CN103214233B - High TcWide temperature range and super high BsMnZn ferrite material and preparation method thereof - Google Patents

High TcWide temperature range and super high BsMnZn ferrite material and preparation method thereof Download PDF

Info

Publication number
CN103214233B
CN103214233B CN201310092273.9A CN201310092273A CN103214233B CN 103214233 B CN103214233 B CN 103214233B CN 201310092273 A CN201310092273 A CN 201310092273A CN 103214233 B CN103214233 B CN 103214233B
Authority
CN
China
Prior art keywords
ferrite material
sintering
wide temperature
temperature
ball mill
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310092273.9A
Other languages
Chinese (zh)
Other versions
CN103214233A (en
Inventor
余忠
孙科
蒋晓娜
兰中文
黄晓东
郭荣迪
邬传键
许志勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ma'anshan Xinkangda Magnetic Industry Co ltd
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201310092273.9A priority Critical patent/CN103214233B/en
Publication of CN103214233A publication Critical patent/CN103214233A/en
Application granted granted Critical
Publication of CN103214233B publication Critical patent/CN103214233B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

高Tc、宽温超高Bs MnZn铁氧体材料及制备方法,属于铁氧体材料制备技术领域。本发明的铁氧体材料由主料和掺杂剂组成,其特征在于,主料包括:58.0-62.0mol%Fe2O3,10.0-15.0mol%ZnO,4.0-6.0mol%NiO,余量为MnO;按重量百分比,并以预烧后的主料为参考基准,以氧化物计算,掺杂剂包括:0.001-0.30wt%MoO3、0.01-0.40wt%Bi2O3、0.001-0.05wt%SnO2、0.001-0.05wt%Nb2O5、0.001-0.20wt%Ta2O5。本发明具有高居里温度(Tc≥320℃)、宽温高Bs(25℃,Bs≥600mT;100℃,Bs≥490mT)及较低损耗(100℃、100kHz200mT,PL≤800kW/m3)等特性。The invention relates to a high T c , wide temperature ultra-high B s MnZn ferrite material and a preparation method thereof, belonging to the technical field of ferrite material preparation. The ferrite material of the present invention is composed of a main material and a dopant, and is characterized in that the main material includes: 58.0-62.0mol% Fe 2 O 3 , 10.0-15.0mol% ZnO, 4.0-6.0mol% NiO, and the balance It is MnO; by weight percentage, and based on the main material after pre-calcination, calculated as oxide, the dopant includes: 0.001-0.30wt%MoO 3 , 0.01-0.40wt%Bi 2 O 3 , 0.001-0.05 wt% SnO 2 , 0.001-0.05 wt% Nb 2 O 5 , 0.001-0.20 wt% Ta 2 O 5 . The invention has high Curie temperature (T c ≥ 320°C), wide temperature and high B s (25°C, B s ≥ 600mT; 100°C, B s ≥ 490mT) and low loss (100°C, 100kHz200mT, P L ≤ 800kW /m 3 ) and other characteristics.

Description

高T c、宽温超高B s MnZn铁氧体材料及制备方法High T c, wide temperature ultra-high B s MnZn ferrite material and preparation method

技术领域 technical field

本技术属于铁氧体材料制备技术领域,特别涉及高居里温度(Tc)、宽温超高饱和磁感应强度(Bs)MnZn铁氧体材料及其制备方法。  The technology belongs to the technical field of ferrite material preparation, and particularly relates to MnZn ferrite material with high Curie temperature (T c ), wide temperature and ultra-high saturation magnetic induction (B s ), and a preparation method thereof.

背景技术 Background technique

开关电源变压器磁心稳定的工作温度是在80℃-120℃的高温下。在高温条件下,铁氧体材料的Bs较常温下有一个大幅度的下降。同时,许多应用于高温大电流条件下的电子元器件如HID灯镇流器、车用电源磁心等至少需要满足:(1)能输出足够大的功率,(2)能承受启动时的瞬时冲击大电流。达到此要求在很大程度上取决于铁氧体磁性材料的性能。因为高的输出功率意味着大的电流输出,若线圈的电流过大,则可能导致磁心磁化至饱和,从而使其导磁能力(电感量)下降,磁心的电感量会随着线圈中励磁电流的增加而先增加到一个最大值,然后下降,此时磁心就“饱和”了,而要使电子器件正常工作,磁心电感量的减落必须小于一个定值。在大电流下,若磁心的Bs值越高,其抗饱和能力便越强,电感量减落就越小。同时,材料的功耗不宜过高,若磁心自身的功耗高,会使磁件本身发热增加,能量传输效率降低,一旦工作温度高于功耗谷点,会导致温度升高,磁心的损耗越大,形成磁件温度更高的恶性循环,进而影响器件的正常工作。另外,虽然金属软磁材料具有更高的饱和磁感应强度,但其成本较高、电阻率较低,且其耐腐蚀性较差,不满足设计高性能低成本、低损耗材料的初衷。值得注意的是,高的居里温度是磁性器件在宽温度范围内工作的必备条件,尤其是散热空间有限的场合,提高磁性器件及电子系统的可靠性更为重要的是可以保证材料在宽温范围内具有高的Bs;而高的Bs则可提高电子系统的电流承载量,提高功率密度,实现小型化,因此,开发一种兼具高居里温度、宽温超高Bs特性的MnZn铁氧体材料具有非常广阔的市场应用前景。  The stable working temperature of the switching power transformer core is at a high temperature of 80°C-120°C. Under high temperature conditions, the B s of ferrite materials has a large drop compared with normal temperature. At the same time, many electronic components used in high temperature and high current conditions, such as HID lamp ballasts, automotive power cores, etc., must at least meet: (1) be able to output sufficient power, (2) be able to withstand the instantaneous impact when starting High Current. Meeting this requirement depends largely on the properties of the ferrite magnetic material. Because high output power means large current output, if the current of the coil is too large, it may cause the core to be magnetized to saturation, thereby reducing its magnetic permeability (inductance), and the inductance of the core will increase with the excitation current in the coil. The increase of the magnetic core first increases to a maximum value and then decreases. At this time, the magnetic core is "saturated". To make the electronic device work normally, the decrease of the magnetic core inductance must be less than a fixed value. Under high current, if the B s value of the magnetic core is higher, its anti-saturation ability will be stronger, and the inductance drop will be smaller. At the same time, the power consumption of the material should not be too high. If the power consumption of the magnetic core itself is high, the heating of the magnetic part itself will increase and the energy transmission efficiency will decrease. Once the operating temperature is higher than the valley point of power consumption, the temperature will rise and the loss of the magnetic core will The larger the temperature is, the vicious cycle will be formed with the higher temperature of the magnetic parts, which will affect the normal operation of the device. In addition, although metal soft magnetic materials have higher saturation magnetic induction, their cost is high, their resistivity is low, and their corrosion resistance is poor, which does not meet the original intention of designing high-performance, low-cost, and low-loss materials. It is worth noting that a high Curie temperature is a necessary condition for magnetic devices to work in a wide temperature range, especially where the heat dissipation space is limited. It is more important to improve the reliability of magnetic devices and electronic systems It has high B s in a wide temperature range; and high B s can increase the current carrying capacity of the electronic system, increase the power density, and realize miniaturization. Therefore, it is necessary to develop a high Curie temperature, wide temperature and ultra-high B s The characteristic MnZn ferrite material has a very broad market application prospect.

近年来,高居里温度(Tc)、宽温高饱和磁感应强度(Bs)功率铁氧体材料 已成为磁材业界关注的热点。在中国公开的专利CN1294099A中,公开了一种高温高Bs功率铁氧体材料,其通过NiO取代MnO提高材料的Bs,但是其100℃、1194A/m下的Bs仅为440mT。专利CN101090016A公布了一种通过调节烧结过程中升降温速率、保温时间及氧分压大小的方式来达到提高材料Bs的目的,其100℃、1194A/m下的Bs达到450mT,仍较小。专利CN101429016A公开了一种MnZn功率铁氧体材料,其居里温度为280℃,100℃、1194A/m下的Bs为460mT,是现有材料中Tc和Bs均较高的材料,具有较强的市场竞争力。专利CN1890197A中公开了一种高温超高Bs MnZn功率铁氧体材料,其主配方为:Fe2O3:63-80mol%,ZnO:3-15mol%,余为MnO,辅助成分包括CaO、SiO2,在1175℃下保温8小时。获得的铁氧体材料性能为:100℃下,Bs为520mT,但其损耗太高,在50kHz,150mT下的损耗高达1100kW/m3。另外,JFE公司推出的MB1H磁性材料,其25℃和100℃下的Bs分别为540mT和460mT,居里温度为300℃。FDK公司的4H47材料,其25℃和100℃下的Bs分别为530mT和470mT,居里温度约为200℃。NEC/TOKIN公司推出的BH7材料,其25℃和100℃下的Bs分别为600mT和490mT,100℃、100kHz200mT的损耗高达1350kW/m3。NICERA公司的BM40材质,其25℃和100℃下的Bs分别为530mT和470mT,居里温度高达300℃。  In recent years, power ferrite materials with high Curie temperature (T c ), wide temperature and high saturation magnetic induction (B s ) have become a hot spot in the magnetic material industry. In the Chinese published patent CN1294099A, a high temperature and high B s power ferrite material is disclosed, which increases the B s of the material by replacing MnO with NiO, but its B s at 100°C and 1194A/m is only 440mT. Patent CN101090016A discloses a way to increase the B s of the material by adjusting the heating and cooling rate, holding time and oxygen partial pressure during the sintering process. The B s of the material at 100°C and 1194A/m reaches 450mT, which is still small . Patent CN101429016A discloses a MnZn power ferrite material with a Curie temperature of 280°C and a B s of 460mT at 100°C and 1194A/m, which is a material with relatively high Tc and Bs among existing materials. Has strong market competitiveness. Patent CN1890197A discloses a high-temperature ultra-high B s MnZn power ferrite material, its main formula is: Fe 2 O 3 : 63-80mol%, ZnO: 3-15mol%, the rest is MnO, and the auxiliary components include CaO, SiO 2 , at 1175°C for 8 hours. The properties of the obtained ferrite material are: at 100°C, B s is 520mT, but its loss is too high, at 50kHz, the loss is as high as 1100kW/m 3 at 150mT. In addition, the MB1H magnetic material launched by JFE has B s of 540mT and 460mT at 25°C and 100°C respectively, and a Curie temperature of 300°C. FDK's 4H47 material has B s of 530mT and 470mT at 25°C and 100°C respectively, and its Curie temperature is about 200°C. The BH7 material launched by NEC/TOKIN has B s of 600mT and 490mT at 25°C and 100°C respectively, and the loss at 100°C and 100kHz200mT is as high as 1350kW/m 3 . NICERA's BM40 material has B s of 530mT and 470mT at 25°C and 100°C respectively, and its Curie temperature is as high as 300°C.

发明内容 Contents of the invention

本发明所要解决的技术问题是,提供一种高Tc、宽温超高Bs MnZn铁氧体材料及制备方法,其材料具有高居里温度(Tc≥320℃)、宽温高Bs(25℃,Bs≥600mT;100℃,Bs≥490mT)及较低损耗(100℃、100kHz200mT,PL≤800kW/m3)等特性。  The technical problem to be solved by the present invention is to provide a high T c , wide temperature and ultra-high B s MnZn ferrite material and its preparation method. The material has a high Curie temperature (T c ≥ 320°C), wide temperature and high B (25°C, B s ≥600mT; 100°C, B s ≥490mT) and low loss (100°C, 100kHz200mT, P L ≤800kW/m 3 ).

本发明解决所述技术问题采用的技术方案是,高Tc、宽温超高Bs MnZn铁氧体材料,由主料和掺杂剂组成,其特征在于,主料包括:  The technical solution adopted by the present invention to solve the technical problem is that the high T c , wide temperature ultra-high B s MnZn ferrite material is composed of main materials and dopants, and it is characterized in that the main materials include:

58.0-62.0mol%Fe2O3,10.0-15.0mol%ZnO,4.0-6.0mol%NiO,余量为MnO;  58.0-62.0mol% Fe 2 O 3 , 10.0-15.0mol% ZnO, 4.0-6.0mol% NiO, the balance being MnO;

按重量百分比,并以预烧后的主料为参考基准,以氧化物计算,掺杂剂包括:0.001-0.30wt%MoO3、0.01-0.40wt%Bi2O3、0.001-0.05wt%SnO2、0.001-0.05wt%Nb2O5、0.001-0.20wt%Ta2O5。  By weight percentage, and based on the main material after pre-calcination, calculated as oxides, dopants include: 0.001-0.30wt%MoO 3 , 0.01-0.40wt%Bi 2 O 3 , 0.001-0.05wt%SnO 2. 0.001-0.05 wt% Nb 2 O 5 , 0.001-0.20 wt% Ta 2 O 5 .

本发明的高Tc、宽温超高Bs MnZn铁氧体材料的制备方法包括以下步骤:  The preparation method of the high Tc , wide temperature ultra-high Bs MnZn ferrite material of the present invention comprises the following steps:

1)配方  1) Formula

采用58.0-62.0mol%Fe2O3,10.0-15.0mol%ZnO,4.0-6.0mol%NiO,余量为MnO;  Use 58.0-62.0mol% Fe 2 O 3 , 10.0-15.0mol% ZnO, 4.0-6.0mol% NiO, and the balance is MnO;

2)一次球磨  2) One ball mill

将以上配方的料粉混合均匀,球磨;  Mix the powder of the above formula evenly and ball mill;

3)预烧  3) Pre-burning

将步骤2)所得球磨料烘干,在60-100MPa下压制,并在800-1000℃预烧1-3小时;  Dry the ball mill material obtained in step 2), press it at 60-100MPa, and pre-sinter at 800-1000°C for 1-3 hours;

4)掺杂  4) Doping

将步骤3)所得料粉按重量比加入以下掺杂剂:0.001-0.30wt%MoO3、0.01-0.40wt%Bi2O3、0.001-0.05wt%SnO2、0.001-0.05wt%Nb2O5、0.001-0.20wt%Ta2O5;所述重量比为掺杂剂:料粉。  Add the following dopants to the powder obtained in step 3) by weight ratio: 0.001-0.30wt% MoO 3 , 0.01-0.40wt% Bi 2 O 3 , 0.001-0.05wt% SnO 2 , 0.001-0.05wt% Nb 2 O 5. 0.001-0.20wt% Ta 2 O 5 ; the weight ratio is dopant: powder.

5)二次球磨  5) Second ball milling

将步骤4)中得到的料粉在球磨机中球磨4-8小时;  The powder obtained in step 4) is ball milled in a ball mill for 4-8 hours;

6)成型  6) Forming

将步骤5)所得料粉按重量比加入8-12wt%有机粘合剂,混匀,造粒后,在压机上将粒状粉料压制成坯件;  Add 8-12wt% organic binder to the powder obtained in step 5) by weight, mix evenly, and after granulating, press the granular powder on a press to form a blank;

7)烧结  7) Sintering

将步骤6)所得坯件置于气氛烧结炉内烧结。  The blank obtained in step 6) is placed in an atmosphere sintering furnace for sintering. the

所述步骤7)为:将步骤6)所得坯件置于气氛烧结炉内烧结,在1000℃-1300℃温度段,体积比O2/N2=1/999;在1300℃-1400℃温度段,O2/N2=4/96,保温4-6小时;在降温段进行平衡气氛烧结。  The step 7) is: sintering the blank obtained in step 6) in an atmosphere sintering furnace, at a temperature range of 1000°C-1300°C, the volume ratio O 2 /N 2 =1/999; at a temperature of 1300°C-1400°C Section, O 2 /N 2 =4/96, keep warm for 4-6 hours; carry out equilibrium atmosphere sintering in the cooling section.

8)测试  8) Test

将步骤7)所得样品进行电磁性能测试。  The sample obtained in step 7) is subjected to electromagnetic performance testing. the

用同惠TH2828精密LCR测试仪测试样品的电感L,适当调整绕线两端电压值Us使其满足:Us=4.44NfAeB,样品的起始磁导率根据下式计算:  Use Tonghui TH2828 precision LCR tester to test the inductance L of the sample, properly adjust the voltage value U s at both ends of the winding to meet: U s =4.44NfA e B, and the initial permeability of the sample is calculated according to the following formula:

μμ ii == LL ×× 1010 77 22 NN 22 hh lnln DD. // dd -- -- -- (( 11 ))

其中L为样品的电感,N为绕线匝数,h为样品厚度,D为样品外径,d为样品内径,Ae为样品的有效截面积。测试条件为:频率f=10kHz,磁感应强度B≤0.25mT。结合温控箱得出μi-T曲线图,使用外延法确定居里温度Tc。  Where L is the inductance of the sample, N is the number of winding turns, h is the thickness of the sample, D is the outer diameter of the sample, d is the inner diameter of the sample, and A e is the effective cross-sectional area of the sample. The test conditions are: frequency f=10kHz, magnetic induction B≤0.25mT. Combined with the temperature control box, the μ i -T curve is obtained, and the Curie temperature T c is determined by the epitaxy method.

用IWATSU SY-8232B-H分析仪测试样品的磁滞回线,测试条件为:f=0.1kHz,H=1200A/m。  Use the IWATSU SY-8232B-H analyzer to test the hysteresis loop of the sample, and the test conditions are: f=0.1kHz, H=1200A/m. the

用IWATSU SY-8232B-H分析仪测试样品的损耗,测试条件为:f=100kHz,Bm=200mT,T=25℃-120℃。  The loss of the sample was tested with an IWATSU SY-8232B-H analyzer, and the test conditions were: f=100kHz, B m =200mT, T=25°C-120°C.

本发明的MnZn铁氧体材料的制备技术,其技术指标如下:  The preparation technology of MnZn ferrite material of the present invention, its technical index is as follows:

起始磁导率μi:1500±20%  Initial permeability μ i : 1500±20%

饱和磁感应强度Bs:≥600mT(25℃);≥490mT(100℃);≥460mT(120℃)  Saturation magnetic induction B s : ≥600mT (25°C); ≥490mT (100°C); ≥460mT (120°C)

居里温度Tc:≥320℃  Curie temperature T c : ≥320°C

损耗PL(100kHz200mT):≤1100kW/m3(25℃);≤800kW/m3(100℃);≤1000kW/m3(120℃);  Loss P L (100kHz200mT): ≤1100kW/m 3 (25°C); ≤800kW/m 3 (100°C); ≤1000kW/m 3 (120°C);

密度dm:≥5.0g/cm3;  Density d m : ≥5.0g/cm 3 ;

高居里温度(Tc≥320℃)、宽温高Bs(25℃,Bs≥600mT;100℃,Bs≥490mT)及较低损耗(100℃、100kHz200mT,PL≤800kW/m3)等特性。  High Curie temperature (T c ≥320°C), wide temperature and high B s (25°C, B s ≥600mT; 100°C, B s ≥490mT) and low loss (100°C, 100kHz200mT, P L ≤800kW/m 3 ) and other characteristics.

具体实施方式 Detailed ways

本发明主要针对现有技术设计的MnZn铁氧体所存在的高居里温度及宽温高Bs两个关键参数难以同时满足的技术难题,提供一种兼具高居里温度及宽温高Bs特性的MnZn铁氧体材料及其制备方法。  The present invention mainly aims at the technical problem that the two key parameters of high Curie temperature and wide temperature and high B s in the MnZn ferrite designed in the prior art are difficult to meet at the same time, and provides a high Curie temperature, wide temperature and high B s Characteristics of MnZn ferrite materials and methods for their preparation.

本发明的核心思想是:采用MnZn铁氧体富铁配方,增强A、B次晶格中磁性离子数量,增强材料的超交换作用,虽可提高材料的居里温度,但不可避免地增大了材料的磁晶各向异性常数和磁致伸缩系数(正值),增大了磁化阻力,不利于提高磁导率和降低损耗;因此,本发明采用适量的NiO替代MnO,一方面由NiO形成的NiFe2O4铁氧体的居里温度显著高于由MnO形成的MnFe2O4铁氧体的居里温度,取代后可提高材料的居里温度,提高磁性器件的可靠性,另一方面NiO形成的NiFe2O4铁氧体的磁晶各向异性常数和磁致伸缩系数(负值)低于MnO形成的MnFe2O4铁氧体的晶各向异性常数和磁致伸缩系数(负值),NiO部分取代MnO 后,可以与富铁部分形成的正磁化阻力形成正负补偿,进而使磁化阻力有较低值,可提高磁导率,降低损耗。同时,在配方中尽可能降低ZnO含量,进而保证材料具有高的居里温度。  The core idea of the present invention is: adopt MnZn ferrite iron-rich formula, enhance the number of magnetic ions in the A and B sublattices, and enhance the super exchange effect of the material. Although the Curie temperature of the material can be increased, it will inevitably increase The magnetocrystalline anisotropy constant and the magnetostriction coefficient (positive value) of the material are increased, and the magnetization resistance is increased, which is not conducive to improving the magnetic permeability and reducing the loss; therefore, the present invention uses an appropriate amount of NiO to replace MnO. On the one hand, NiO The Curie temperature of the formed NiFe 2 O 4 ferrite is significantly higher than that of the MnFe 2 O 4 ferrite formed by MnO. After substitution, the Curie temperature of the material can be increased, and the reliability of the magnetic device can be improved. On the one hand, the magnetocrystalline anisotropy constant and magnetostriction coefficient (negative value) of NiFe 2 O 4 ferrite formed by NiO are lower than those of MnFe 2 O 4 ferrite formed by MnO coefficient (negative value), after NiO partially replaces MnO, it can form positive and negative compensation with the positive magnetization resistance formed by the iron-rich part, so that the magnetization resistance has a lower value, which can increase the magnetic permeability and reduce the loss. At the same time, the content of ZnO should be reduced as much as possible in the formula to ensure that the material has a high Curie temperature.

在掺杂剂上,采用MoO3、Bi2O3、SnO2、Nb2O5、Ta2O5等掺杂剂的助熔和阻晶双性作用,实现复合掺杂剂交互作用的控制,一方面提高烧结密度,提高饱和磁感应强度,降低磁化阻力,提高磁导率,另一方面,控制晶粒尺寸不宜过大,控制材料的晶粒/晶界特性,降低材料损耗。在烧结工艺方面,结合特种高活性亚微米粉体制备工艺,制备高活性亚微米粉体,借助复合添加剂双性作用,在烧结过程中应用二次还原工艺,实现材料的高密度均匀晶粒烧结。即:通过富铁配方及Ni取代技术,增强A、B次晶格间的超交换作用,实现MnZn铁氧体材料高的居里温度;调控磁性/非磁性离子在次晶格中的占位分布,增大材料的净磁矩,实现材料高的饱和磁感应强度,依托高居里温度,可钝化材料饱和磁感应强度随温度变化的布里渊衰减特性以使材料在高温时仍然具有高的Bs;结合复合添加剂的双性作用和二次还原烧结技术,控制材料的晶粒/晶界特性,获得均匀的显微结构,进而提高材料的磁导率,降低损耗。  On the dopant, use MoO 3 , Bi 2 O 3 , SnO 2 , Nb 2 O 5 , Ta 2 O 5 and other dopants to achieve the control of the interaction of compound dopants through the fluxing and crystal-blocking amphoteric effects. , On the one hand, increase the sintering density, increase the saturation magnetic induction, reduce the magnetization resistance, and increase the magnetic permeability; on the other hand, control the grain size should not be too large, control the grain/grain boundary characteristics of the material, and reduce material loss. In terms of sintering process, combined with the preparation process of special high-activity sub-micron powder, high-activity sub-micron powder is prepared. With the help of the amphoteric effect of compound additives, the secondary reduction process is applied in the sintering process to achieve high-density and uniform grain sintering of materials. . That is: through the iron-rich formula and Ni substitution technology, the super exchange between the A and B sublattices is enhanced to achieve a high Curie temperature of the MnZn ferrite material; the occupancy of magnetic/nonmagnetic ions in the sublattice is controlled distribution, increase the net magnetic moment of the material, and achieve high saturation magnetic induction of the material. Relying on the high Curie temperature, it can passivate the Brillouin attenuation characteristic of the saturation magnetic induction of the material changing with temperature so that the material still has a high B at high temperature. s ; Combining the amphoteric effect of the composite additive and the secondary reduction sintering technology, the grain/grain boundary characteristics of the material are controlled to obtain a uniform microstructure, thereby improving the magnetic permeability of the material and reducing loss.

针对目前国内外兼具高居里温度Tc、宽温高饱和磁感应强度Bs及较低损耗PL特性的MnZn铁氧体材料的技术空白和市场需求,本发明提供了高Tc、宽温高Bs及较低PL特性的MnZn铁氧体材料及其制备方法。其指导思想是:强超交换作用、高磁化动力和较低磁化阻力、均匀显微结构主导的晶粒/晶界特性以及致密化烧结技术。首先,通过优选高纯度的Fe2O3、Mn3O4、ZnO以及NiO为原材料,深入地分析了MnZn铁氧体材料中存在的超交换作用、磁化动力及磁化阻力,采用富铁、较低ZnO、适量NiO替换Mn3O4为主导思想,制定最优的配方范围;其次,深入分析不同种类掺杂剂对MnZn铁氧体材料显微结构的交互作用机制,研究了掺杂剂MoO3、Bi2O3、SnO2、Nb2O5、Ta2O5等对MnZn铁氧体材料晶界、晶粒特性的影响,制定最优的掺杂剂配方;接着,选用并按一定比例配好不同直径大小的超硬球磨介质,结合适宜的分散剂球磨粉料至0.5μm-0.9μm,制备了高活性粉体;最后,在上述配方、掺杂剂及粉体制备工艺优化的前提下,结合致密化烧结工艺,制备了具有高居里温度Tc、宽温高饱和磁感应强度Bs及较低损耗PL特性的MnZn铁氧体材料。  Aiming at the technical blank and market demand of MnZn ferrite materials with high Curie temperature Tc , wide temperature, high saturation magnetic induction Bs and low loss PL characteristics at home and abroad, the present invention provides high Tc , wide temperature MnZn ferrite material with high B s and low PL characteristics and its preparation method. Its guiding principles are: strong super exchange, high magnetization dynamics and low magnetization resistance, uniform microstructure-dominated grain/grain boundary characteristics, and densification sintering technology. Firstly, by selecting high-purity Fe 2 O 3 , Mn 3 O 4 , ZnO and NiO as raw materials, the superexchange effect, magnetization dynamics and magnetization resistance in MnZn ferrite materials were deeply analyzed. Low ZnO, appropriate amount of NiO to replace Mn 3 O 4 as the leading idea, formulate the optimal formula range; secondly, analyze the interaction mechanism of different types of dopants on the microstructure of MnZn ferrite materials in depth, and study the dopant MoO 3. The influence of Bi 2 O 3 , SnO 2 , Nb 2 O 5 , Ta 2 O 5 etc. on the grain boundaries and grain characteristics of MnZn ferrite materials, formulate the optimal dopant formula; then, select and press certain Superhard ball milling media with different diameters are prepared in proportion, combined with a suitable dispersant ball mill powder to 0.5μm-0.9μm, and a high-activity powder is prepared; finally, the above formula, dopant and powder preparation process are optimized. Under the premise, combined with the densification sintering process, MnZn ferrite materials with high Curie temperature T c , wide temperature and high saturation magnetic induction B s and low loss PL characteristics were prepared.

本发明的MnZn铁氧体材料主成分按摩尔百分比,以氧化物计算;掺杂剂成分按重量百分比,以氧化物计算。本发明的高居里温度Tc、宽温高饱和磁感应强度Bs及较低损耗PL特性的MnZn铁氧体材料由主料和掺杂剂组成,主料包括:58.0-62.0mol%Fe2O3,10.0-15.0mol%ZnO,4.0-6.0mol%NiO,余量为MnO;  The main component of the MnZn ferrite material of the present invention is calculated as an oxide by mole percentage; the dopant component is calculated by weight percentage as an oxide. The MnZn ferrite material with high Curie temperature T c , wide temperature, high saturation magnetic induction B s and low loss PL characteristics of the present invention is composed of main material and dopant, and the main material includes: 58.0-62.0mol% Fe 2 O 3 , 10.0-15.0mol% ZnO, 4.0-6.0mol% NiO, the balance being MnO;

以预烧后的主料为参考基准,按重量百分比,以氧化物计算,掺杂剂包括:0.001-0.30wt%MoO3、0.01-0.40wt%Bi2O3、0.001-0.05wt%SnO2、0.001-0.05wt%Nb2O5、0.001-0.20wt%Ta2O5。例如,如果预烧后的主料质量为a克,则MoO3的质量为a×(0.001-0.30)wt%克。  Taking the main material after pre-calcination as a reference, by weight percentage, calculated as oxides, dopants include: 0.001-0.30wt%MoO 3 , 0.01-0.40wt%Bi 2 O 3 , 0.001-0.05wt%SnO 2 , 0.001-0.05wt% Nb 2 O 5 , 0.001-0.20wt% Ta 2 O 5 . For example, if the mass of the main material after pre-burning is a gram, the mass of MoO 3 is a × (0.001-0.30) wt% gram.

本发明的制备方法包括以下步骤:  The preparation method of the present invention comprises the following steps:

1、配方  1. Formula

采用58.0-62.0mol%Fe2O3,10.0-15.0mol%ZnO,4.0-6.0mol%NiO,余量为MnO;  Use 58.0-62.0mol% Fe 2 O 3 , 10.0-15.0mol% ZnO, 4.0-6.0mol% NiO, and the balance is MnO;

2、一次球磨  2. One ball mill

将以上料粉在球磨机内混合均匀,时间1-3小时;  Mix the above powders evenly in the ball mill for 1-3 hours;

3、预烧  3. Pre-burning

将步骤2所得球磨料烘干,在60-100MPa下压制成圆饼,并在800-1000℃炉内预烧1-3小时;  Dry the ball abrasive obtained in step 2, press it into a round cake at 60-100MPa, and pre-fire it in a furnace at 800-1000°C for 1-3 hours;

4、掺杂  4. Doping

将步骤3所得料粉按重量比加入以下掺杂剂:0.001-0.30wt%MoO3、0.01-0.40wt%Bi2O3、0.001-0.05wt%SnO2、0.001-0.05wt%Nb2O5、0.001-0.20wt%Ta2O5;  Add the following dopants to the powder obtained in step 3 by weight ratio: 0.001-0.30wt% MoO 3 , 0.01-0.40wt% Bi 2 O 3 , 0.001-0.05wt% SnO 2 , 0.001-0.05wt% Nb 2 O 5 , 0.001-0.20wt% Ta 2 O 5 ;

5、二次球磨  5. Secondary ball milling

在球磨机中按一定比例配好不同直径大小的超硬球磨介质,将步骤4中得到的料粉按照一定料球比例混合,在球磨机中球磨4-8小时;  Mix superhard ball milling media with different diameters in the ball mill according to a certain ratio, mix the powder obtained in step 4 according to a certain ball ratio, and mill in the ball mill for 4-8 hours;

6、成型  6. Forming

将步骤5所得料粉按重量比加入8-12wt%有机粘合剂,混匀,造粒后,在压机上将粒状粉料压制成坯件;  Add 8-12wt% organic binder to the powder obtained in step 5 by weight, mix evenly, and after granulation, press the granular powder into a blank on a press;

7、烧结  7. Sintering

将步骤6所得坯件置于气氛烧结炉内烧结,在1000℃-1300℃温度段,体积 比O2/N2=1/999,在1300℃-1400℃温度段,O2/N2=4/96,保温4-6小时;在降温段进行平衡气氛烧结。  Put the blank obtained in step 6 into an atmosphere sintering furnace for sintering. In the temperature range of 1000°C-1300°C, the volume ratio O 2 /N 2 =1/999; in the temperature range of 1300°C-1400°C, O 2 /N 2 = 4/96, keep warm for 4-6 hours; carry out equilibrium atmosphere sintering in the cooling section.

8、测试  8. Test

将步骤7所得样品进行电磁性能测试。  The sample obtained in step 7 is subjected to an electromagnetic performance test. the

用同惠TH2828精密LCR测试仪测试样品的电感L,适当调整绕线两端电压值Us使其满足:Us=4.44NfAeB,样品的起始磁导率根据下式计算:  Use Tonghui TH2828 precision LCR tester to test the inductance L of the sample, properly adjust the voltage value U s at both ends of the winding to meet: U s =4.44NfA e B, and the initial permeability of the sample is calculated according to the following formula:

μμ ii == LL ×× 1010 77 22 NN 22 hh lnln DD. // dd -- -- -- (( 11 ))

其中L为样品的电感,N为绕线匝数,h为样品厚度,D为样品外径,d为样品内径,Ae为样品的有效截面积。测试条件为:频率f=10kHz,磁感应强度B≤0.25mT。结合温控箱得出μi-T曲线图,使用外延法确定居里温度Tc。  Where L is the inductance of the sample, N is the number of winding turns, h is the thickness of the sample, D is the outer diameter of the sample, d is the inner diameter of the sample, and A e is the effective cross-sectional area of the sample. The test conditions are: frequency f=10kHz, magnetic induction B≤0.25mT. Combined with the temperature control box, the μ i -T curve is obtained, and the Curie temperature T c is determined by the epitaxy method.

用IWATSU SY-8232B-H分析仪测试样品的磁滞回线,测试条件为:f=0.1kHz,H=1200A/m。  Use the IWATSU SY-8232B-H analyzer to test the hysteresis loop of the sample, and the test conditions are: f=0.1kHz, H=1200A/m. the

用IWATSU SY-8232B-H分析仪测试样品的损耗,测试条件为:f=100kHz,Bm=200mT,T=25℃-120℃。  The loss of the sample was tested with an IWATSU SY-8232B-H analyzer, and the test conditions were: f=100kHz, B m =200mT, T=25°C-120°C.

具体实施例:  Specific examples:

实施例1-4:一种高居里温度Tc、宽温高饱和磁感应强度Bs及较低损耗PL特性的MnZn铁氧体材料及其制备方法,包括以下步骤:  Embodiment 1-4: a kind of MnZn ferrite material and preparation method thereof with high Curie temperature T c , wide temperature high saturation magnetic induction B s and lower loss PL characteristics, comprising the following steps:

1、配方  1. Formula

实施例1-4主料配方见下表:  Embodiment 1-4 major ingredient formula sees the following table:

2、一次球磨  2. One ball mill

将以上料粉在球磨机内混合均匀,时间2小时;  Mix the above powders evenly in a ball mill for 2 hours;

3、预烧  3. Pre-burning

将步骤2所得球磨料烘干,在60MPa下压制成圆饼,并在850℃炉内预烧2小时;  Dry the ball mill material obtained in step 2, press it into a round cake at 60MPa, and pre-fire it in a furnace at 850°C for 2 hours;

4、掺杂  4. Doping

将步骤3所得料粉按重量比加入下表所示掺杂剂:  Add the powder obtained in step 3 by weight ratio to the dopant shown in the table below:

5、二次球磨  5. Secondary ball milling

在球磨机中按一定比例配好不同直径大小的超硬球磨介质,将步骤4中得到的料粉按照一定料球比例混合,在球磨机中球磨6小时;  Mix superhard ball milling media of different diameters in the ball mill according to a certain ratio, mix the powder obtained in step 4 according to a certain ball ratio, and ball mill in the ball mill for 6 hours;

6、成型  6. Forming

将步骤5所得料粉按重量比加入10wt%有机粘合剂,混匀,造粒后,在压机上将粒状粉料压制成坯件;  Add 10wt% organic binder to the powder obtained in step 5 by weight, mix evenly, and after granulation, press the granular powder into a blank on a press;

7、烧结  7. Sintering

将步骤6所得坯件置于气氛烧结炉内烧结,在1000℃-1300℃温度段,体积比O2/N2=1/999,在1360℃保温5小时,O2/N2=4/96;在降温段进行平衡气氛烧结。  Put the blank obtained in step 6 into an atmosphere sintering furnace for sintering, in the temperature range of 1000°C-1300°C, the volume ratio O 2 /N 2 =1/999, keep warm at 1360°C for 5 hours, O 2 /N 2 =4/ 96; carry out balanced atmosphere sintering in the cooling section.

经过以上工艺制备出的高居里温度Tc、宽温高饱和磁感应强度Bs及较低损耗PL特性的MnZn铁氧体材料,其性能指标如下:  The MnZn ferrite material with high Curie temperature T c , wide temperature, high saturation magnetic induction B s and low loss PL characteristics prepared by the above process has the following performance indicators:

实施例1-4测试结果如下:  Embodiment 1-4 test result is as follows:

Claims (4)

1.高Tc、宽温超高Bs MnZn铁氧体材料,由主料和掺杂剂组成,其特征在于,主料包括:58.0-62.0mol%Fe2O3,10.0-15.0mol%ZnO,4.0-6.0mol%NiO,余量为MnO;1. High T c , wide temperature ultra-high B s MnZn ferrite material, composed of main material and dopant, characterized in that the main material includes: 58.0-62.0mol% Fe 2 O 3 , 10.0-15.0mol% ZnO, 4.0-6.0mol%NiO, the balance is MnO; 按重量百分比,并以预烧后的主料为参考基准,以氧化物计算,掺杂剂包括:0.001-0.30wt%MoO3、0.01-0.40wt%Bi2O3、0.001-0.05wt%SnO2、0.001-0.05wt%Nb2O5、0.001-0.20wt%Ta2O5By weight percentage, and based on the main material after pre-calcination, calculated as oxides, dopants include: 0.001-0.30wt%MoO 3 , 0.01-0.40wt%Bi 2 O 3 , 0.001-0.05wt%SnO 2. 0.001-0.05 wt% Nb 2 O 5 , 0.001-0.20 wt% Ta 2 O 5 . 2.高Tc、宽温超高Bs MnZn铁氧体材料制备方法,其特征在于,包括以下步骤:2. The preparation method of high Tc , wide temperature and ultra-high Bs MnZn ferrite material is characterized in that it comprises the following steps: 1)配方1) Formula 采用58.0-62.0mol%Fe2O3,10.0-15.0mol%ZnO,4.0-6.0mol%NiO,余量为MnO;Use 58.0-62.0mol% Fe 2 O 3 , 10.0-15.0mol% ZnO, 4.0-6.0mol% NiO, and the balance is MnO; 2)一次球磨2) One ball mill 将以上配方的料粉混合均匀,球磨;Mix the powder of the above formula evenly and ball mill; 3)预烧3) pre-burning 将步骤2)所得球磨料烘干,在60-100MPa下压制,并在800-1000℃预烧1-3小时;Dry the ball mill obtained in step 2), press it at 60-100MPa, and pre-sinter at 800-1000°C for 1-3 hours; 4)掺杂4) Doping 将步骤3)所得料粉按重量比加入以下掺杂剂:0.001-0.30wt%MoO3、0.01-0.40wt%Bi2O3、0.001-0.05wt%SnO2、0.001-0.05wt%Nb2O5、0.001-0.20wt%Ta2O5Add the following dopants to the powder obtained in step 3) by weight ratio: 0.001-0.30wt% MoO 3 , 0.01-0.40wt% Bi 2 O 3 , 0.001-0.05wt% SnO 2 , 0.001-0.05wt% Nb 2 O 5. 0.001-0.20wt % Ta2O5 ; 5)二次球磨5) Second ball milling 将步骤4)中得到的料粉在球磨机中球磨4-8小时;Mill the powder obtained in step 4) in a ball mill for 4-8 hours; 6)成型6) Molding 将步骤5)所得料粉按重量比加入8~12wt%有机粘合剂,混匀,造粒后,在压机上将粒状粉料压制成坯件;Add 8-12wt% organic binder to the powder obtained in step 5) according to the weight ratio, mix evenly, and after granulating, press the granular powder on a press to form a blank; 7)烧结7) Sintering 将步骤6)所得坯件置于气氛烧结炉内烧结。The blank obtained in step 6) is placed in an atmosphere sintering furnace for sintering. 3.如权利要求2所述的高Tc、宽温超高Bs MnZn铁氧体材料制备方法,其特征在于,所述步骤7)为:将步骤6)所得坯件置于气氛烧结炉内烧结,在1000℃-1300℃温度段,体积比O2/N2=1/999;在1300℃-1400℃温度段,O2/N2=4/96,保温4-6小时;在降温段进行平衡气氛烧结。3. The method for preparing high T c , wide temperature and ultra-high B s MnZn ferrite material according to claim 2, characterized in that the step 7) is: placing the blank obtained in step 6) in an atmosphere sintering furnace Internal sintering, in the temperature range of 1000°C-1300°C, the volume ratio O 2 /N 2 =1/999; in the temperature range of 1300°C-1400°C, O 2 /N 2 =4/96, heat preservation for 4-6 hours; The cooling section carries out equilibrium atmosphere sintering. 4.如权利要求2所述的高Tc、宽温超高Bs MnZn铁氧体材料制备方法,其特征在于,步骤1)的配方为:59.0mol%Fe2O3,14.0mol%ZnO,6.0mol%NiO,21.0mol%MnO;4. The method for preparing high T c , wide temperature ultra-high B s MnZn ferrite material according to claim 2, characterized in that the formula in step 1) is: 59.0mol% Fe 2 O 3 , 14.0mol% ZnO , 6.0mol%NiO, 21.0mol%MnO; 步骤3)中掺杂剂为:0.08wt%MoO3、0.03wt%Bi2O3、0.03wt%Nb2O5、0.05wt%Ta2O5The dopant in step 3) is: 0.08wt% MoO 3 , 0.03wt% Bi 2 O 3 , 0.03wt% Nb 2 O 5 , 0.05wt% Ta 2 O 5 .
CN201310092273.9A 2013-01-31 2013-03-21 High TcWide temperature range and super high BsMnZn ferrite material and preparation method thereof Active CN103214233B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310092273.9A CN103214233B (en) 2013-01-31 2013-03-21 High TcWide temperature range and super high BsMnZn ferrite material and preparation method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201310037163 2013-01-31
CN201310037163.2 2013-01-31
CN201310092273.9A CN103214233B (en) 2013-01-31 2013-03-21 High TcWide temperature range and super high BsMnZn ferrite material and preparation method thereof

Publications (2)

Publication Number Publication Date
CN103214233A CN103214233A (en) 2013-07-24
CN103214233B true CN103214233B (en) 2014-10-15

Family

ID=48812456

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310092273.9A Active CN103214233B (en) 2013-01-31 2013-03-21 High TcWide temperature range and super high BsMnZn ferrite material and preparation method thereof

Country Status (1)

Country Link
CN (1) CN103214233B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105384435B (en) * 2015-11-12 2018-03-09 横店集团东磁股份有限公司 A kind of 4 yuan of formula superelevation Bs MnZn ferrite materials and preparation method
CN107540360B (en) * 2016-06-25 2020-12-04 临沂春光磁业有限公司 Ferrite material with high saturation magnetic induction intensity and high direct current superposition
CN106747397B (en) * 2017-03-09 2021-02-12 电子科技大学 YIG ferrite material and preparation method thereof
CN108530050B (en) * 2018-03-27 2021-04-27 电子科技大学 Wide-temperature low-loss high-impedance MnZn soft magnetic ferrite material and preparation method thereof
CN112125657B (en) * 2020-08-31 2022-07-29 常熟浩博电子科技有限公司 Wide-temperature high-power MnZn ferrite material and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1649039A (en) * 2004-01-30 2005-08-03 Tdk株式会社 Manufacturing method of MnZn ferrite
CN1662470A (en) * 2002-09-26 2005-08-31 Tdk株式会社 Ferrite material
CN1692089A (en) * 2003-01-10 2005-11-02 Tdk株式会社 Ferrite material and method of manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1662470A (en) * 2002-09-26 2005-08-31 Tdk株式会社 Ferrite material
CN1692089A (en) * 2003-01-10 2005-11-02 Tdk株式会社 Ferrite material and method of manufacturing the same
CN1649039A (en) * 2004-01-30 2005-08-03 Tdk株式会社 Manufacturing method of MnZn ferrite

Also Published As

Publication number Publication date
CN103214233A (en) 2013-07-24

Similar Documents

Publication Publication Date Title
CN103172358B (en) High BsHigh TcMnZn ferrite material and preparation method thereof
CN102603279B (en) High-strength high-Bs (saturation magnetic induction intensity) nickel-zinc ferrite and preparation method thereof
CN108530050B (en) Wide-temperature low-loss high-impedance MnZn soft magnetic ferrite material and preparation method thereof
CN106587977B (en) A kind of power-type nickel-zinc-ferrite material and preparation method thereof
CN108558383B (en) NiZn ferrite material and preparation method
CN101256866B (en) Wide temperature ultra-low loss MnZn soft magnetic ferrite material and preparation method
CN102390984A (en) NiZn ferrite material with high magnetic conductivity and high Curie temperature and preparation method thereof
CN103214233B (en) High TcWide temperature range and super high BsMnZn ferrite material and preparation method thereof
CN112979301B (en) High-frequency high-temperature low-loss MnZn power ferrite material and preparation method thereof
CN105174932B (en) High DC stacked characteristic MnZn Ferrite Material and preparation method
CN108424136A (en) MHz grades of Switching Power Supply MnZn power ferrites and preparation method thereof
CN103274676B (en) Wide temperature range high BsMnZn soft magnetic ferrite material and preparation method thereof
CN104200944A (en) High-Q-value composite soft magnetic materials and preparing method thereof
CN104409189A (en) Compound soft magnetic material and preparation method thereof
CN103664158A (en) High-Bs (saturation magnetic flux density) low-power-consumption MnZn powder ferrite material and making method thereof
CN108774056B (en) NiZn ferrite magnetic sheet and preparation method and application thereof
CN102063989B (en) High-saturation magnetic flux, high-direct current superposition and low-loss soft magnetic material and preparation method thereof
CN114436636A (en) High-permeability manganese-zinc ferrite material for differential and common mode inductors and preparation method thereof
CN109678483A (en) The preparation method of wide temperature low-temperature coefficient low-consumption Mn-Zn ferrite material
CN109678486A (en) A kind of wide warm low-temperature coefficient low-consumption Mn-Zn ferrite material
CN107445607A (en) A kind of high-performance permanent-magnet ferrite with extremely low Hcj temperatures coefficient and preparation method thereof
CN100491569C (en) Magnesium-zine-series ferrite and preparing method
CN113149630B (en) A kind of MnZn ferrite material with high magnetic permeability, high Bs and high Tc and preparation method thereof
CN100372801C (en) Low temperature preparation method of high frequency power ferrite material
CN112079633B (en) Nickel-zinc high-permeability material with wide temperature range and low specific temperature coefficient and preparation method thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20130724

Assignee: MAANSHAN NEW CONDA MAGNETIC INDUSTRIAL CO.,LTD.

Assignor: University of Electronic Science and Technology of China

Contract record no.: 2014510000194

Denomination of invention: High Tc, wide temperature ultra high BsMnZn ferrite material and preparation method

Granted publication date: 20141015

License type: Exclusive License

Record date: 20141224

LICC Enforcement, change and cancellation of record of contracts on the licence for exploitation of a patent or utility model
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20170315

Address after: 243031 Anhui New District of Ma'anshan City Economic Development Zone magnetic Yushan Mountain Rain Road No. 1

Patentee after: MAANSHAN NEW CONDA MAGNETIC INDUSTRIAL CO.,LTD.

Address before: 610000 Chengdu province high tech Zone (West) West source Avenue, No. 2006

Patentee before: University of Electronic Science and Technology of China

CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: 243000 No.1, Cishan Road, Yushan Economic Development Zone, Yushan District, Ma'anshan, Anhui Province

Patentee after: Ma'anshan Xinkangda Magnetic Industry Co.,Ltd.

Address before: 243031 No.1 Cishan Road, Yushan Economic Development Zone, Yushan District, Ma'anshan City, Anhui Province

Patentee before: MAANSHAN NEW CONDA MAGNETIC INDUSTRIAL CO.,LTD.