数,R为转子的槽数,nd为偏心次数,v为定子时间谐波(Stator time harmonic)的次数。
但是当低频成分的情况下,只有混合偏心时才能够诊断,高频成分通常比低频适用于静态、动态、混合偏心故障上,但需要知道转子槽的个数(R),而且无法检测特定的极数-转子槽数(p-R relation)时的缺陷。
而且,这种频率分析法需要存储大量的数据,如果在运转中负荷改变,使速度及转差改变,则难以检测出准确的故障频率。此外,由于特定负荷的影响(load torque oscillation)空隙偏心频率重合的情况下,同样具有难以判别的缺点。
发明内容
要解决的技术问题
本发明是为了解决所述以往的问题而完成的发明,目的在于提供一种感应电动机的转子缺陷诊断装置及方法,其可以适用于任何形态的感应电动机,并且即使没有高价的专门装备也能够容易地诊断多种形态的偏心状态。
技术方案
为了实现上述目的,本发明的感应电动机的转子缺陷诊断装置,其包括电流测定部、电抗计算部及偏心诊断部。
电流测定部测定向感应电动机供给的电流;电抗计算部利用向感应电动机供给的电压和所测定的电流,计算感应电动机的电抗;偏心诊断部,当感应电动机的转子旋转一圈期间所计算出的电抗值至少在一部分区间比预先设定的电抗值大时,将感应电动机的空隙诊断为偏心。
通过这种结构,本发明的感应电动机的转子缺陷诊断装置,可以适用于任何形态的感应电动机,并且即使没有高价的专门设备也可以容易地诊断出感应电动机的偏心状态。
在此,在所述转子旋转一圈期间所计算出的电抗值比正常状态大且一定时,偏心诊断部可将感应电动机的空隙诊断为静态或动态偏心,此外,在所述转子旋转一圈期间所计算出的电抗值比正常状态大且以1个周期变化时,偏心诊断部可将感应电动机的空隙诊断为混合偏心。通过这种结构,根据本发明的感应电动机的转子缺陷诊断装置可以容易地诊断出多种形态的偏心状态。
此外,根据本发明的感应电动机的转子缺陷诊断装置可以进一步包括导条缺陷诊断部,在感应电动机的转子旋转一圈期间所计算出的电抗值以转子极数周期变化时,导条缺陷诊断部诊断为转子导条上存在缺陷。这种结构,其利用本发明的感应电动机的转子缺陷诊断装置,不仅可以诊断出感应电动机的空隙偏心,还可以诊断出转子导条的缺陷。
此外,可以进一步包括测定交流电压的电压测定部。这种结构能够使转子缺陷诊断装置利用更加准确的电压值,从而使计算出的电抗值更具可靠性。
此外,可以进一步包括旋转转子的旋转部。这种结构可以使感应电动机的转子缺陷诊断过程完全自动化。
同时,本发明公开一种将所述装置以方法的形式实现的发明,以及存储用于执行所述方法的计算机可读程序的媒介。
有益效果
本发明的感应电动机的转子缺陷诊断装置可以适用于任何形态的感应电动机上,即使没有高价的专门设备也可以容易地诊断出感应电动机的偏心状态。
此外,本发明的感应电动机的转子缺陷诊断装置可以容易地诊断出多种形态的偏心状态。
此外,不仅可以诊断出感应电动机的空隙偏心,而且还可以诊断出转子导条的缺陷。
附图说明
图1是概略地表示感应电动机的结构的图。
图2是概略地表示电动机空隙的状态的图。
图3是根据本发明的感应电动机的转子缺陷诊断装置的一个实施例的概略方框图。
图4是概略地表示用于执行SPRT的状态的图。
图5是表示静止感应电动机中施加单相交流电时的等效电路的图。
图6是用于说明感应电动机的漏电感中曲折漏电感(zigzagleakage inductance)的图。
图7是表示具有50%偏心的电动机的漏电感的图表。
图8是表示漏电感随着偏心的增加变化的图表。
图9是根据正常电动机、静态/动态偏心、混合偏心、转子导条缺陷的情况,表示用SPRT计算出的电抗(X)值的变化的图表。
图10是表示用SPRT计算出的电抗(X)值的变化的图表,所述电抗(X)值是在具有2个缺陷转子导条的感应电动机的混合偏心状态和正常状态下分别计算出的。
具体实施方式
下面,参照附图,对本发明的优选实施例进行说明。
图3是根据本发明的感应电动机的转子缺陷诊断装置的一个实施例的概略方框图。
图3中感应电动机的转子缺陷诊断装置100包括:电压供给部110、电流测定部120、电压测定部122、电抗计算部130、偏心诊断部140、导条缺陷诊断部150及旋转部160。
在此,感应电动机的转子缺陷诊断装置100的各组成部分完全可以只用硬件来实现,但也可以用与软件结合的通用计算机装置来实现。
电压供给部110向感应电动机供给单相电压,电流测定部120测定由供给电压向感应电动机供给的电流。
在此,本实施例中通过电压供给部110在向感应电动机供给单相电压,但也可以不额外地设置电压供给部110,将转子缺陷诊断装置100设置成使其从外部供给得到电压,并且所供给的电压只要是交流电压,就不局限在单相电压上。
电压测定部122测定向感应电动机供给的交流电压。交流电压值可以利用向感应电动机供给的电压值计算,利用这种直接测定出的电压值时,可以得到更准确的电压值。
电抗计算部130利用向感应电动机供给的电压和测定的电流,计算出感应电动机的电抗。
旋转部160使转子旋转。在此,转子的旋转可以通过人力来手动进行,但也可以通过用于转子的旋转的专门的结构来旋转。这种结构通过使用于电抗计算过程的转子的旋转自动化,从而使根据本发明的感应电动机的转子缺陷诊断过程完全自动化。
在感应电动机的转子旋转一圈期间所计算出的电抗值至少在一部分区域比预先设定的电抗值大时,偏心诊断部140将感应电动机的空隙诊断为偏心。
在此,预先设定的电抗值为由电动机管理人员预先设定的值,通常为电动机处在非偏心状态的正常状态时的电抗值。
由这种结构,根据本发明的感应电动机的转子缺陷诊断装置可以适用于任何形态的感应电动机上,即使没有高价的专门设备也可以容易地诊断出感应电动机的偏心状态。
此时,在转子旋转一圈期间所计算出的电抗值比正常状态大且一定时,偏心诊断部140可以将感应电动机的空隙诊断为静态或动态偏心。此外,在转子旋转一圈期间所计算出的电抗值比正常状态大且以1个周期变化时,偏心诊断部140可以将感应电动机的空隙诊断为混合偏心。
通常,对处于偏心状态的感应电动机计算出的电抗值总是比正常状态大,但在一部分区间也有不大的情况。这是因为感应电动机的空隙为混合偏心时,计算出的电抗值的最低点有可能与正常状态的电抗值一致,随着测定有可能会有微小的变动。
通过这种结构,根据本发明的感应电动机的转子缺陷诊断装置可以容易地诊断如静态/动态或混合偏心等的多种形态的偏心状态。
此外,在感应电动机的转子旋转一圈期间所计算出的电抗值以转子极数的周期变化时,导条缺陷诊断部150诊断为在转子导条上存在缺陷。
这种结构,其利用本发明的感应电动机的转子缺陷诊断装置,不仅可以诊断出感应电动机的空隙偏心,还可以诊断出转子导条的缺陷。
下面,通过更具体的例子详细地说明本发明。
为了诊断感应电动机的空隙偏心,本发明利用诊断感应电动机转子故障的单相旋转试验(single phase rotation test;SPRT)。
图4是概略表示用于执行SPRT的状态的图。SPRT原本是一种主要用于诊断感应电动机的鼠笼式转子导条(Rotor bars)断裂缺陷的技术,是一种在电动机静止的状态下进行的离线试验(Off-line test)方式。
作为一种通过在定子绕组上施加单相电压,例如在A相与B相之间施加交流单相电压,测定在导条发生故障时变化的电流的诊断方法,施加额定电压的1/8~1/4的电压。与偏心的离线试验一样,在进行本试验时,一边旋转转子一边诊断状态。
本发明是利用SPRT试验诊断感应电动机的偏心,在定子绕组上施加电动机额定电压的1/8~1/4的单相交流电压。此时测定施加的输入电压和流过绕组的电流,从而计算出阻抗(Impedence)。通过观测上述阻抗的变化,判别是否发生故障。
在用于诊断感应电动机的转子导条的缺陷的一般的SPRT中,一边旋转转子一边观测电流大小的变化,而在本发明中,用施加的电压和所测定的电流计算电抗成分,从而判别偏心的程度。
图5是表示静止感应电动机中施加单相交流时的等效电路的图。
如图5所示,向静止的电动机施加SPRT的单相交流电压时,在感应电动机的等效电路中,等效电阻Rs和Rr只受到温度的影响,与偏心无关。
并且,磁化电抗Xm因为电动机处于静止状态,所以几乎没有从定子铁心向转子渗透的成分,因此是可以忽略的成分。与此相反,漏电抗成分XIs和XIr会根据偏心发生变化。
鼠笼式感应电动机的漏电感有槽(slot)、端部绕组(end-winding)、曲折(zigzag)成分等,其中,空隙长度越小,曲折漏电感成分的值越大。
图6是用于说明感应电动机的漏电感中曲折漏电感的图。
由此,对用SPRT试验中施加的电压和测定的电流计算出的阻抗成分进行分析,就可以用漏电感成分判别根据空隙变化的偏心程度。
图7是表示具有50%偏心的电动机的漏电感的图表,图8是表示漏电感随着偏心的增加变化的图表。
图7中,在感应电动机中存在50%的偏心时,随着转子位置变换一圈,漏曲折电感LZZ的值按照余弦函数的形态变化,如果用平均值表示,则可知与正常电动机相比其值是升高的。此外,图8中,偏心每增加10%时,漏电感的平均值以指数函数的形式增加。
因此,当电动机上单独存在静态或动态偏心时,利用SPRT由施加的电压和测定的电流计算的电抗值,因为即使转子位置发生变化,但偏心量也不变化,所以与转子位置无关,与正常电动机的电抗值相比,表现出增加的形态。
但是,当静态偏心和动态偏心同时存在的混合偏心(Mixedeccentricity)的情况下,每当转子位置变化时,整体偏心量会发生变化,所以通过SPRT计算出的电抗值在转子机械地旋转360°时,具有一次重复的成分,即正弦波成分。
此外,诊断感应电动机的导条的缺陷的SPRT,其通常一边旋转转子一边观察所测定的电流大小的变化,与此相比,本方法用施加的电压和所测定的电流计算出电抗成分,从而判别偏心的程度。
该电抗值还可以用于转子导条缺陷诊断上,其成分在转子位置变化一圈(机械地旋转360°)时,以电动机的极(Pole)数变化。因此,本方法不仅可以诊断感应电动机的偏心,还可以同时诊断及区别作为SPRT的最初目的的转子导条的缺陷。
图9是根据正常电动机、静态/动态偏心、混合偏心、转子导条的缺陷的情况,表示用SPRT计算出的电抗(X)值的变化的图表。
图9中,可以确认当转子具有四极的感应电动机为混合偏心时,虽然在感应电动机旋转一圈期间电抗值也变化一个周期,但在导条存在缺陷时,以极数周期变化。
当混合偏心和导条的缺陷同时存在时,这种电抗值的周期对于混合偏心和导条缺陷都表现出来。
图10是表示用SPRT计算出的电抗(X)值的变化的图表,所述电抗(X)值是在具有2个转子导条缺陷的感应电动机的混合偏心状态和正常状态下分别计算出的。
在图10中可以确认,在导条存在缺陷时,虽具有转子极数周期,但在还具有混合偏心时,整体波形还具有小周期以外的大的周期。
本发明将作为诊断感应电动机的转子导条缺陷的现有技术SPRT试验还应用在空隙偏心诊断上,从而可以用一个试验同时诊断及区别两种缺陷。此外,SPRT试验非常简单、经济且不贵,作为可靠性高的试验在现场应用是非常方便的。
与现有的诊断技术不同,能够诊断/区别静态、动态及混合偏心,因为是离线试验(Off-line test),所以也不受负荷的影响。此外,与特定的极数-转子槽数也无关,并且不需要转子槽数及速度或转差等的信息。
本发明中所使用的作为偏心故障因素(indicator)的电抗成分,因为其可以由SPRT试验所施加的电压和所测定的电流容易地计算,所以其算法的实现非常简单。
本发明虽然是通过一部分优选实施例进行了说明,但本发明的范围并非限定于此,还应包括可被权利要求书支持的所述实施例的变形或改良。

Claims (12)

1.一种感应电动机的转子缺陷诊断装置,其特征在于,其包括:
电流测定部,其测定向感应电动机供给的交流电流;
电抗计算部,其利用向所述感应电动机供给的交流电压和测定的交流电流,计算所述感应电动机的电抗;及
偏心诊断部,在所述感应电动机的转子旋转一圈期间所计算出的电抗值至少在一部分区间比预先设定的电抗值大时,其将所述感应电动机的空隙诊断为偏心。
2.根据权利要求1所述的感应电动机的转子缺陷诊断装置,其特征在于,当所述转子旋转一圈期间所计算出的电抗值一定时,所述偏心诊断部将所述感应电动机的空隙诊断为静态或动态偏心。
3.根据权利要求1所述的感应电动机的转子缺陷诊断装置,其特征在于,当所述转子旋转一圈期间所计算出的电抗值以1个周期变化时,所述偏心诊断部将所述感应电动机的空隙诊断为混合偏心。
4.根据权利要求1所述的感应电动机的转子缺陷诊断装置,其特征在于,其进一步包括导条缺陷诊断部,在所述转子旋转一圈期间所计算出的电抗值以所述转子极数周期变化时,所述导条缺陷诊断部诊断为所述转子导条上存在缺陷。
5.根据权利要求1所述的转子缺陷诊断装置,其特征在于,其进一步包括电压测定部,其测定所述交流电压。
6.根据权利要求1所述的转子缺陷诊断装置,其特征在于,进一步包括旋转所述转子的旋转部。
7.一种感应电动机的转子缺陷诊断方法,其特征在于,其包括以下步骤:
测定向感应电动机供给的交流电流;
利用向所述感应电动机供给的交流电压和测定的交流电流,计算所述感应电动机的电抗;及
诊断偏心,在所述感应电动机的转子旋转一圈期间所计算出的电抗值至少在一部分区间比预先设定的电抗值大时,将所述感应电动机的空隙诊断为偏心。
8.根据权利要求7所述的感应电动机的转子缺陷诊断方法,其特征在于,在所述转子旋转一圈期间所计算出的电抗值一定时,将所述感应电动机的空隙诊断为静态或动态偏心。
9.根据权利要求7所述的感应电动机的转子缺陷诊断方法,其特征在于,在所述转子旋转一圈期间所计算出的电抗值以1个周期变化时,将所述感应电动机的空隙诊断为混合偏心。
10.根据权利要求7所述的感应电动机的转子缺陷诊断方法,其特征在于,在所述转子旋转一圈期间所计算出的电抗值以所述转子极数周期变化时,诊断为所述导条上存在缺陷。
11.根据权利要求7所述的感应电动机的转子缺陷诊断方法,其特征在于,进一步包括测定所述交流电压的步骤。
12.一种媒介,其存储用于实施权利要求7~11中任一项所述的方法的计算机可读程序。
CN201210530487.5A 2012-01-18 2012-12-10 感应电动机转子缺陷诊断装置、方法及媒介 Active CN103217644B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120005606A KR101326586B1 (ko) 2012-01-18 2012-01-18 유도 전동기의 회전자 결함 진단 장치, 방법 및 상기 방법을 실행시키기 위한 컴퓨터 판독 가능한 프로그램을 기록한 매체
KR10-2012-0005606 2012-01-18

Publications (2)

Publication Number Publication Date
CN103217644A true CN103217644A (zh) 2013-07-24
CN103217644B CN103217644B (zh) 2016-01-20

Family

ID=48799374

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210530487.5A Active CN103217644B (zh) 2012-01-18 2012-12-10 感应电动机转子缺陷诊断装置、方法及媒介

Country Status (3)

Country Link
KR (1) KR101326586B1 (zh)
CN (1) CN103217644B (zh)
WO (1) WO2013108971A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105044602A (zh) * 2015-08-25 2015-11-11 合肥工业大学 一种感应电动机的偏心检测装置及其检测方法
CN105044601A (zh) * 2015-08-25 2015-11-11 合肥工业大学 一种利用漏磁场检测感应电动机的偏心检测装置及其检测方法
CN105698740A (zh) * 2016-03-30 2016-06-22 同济大学 一种永磁同步电机偏心诊断方法
CN107015146A (zh) * 2017-03-02 2017-08-04 浙江大学 诊断永磁电机气隙偏心故障的方法
CN108303049A (zh) * 2018-02-05 2018-07-20 西门子(中国)有限公司 定子铁芯内孔圆柱度的检测方法、系统、装置及存储介质
CN109814030A (zh) * 2019-04-01 2019-05-28 西北工业大学 一种同步发电机定转子气隙动态偏心故障的诊断方法
CN111288952A (zh) * 2020-03-16 2020-06-16 湖南米艾西测控技术有限公司 一种旋转变压器自动定心调节工装

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101328738B1 (ko) * 2012-09-10 2013-11-11 고려대학교 산학협력단 유도 전동기 공극 편심 진단 장치 및 방법, 그리고 그 방법을 컴퓨터에서 실행시키기 위한 프로그램을 기록한 기록매체
KR102113497B1 (ko) * 2018-09-07 2020-05-28 동명대학교산학협력단 유도기 설비의 휴대용 회전자 진단 장치를 사용하는 방법
US11619670B2 (en) 2020-04-01 2023-04-04 Caterpillar Inc. System and method for detecting winding faults in a generator
KR102544604B1 (ko) * 2021-04-27 2023-06-16 고려대학교 산학협력단 동기기 고장 진단 방법 및 장치
KR102325650B1 (ko) * 2021-06-25 2021-11-12 (주)수산인더스트리 유도 전동기 관리 시스템
CN114460465A (zh) * 2022-04-08 2022-05-10 华中科技大学 一种永磁电机偏心故障的判断方法及系统
CN115561570B (zh) * 2022-12-08 2023-03-24 深圳市科美达自动化设备有限公司 3、5极转子共用检测机构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1065789A1 (ru) * 1982-02-11 1984-01-07 Предприятие П/Я В-2156 Способ косвенного определени эксцентриситета воздушного зазора электрической машины
SU1176274A1 (ru) * 1984-03-11 1985-08-30 Ереванский политехнический институт им.К.Маркса Способ измерени относительного эксцентриситета электрической машины
CN1480740A (zh) * 2003-04-28 2004-03-10 广东省电力工业局试验研究所 电动机早期故障小波诊断系统及其诊断电动机故障的方法
KR20100045718A (ko) * 2008-10-24 2010-05-04 고려대학교 산학협력단 영구 자석 동기 전동기의 영구 자석 감자 상태 진단 장치, 방법, 및 상기 방법을 실행시키기 위한 컴퓨터 판독 가능한프로그램을 기록한 매체
KR20110133851A (ko) * 2010-06-07 2011-12-14 고려대학교 산학협력단 유도 전동기 공극 편심 진단 방법, 장치, 및 상기 방법을 실행시키기 위한 컴퓨터 프로그램을 기록한 매체

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100608235B1 (ko) * 2005-12-16 2006-08-02 주식회사 케이디파워 유도전동기의 실시간 수명 예측, 결함 감지 방법 및 장치
KR100810979B1 (ko) * 2006-12-08 2008-03-12 대림대학 산학협력단 유도전동기의 결함 검출 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1065789A1 (ru) * 1982-02-11 1984-01-07 Предприятие П/Я В-2156 Способ косвенного определени эксцентриситета воздушного зазора электрической машины
SU1176274A1 (ru) * 1984-03-11 1985-08-30 Ереванский политехнический институт им.К.Маркса Способ измерени относительного эксцентриситета электрической машины
CN1480740A (zh) * 2003-04-28 2004-03-10 广东省电力工业局试验研究所 电动机早期故障小波诊断系统及其诊断电动机故障的方法
KR20100045718A (ko) * 2008-10-24 2010-05-04 고려대학교 산학협력단 영구 자석 동기 전동기의 영구 자석 감자 상태 진단 장치, 방법, 및 상기 방법을 실행시키기 위한 컴퓨터 판독 가능한프로그램을 기록한 매체
KR20110133851A (ko) * 2010-06-07 2011-12-14 고려대학교 산학협력단 유도 전동기 공극 편심 진단 방법, 장치, 및 상기 방법을 실행시키기 위한 컴퓨터 프로그램을 기록한 매체

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105044602A (zh) * 2015-08-25 2015-11-11 合肥工业大学 一种感应电动机的偏心检测装置及其检测方法
CN105044601A (zh) * 2015-08-25 2015-11-11 合肥工业大学 一种利用漏磁场检测感应电动机的偏心检测装置及其检测方法
CN105698740A (zh) * 2016-03-30 2016-06-22 同济大学 一种永磁同步电机偏心诊断方法
CN105698740B (zh) * 2016-03-30 2018-06-29 同济大学 一种永磁同步电机偏心诊断方法
CN107015146A (zh) * 2017-03-02 2017-08-04 浙江大学 诊断永磁电机气隙偏心故障的方法
CN108303049A (zh) * 2018-02-05 2018-07-20 西门子(中国)有限公司 定子铁芯内孔圆柱度的检测方法、系统、装置及存储介质
CN109814030A (zh) * 2019-04-01 2019-05-28 西北工业大学 一种同步发电机定转子气隙动态偏心故障的诊断方法
CN111288952A (zh) * 2020-03-16 2020-06-16 湖南米艾西测控技术有限公司 一种旋转变压器自动定心调节工装
CN111288952B (zh) * 2020-03-16 2022-07-05 湖南米艾西测控技术有限公司 一种旋转变压器自动定心调节工装

Also Published As

Publication number Publication date
KR101326586B1 (ko) 2013-11-07
CN103217644B (zh) 2016-01-20
KR20130084775A (ko) 2013-07-26
WO2013108971A1 (ko) 2013-07-25

Similar Documents

Publication Publication Date Title
CN103217644B (zh) 感应电动机转子缺陷诊断装置、方法及媒介
CN106771835B (zh) 基于检测线圈的汽轮发电机转子匝间短路诊断装置及方法
EP2728367B1 (en) A method for detecting a fault condition in an electrical machine
US7042229B2 (en) System and method for on line monitoring of insulation condition for DC machines
CN103823150B (zh) 多传感器联合的汽轮发电机转子匝间短路故障诊断方法
CN106304846B (zh) 用于确定同步机故障状态的方法和系统
CN106772037B (zh) 基于双线圈的同步发电机转子绕组匝间短路诊断方法
CN109901068B (zh) 一种感应电机的空载铁耗测试方法
CN104569733A (zh) 一种确定电机励磁绕组匝间短路故障位置的方法
JP5670033B2 (ja) 漂遊磁束を処理する方法およびシステム
CN110456270B (zh) 一种电机绝缘在线监测方法及装置
Ahmed et al. Detection of eccentricity faults in machine usingfrequency spectrum technique
Sottile et al. Experimental investigation of on-line methods for incipient fault detection [in induction motors]
CN109342877A (zh) 一种分数槽集中绕组永磁电机的绕组匝间短路故障检测装置及方法
KR102028710B1 (ko) 3상 교류 돌극형 동기기의 댐퍼 바 고장 진단 시스템, 방법, 및 상기 방법을 실행시키기 위한 컴퓨터 판독 가능한 프로그램을 기록한 기록 매체
Pusca et al. An improvement of a diagnosis procedure for AC machines using two external flux sensors based on a fusion process with belief functions
Spyropoulos et al. The influence of the broken bar fault on the magnetic field and electromagnetic torque in 3-phase induction motors
Xu et al. Inter-turn short-circuit fault detection with high-frequency signal injection for inverter-fed PMSM systems
CN113125952A (zh) 一种永磁转子电机反电动势测试方法
Lasjerdi et al. Condition monitoring of wound rotor resolvers
Drif et al. Rotor cage fault diagnostics in three-phase induction motors, by the instantaneous non-active power signature analysis
Chen et al. Harmonics analysis of air-gap magnetic field of induction motors with stator inter-turn fault
Rodriguez et al. Analysis of air gap flux to detect induction motor faults
Kumar et al. LabVIEW based condition monitoring of induction machines
Phumiphak et al. Non-intrusive method for induction motor field efficiency estimation using on-site measurement and modified equivalent circuit

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant