CN103214233B - High TcWide temperature range and super high BsMnZn ferrite material and preparation method thereof - Google Patents
High TcWide temperature range and super high BsMnZn ferrite material and preparation method thereof Download PDFInfo
- Publication number
- CN103214233B CN103214233B CN201310092273.9A CN201310092273A CN103214233B CN 103214233 B CN103214233 B CN 103214233B CN 201310092273 A CN201310092273 A CN 201310092273A CN 103214233 B CN103214233 B CN 103214233B
- Authority
- CN
- China
- Prior art keywords
- ferrite material
- sintering
- wide temperature
- temperature
- ball mill
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000463 material Substances 0.000 title claims abstract description 73
- 229910000859 α-Fe Inorganic materials 0.000 title claims abstract description 40
- 238000002360 preparation method Methods 0.000 title claims abstract description 15
- 239000002019 doping agent Substances 0.000 claims abstract description 22
- 229910052742 iron Inorganic materials 0.000 claims abstract description 11
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 claims abstract description 10
- 229910006404 SnO 2 Inorganic materials 0.000 claims abstract description 9
- 229910052715 tantalum Inorganic materials 0.000 claims abstract description 7
- 238000001354 calcination Methods 0.000 claims abstract description 4
- 238000005245 sintering Methods 0.000 claims description 28
- 239000000843 powder Substances 0.000 claims description 26
- 239000000203 mixture Substances 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 11
- 238000000498 ball milling Methods 0.000 claims description 7
- 238000001816 cooling Methods 0.000 claims description 5
- 239000011230 binding agent Substances 0.000 claims description 4
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- 238000000465 moulding Methods 0.000 claims 1
- 238000004321 preservation Methods 0.000 claims 1
- PBCFLUZVCVVTBY-UHFFFAOYSA-N tantalum pentoxide Inorganic materials O=[Ta](=O)O[Ta](=O)=O PBCFLUZVCVVTBY-UHFFFAOYSA-N 0.000 claims 1
- 230000006698 induction Effects 0.000 description 14
- 238000012360 testing method Methods 0.000 description 14
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 12
- 230000000694 effects Effects 0.000 description 8
- 230000005415 magnetization Effects 0.000 description 8
- 230000035699 permeability Effects 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 239000000696 magnetic material Substances 0.000 description 4
- 238000004804 winding Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000000280 densification Methods 0.000 description 2
- 238000000407 epitaxy Methods 0.000 description 2
- 238000005469 granulation Methods 0.000 description 2
- 230000003179 granulation Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
Landscapes
- Magnetic Ceramics (AREA)
- Soft Magnetic Materials (AREA)
Abstract
高Tc、宽温超高Bs MnZn铁氧体材料及制备方法,属于铁氧体材料制备技术领域。本发明的铁氧体材料由主料和掺杂剂组成,其特征在于,主料包括:58.0-62.0mol%Fe2O3,10.0-15.0mol%ZnO,4.0-6.0mol%NiO,余量为MnO;按重量百分比,并以预烧后的主料为参考基准,以氧化物计算,掺杂剂包括:0.001-0.30wt%MoO3、0.01-0.40wt%Bi2O3、0.001-0.05wt%SnO2、0.001-0.05wt%Nb2O5、0.001-0.20wt%Ta2O5。本发明具有高居里温度(Tc≥320℃)、宽温高Bs(25℃,Bs≥600mT;100℃,Bs≥490mT)及较低损耗(100℃、100kHz200mT,PL≤800kW/m3)等特性。The invention relates to a high T c , wide temperature ultra-high B s MnZn ferrite material and a preparation method thereof, belonging to the technical field of ferrite material preparation. The ferrite material of the present invention is composed of a main material and a dopant, and is characterized in that the main material includes: 58.0-62.0mol% Fe 2 O 3 , 10.0-15.0mol% ZnO, 4.0-6.0mol% NiO, and the balance It is MnO; by weight percentage, and based on the main material after pre-calcination, calculated as oxide, the dopant includes: 0.001-0.30wt%MoO 3 , 0.01-0.40wt%Bi 2 O 3 , 0.001-0.05 wt% SnO 2 , 0.001-0.05 wt% Nb 2 O 5 , 0.001-0.20 wt% Ta 2 O 5 . The invention has high Curie temperature (T c ≥ 320°C), wide temperature and high B s (25°C, B s ≥ 600mT; 100°C, B s ≥ 490mT) and low loss (100°C, 100kHz200mT, P L ≤ 800kW /m 3 ) and other characteristics.
Description
技术领域 technical field
本技术属于铁氧体材料制备技术领域,特别涉及高居里温度(Tc)、宽温超高饱和磁感应强度(Bs)MnZn铁氧体材料及其制备方法。 The technology belongs to the technical field of ferrite material preparation, and particularly relates to MnZn ferrite material with high Curie temperature (T c ), wide temperature and ultra-high saturation magnetic induction (B s ), and a preparation method thereof.
背景技术 Background technique
开关电源变压器磁心稳定的工作温度是在80℃-120℃的高温下。在高温条件下,铁氧体材料的Bs较常温下有一个大幅度的下降。同时,许多应用于高温大电流条件下的电子元器件如HID灯镇流器、车用电源磁心等至少需要满足:(1)能输出足够大的功率,(2)能承受启动时的瞬时冲击大电流。达到此要求在很大程度上取决于铁氧体磁性材料的性能。因为高的输出功率意味着大的电流输出,若线圈的电流过大,则可能导致磁心磁化至饱和,从而使其导磁能力(电感量)下降,磁心的电感量会随着线圈中励磁电流的增加而先增加到一个最大值,然后下降,此时磁心就“饱和”了,而要使电子器件正常工作,磁心电感量的减落必须小于一个定值。在大电流下,若磁心的Bs值越高,其抗饱和能力便越强,电感量减落就越小。同时,材料的功耗不宜过高,若磁心自身的功耗高,会使磁件本身发热增加,能量传输效率降低,一旦工作温度高于功耗谷点,会导致温度升高,磁心的损耗越大,形成磁件温度更高的恶性循环,进而影响器件的正常工作。另外,虽然金属软磁材料具有更高的饱和磁感应强度,但其成本较高、电阻率较低,且其耐腐蚀性较差,不满足设计高性能低成本、低损耗材料的初衷。值得注意的是,高的居里温度是磁性器件在宽温度范围内工作的必备条件,尤其是散热空间有限的场合,提高磁性器件及电子系统的可靠性更为重要的是可以保证材料在宽温范围内具有高的Bs;而高的Bs则可提高电子系统的电流承载量,提高功率密度,实现小型化,因此,开发一种兼具高居里温度、宽温超高Bs特性的MnZn铁氧体材料具有非常广阔的市场应用前景。 The stable working temperature of the switching power transformer core is at a high temperature of 80°C-120°C. Under high temperature conditions, the B s of ferrite materials has a large drop compared with normal temperature. At the same time, many electronic components used in high temperature and high current conditions, such as HID lamp ballasts, automotive power cores, etc., must at least meet: (1) be able to output sufficient power, (2) be able to withstand the instantaneous impact when starting High Current. Meeting this requirement depends largely on the properties of the ferrite magnetic material. Because high output power means large current output, if the current of the coil is too large, it may cause the core to be magnetized to saturation, thereby reducing its magnetic permeability (inductance), and the inductance of the core will increase with the excitation current in the coil. The increase of the magnetic core first increases to a maximum value and then decreases. At this time, the magnetic core is "saturated". To make the electronic device work normally, the decrease of the magnetic core inductance must be less than a fixed value. Under high current, if the B s value of the magnetic core is higher, its anti-saturation ability will be stronger, and the inductance drop will be smaller. At the same time, the power consumption of the material should not be too high. If the power consumption of the magnetic core itself is high, the heating of the magnetic part itself will increase and the energy transmission efficiency will decrease. Once the operating temperature is higher than the valley point of power consumption, the temperature will rise and the loss of the magnetic core will The larger the temperature is, the vicious cycle will be formed with the higher temperature of the magnetic parts, which will affect the normal operation of the device. In addition, although metal soft magnetic materials have higher saturation magnetic induction, their cost is high, their resistivity is low, and their corrosion resistance is poor, which does not meet the original intention of designing high-performance, low-cost, and low-loss materials. It is worth noting that a high Curie temperature is a necessary condition for magnetic devices to work in a wide temperature range, especially where the heat dissipation space is limited. It is more important to improve the reliability of magnetic devices and electronic systems It has high B s in a wide temperature range; and high B s can increase the current carrying capacity of the electronic system, increase the power density, and realize miniaturization. Therefore, it is necessary to develop a high Curie temperature, wide temperature and ultra-high B s The characteristic MnZn ferrite material has a very broad market application prospect.
近年来,高居里温度(Tc)、宽温高饱和磁感应强度(Bs)功率铁氧体材料 已成为磁材业界关注的热点。在中国公开的专利CN1294099A中,公开了一种高温高Bs功率铁氧体材料,其通过NiO取代MnO提高材料的Bs,但是其100℃、1194A/m下的Bs仅为440mT。专利CN101090016A公布了一种通过调节烧结过程中升降温速率、保温时间及氧分压大小的方式来达到提高材料Bs的目的,其100℃、1194A/m下的Bs达到450mT,仍较小。专利CN101429016A公开了一种MnZn功率铁氧体材料,其居里温度为280℃,100℃、1194A/m下的Bs为460mT,是现有材料中Tc和Bs均较高的材料,具有较强的市场竞争力。专利CN1890197A中公开了一种高温超高Bs MnZn功率铁氧体材料,其主配方为:Fe2O3:63-80mol%,ZnO:3-15mol%,余为MnO,辅助成分包括CaO、SiO2,在1175℃下保温8小时。获得的铁氧体材料性能为:100℃下,Bs为520mT,但其损耗太高,在50kHz,150mT下的损耗高达1100kW/m3。另外,JFE公司推出的MB1H磁性材料,其25℃和100℃下的Bs分别为540mT和460mT,居里温度为300℃。FDK公司的4H47材料,其25℃和100℃下的Bs分别为530mT和470mT,居里温度约为200℃。NEC/TOKIN公司推出的BH7材料,其25℃和100℃下的Bs分别为600mT和490mT,100℃、100kHz200mT的损耗高达1350kW/m3。NICERA公司的BM40材质,其25℃和100℃下的Bs分别为530mT和470mT,居里温度高达300℃。 In recent years, power ferrite materials with high Curie temperature (T c ), wide temperature and high saturation magnetic induction (B s ) have become a hot spot in the magnetic material industry. In the Chinese published patent CN1294099A, a high temperature and high B s power ferrite material is disclosed, which increases the B s of the material by replacing MnO with NiO, but its B s at 100°C and 1194A/m is only 440mT. Patent CN101090016A discloses a way to increase the B s of the material by adjusting the heating and cooling rate, holding time and oxygen partial pressure during the sintering process. The B s of the material at 100°C and 1194A/m reaches 450mT, which is still small . Patent CN101429016A discloses a MnZn power ferrite material with a Curie temperature of 280°C and a B s of 460mT at 100°C and 1194A/m, which is a material with relatively high Tc and Bs among existing materials. Has strong market competitiveness. Patent CN1890197A discloses a high-temperature ultra-high B s MnZn power ferrite material, its main formula is: Fe 2 O 3 : 63-80mol%, ZnO: 3-15mol%, the rest is MnO, and the auxiliary components include CaO, SiO 2 , at 1175°C for 8 hours. The properties of the obtained ferrite material are: at 100°C, B s is 520mT, but its loss is too high, at 50kHz, the loss is as high as 1100kW/m 3 at 150mT. In addition, the MB1H magnetic material launched by JFE has B s of 540mT and 460mT at 25°C and 100°C respectively, and a Curie temperature of 300°C. FDK's 4H47 material has B s of 530mT and 470mT at 25°C and 100°C respectively, and its Curie temperature is about 200°C. The BH7 material launched by NEC/TOKIN has B s of 600mT and 490mT at 25°C and 100°C respectively, and the loss at 100°C and 100kHz200mT is as high as 1350kW/m 3 . NICERA's BM40 material has B s of 530mT and 470mT at 25°C and 100°C respectively, and its Curie temperature is as high as 300°C.
发明内容 Contents of the invention
本发明所要解决的技术问题是,提供一种高Tc、宽温超高Bs MnZn铁氧体材料及制备方法,其材料具有高居里温度(Tc≥320℃)、宽温高Bs(25℃,Bs≥600mT;100℃,Bs≥490mT)及较低损耗(100℃、100kHz200mT,PL≤800kW/m3)等特性。 The technical problem to be solved by the present invention is to provide a high T c , wide temperature and ultra-high B s MnZn ferrite material and its preparation method. The material has a high Curie temperature (T c ≥ 320°C), wide temperature and high B (25°C, B s ≥600mT; 100°C, B s ≥490mT) and low loss (100°C, 100kHz200mT, P L ≤800kW/m 3 ).
本发明解决所述技术问题采用的技术方案是,高Tc、宽温超高Bs MnZn铁氧体材料,由主料和掺杂剂组成,其特征在于,主料包括: The technical solution adopted by the present invention to solve the technical problem is that the high T c , wide temperature ultra-high B s MnZn ferrite material is composed of main materials and dopants, and it is characterized in that the main materials include:
58.0-62.0mol%Fe2O3,10.0-15.0mol%ZnO,4.0-6.0mol%NiO,余量为MnO; 58.0-62.0mol% Fe 2 O 3 , 10.0-15.0mol% ZnO, 4.0-6.0mol% NiO, the balance being MnO;
按重量百分比,并以预烧后的主料为参考基准,以氧化物计算,掺杂剂包括:0.001-0.30wt%MoO3、0.01-0.40wt%Bi2O3、0.001-0.05wt%SnO2、0.001-0.05wt%Nb2O5、0.001-0.20wt%Ta2O5。 By weight percentage, and based on the main material after pre-calcination, calculated as oxides, dopants include: 0.001-0.30wt%MoO 3 , 0.01-0.40wt%Bi 2 O 3 , 0.001-0.05wt%SnO 2. 0.001-0.05 wt% Nb 2 O 5 , 0.001-0.20 wt% Ta 2 O 5 .
本发明的高Tc、宽温超高Bs MnZn铁氧体材料的制备方法包括以下步骤: The preparation method of the high Tc , wide temperature ultra-high Bs MnZn ferrite material of the present invention comprises the following steps:
1)配方 1) Formula
采用58.0-62.0mol%Fe2O3,10.0-15.0mol%ZnO,4.0-6.0mol%NiO,余量为MnO; Use 58.0-62.0mol% Fe 2 O 3 , 10.0-15.0mol% ZnO, 4.0-6.0mol% NiO, and the balance is MnO;
2)一次球磨 2) One ball mill
将以上配方的料粉混合均匀,球磨; Mix the powder of the above formula evenly and ball mill;
3)预烧 3) Pre-burning
将步骤2)所得球磨料烘干,在60-100MPa下压制,并在800-1000℃预烧1-3小时; Dry the ball mill material obtained in step 2), press it at 60-100MPa, and pre-sinter at 800-1000°C for 1-3 hours;
4)掺杂 4) Doping
将步骤3)所得料粉按重量比加入以下掺杂剂:0.001-0.30wt%MoO3、0.01-0.40wt%Bi2O3、0.001-0.05wt%SnO2、0.001-0.05wt%Nb2O5、0.001-0.20wt%Ta2O5;所述重量比为掺杂剂:料粉。 Add the following dopants to the powder obtained in step 3) by weight ratio: 0.001-0.30wt% MoO 3 , 0.01-0.40wt% Bi 2 O 3 , 0.001-0.05wt% SnO 2 , 0.001-0.05wt% Nb 2 O 5. 0.001-0.20wt% Ta 2 O 5 ; the weight ratio is dopant: powder.
5)二次球磨 5) Second ball milling
将步骤4)中得到的料粉在球磨机中球磨4-8小时; The powder obtained in step 4) is ball milled in a ball mill for 4-8 hours;
6)成型 6) Forming
将步骤5)所得料粉按重量比加入8-12wt%有机粘合剂,混匀,造粒后,在压机上将粒状粉料压制成坯件; Add 8-12wt% organic binder to the powder obtained in step 5) by weight, mix evenly, and after granulating, press the granular powder on a press to form a blank;
7)烧结 7) Sintering
将步骤6)所得坯件置于气氛烧结炉内烧结。 The blank obtained in step 6) is placed in an atmosphere sintering furnace for sintering. the
所述步骤7)为:将步骤6)所得坯件置于气氛烧结炉内烧结,在1000℃-1300℃温度段,体积比O2/N2=1/999;在1300℃-1400℃温度段,O2/N2=4/96,保温4-6小时;在降温段进行平衡气氛烧结。 The step 7) is: sintering the blank obtained in step 6) in an atmosphere sintering furnace, at a temperature range of 1000°C-1300°C, the volume ratio O 2 /N 2 =1/999; at a temperature of 1300°C-1400°C Section, O 2 /N 2 =4/96, keep warm for 4-6 hours; carry out equilibrium atmosphere sintering in the cooling section.
8)测试 8) Test
将步骤7)所得样品进行电磁性能测试。 The sample obtained in step 7) is subjected to electromagnetic performance testing. the
用同惠TH2828精密LCR测试仪测试样品的电感L,适当调整绕线两端电压值Us使其满足:Us=4.44NfAeB,样品的起始磁导率根据下式计算: Use Tonghui TH2828 precision LCR tester to test the inductance L of the sample, properly adjust the voltage value U s at both ends of the winding to meet: U s =4.44NfA e B, and the initial permeability of the sample is calculated according to the following formula:
其中L为样品的电感,N为绕线匝数,h为样品厚度,D为样品外径,d为样品内径,Ae为样品的有效截面积。测试条件为:频率f=10kHz,磁感应强度B≤0.25mT。结合温控箱得出μi-T曲线图,使用外延法确定居里温度Tc。 Where L is the inductance of the sample, N is the number of winding turns, h is the thickness of the sample, D is the outer diameter of the sample, d is the inner diameter of the sample, and A e is the effective cross-sectional area of the sample. The test conditions are: frequency f=10kHz, magnetic induction B≤0.25mT. Combined with the temperature control box, the μ i -T curve is obtained, and the Curie temperature T c is determined by the epitaxy method.
用IWATSU SY-8232B-H分析仪测试样品的磁滞回线,测试条件为:f=0.1kHz,H=1200A/m。 Use the IWATSU SY-8232B-H analyzer to test the hysteresis loop of the sample, and the test conditions are: f=0.1kHz, H=1200A/m. the
用IWATSU SY-8232B-H分析仪测试样品的损耗,测试条件为:f=100kHz,Bm=200mT,T=25℃-120℃。 The loss of the sample was tested with an IWATSU SY-8232B-H analyzer, and the test conditions were: f=100kHz, B m =200mT, T=25°C-120°C.
本发明的MnZn铁氧体材料的制备技术,其技术指标如下: The preparation technology of MnZn ferrite material of the present invention, its technical index is as follows:
起始磁导率μi:1500±20% Initial permeability μ i : 1500±20%
饱和磁感应强度Bs:≥600mT(25℃);≥490mT(100℃);≥460mT(120℃) Saturation magnetic induction B s : ≥600mT (25°C); ≥490mT (100°C); ≥460mT (120°C)
居里温度Tc:≥320℃ Curie temperature T c : ≥320°C
损耗PL(100kHz200mT):≤1100kW/m3(25℃);≤800kW/m3(100℃);≤1000kW/m3(120℃); Loss P L (100kHz200mT): ≤1100kW/m 3 (25°C); ≤800kW/m 3 (100°C); ≤1000kW/m 3 (120°C);
密度dm:≥5.0g/cm3; Density d m : ≥5.0g/cm 3 ;
高居里温度(Tc≥320℃)、宽温高Bs(25℃,Bs≥600mT;100℃,Bs≥490mT)及较低损耗(100℃、100kHz200mT,PL≤800kW/m3)等特性。 High Curie temperature (T c ≥320°C), wide temperature and high B s (25°C, B s ≥600mT; 100°C, B s ≥490mT) and low loss (100°C, 100kHz200mT, P L ≤800kW/m 3 ) and other characteristics.
具体实施方式 Detailed ways
本发明主要针对现有技术设计的MnZn铁氧体所存在的高居里温度及宽温高Bs两个关键参数难以同时满足的技术难题,提供一种兼具高居里温度及宽温高Bs特性的MnZn铁氧体材料及其制备方法。 The present invention mainly aims at the technical problem that the two key parameters of high Curie temperature and wide temperature and high B s in the MnZn ferrite designed in the prior art are difficult to meet at the same time, and provides a high Curie temperature, wide temperature and high B s Characteristics of MnZn ferrite materials and methods for their preparation.
本发明的核心思想是:采用MnZn铁氧体富铁配方,增强A、B次晶格中磁性离子数量,增强材料的超交换作用,虽可提高材料的居里温度,但不可避免地增大了材料的磁晶各向异性常数和磁致伸缩系数(正值),增大了磁化阻力,不利于提高磁导率和降低损耗;因此,本发明采用适量的NiO替代MnO,一方面由NiO形成的NiFe2O4铁氧体的居里温度显著高于由MnO形成的MnFe2O4铁氧体的居里温度,取代后可提高材料的居里温度,提高磁性器件的可靠性,另一方面NiO形成的NiFe2O4铁氧体的磁晶各向异性常数和磁致伸缩系数(负值)低于MnO形成的MnFe2O4铁氧体的晶各向异性常数和磁致伸缩系数(负值),NiO部分取代MnO 后,可以与富铁部分形成的正磁化阻力形成正负补偿,进而使磁化阻力有较低值,可提高磁导率,降低损耗。同时,在配方中尽可能降低ZnO含量,进而保证材料具有高的居里温度。 The core idea of the present invention is: adopt MnZn ferrite iron-rich formula, enhance the number of magnetic ions in the A and B sublattices, and enhance the super exchange effect of the material. Although the Curie temperature of the material can be increased, it will inevitably increase The magnetocrystalline anisotropy constant and the magnetostriction coefficient (positive value) of the material are increased, and the magnetization resistance is increased, which is not conducive to improving the magnetic permeability and reducing the loss; therefore, the present invention uses an appropriate amount of NiO to replace MnO. On the one hand, NiO The Curie temperature of the formed NiFe 2 O 4 ferrite is significantly higher than that of the MnFe 2 O 4 ferrite formed by MnO. After substitution, the Curie temperature of the material can be increased, and the reliability of the magnetic device can be improved. On the one hand, the magnetocrystalline anisotropy constant and magnetostriction coefficient (negative value) of NiFe 2 O 4 ferrite formed by NiO are lower than those of MnFe 2 O 4 ferrite formed by MnO coefficient (negative value), after NiO partially replaces MnO, it can form positive and negative compensation with the positive magnetization resistance formed by the iron-rich part, so that the magnetization resistance has a lower value, which can increase the magnetic permeability and reduce the loss. At the same time, the content of ZnO should be reduced as much as possible in the formula to ensure that the material has a high Curie temperature.
在掺杂剂上,采用MoO3、Bi2O3、SnO2、Nb2O5、Ta2O5等掺杂剂的助熔和阻晶双性作用,实现复合掺杂剂交互作用的控制,一方面提高烧结密度,提高饱和磁感应强度,降低磁化阻力,提高磁导率,另一方面,控制晶粒尺寸不宜过大,控制材料的晶粒/晶界特性,降低材料损耗。在烧结工艺方面,结合特种高活性亚微米粉体制备工艺,制备高活性亚微米粉体,借助复合添加剂双性作用,在烧结过程中应用二次还原工艺,实现材料的高密度均匀晶粒烧结。即:通过富铁配方及Ni取代技术,增强A、B次晶格间的超交换作用,实现MnZn铁氧体材料高的居里温度;调控磁性/非磁性离子在次晶格中的占位分布,增大材料的净磁矩,实现材料高的饱和磁感应强度,依托高居里温度,可钝化材料饱和磁感应强度随温度变化的布里渊衰减特性以使材料在高温时仍然具有高的Bs;结合复合添加剂的双性作用和二次还原烧结技术,控制材料的晶粒/晶界特性,获得均匀的显微结构,进而提高材料的磁导率,降低损耗。 On the dopant, use MoO 3 , Bi 2 O 3 , SnO 2 , Nb 2 O 5 , Ta 2 O 5 and other dopants to achieve the control of the interaction of compound dopants through the fluxing and crystal-blocking amphoteric effects. , On the one hand, increase the sintering density, increase the saturation magnetic induction, reduce the magnetization resistance, and increase the magnetic permeability; on the other hand, control the grain size should not be too large, control the grain/grain boundary characteristics of the material, and reduce material loss. In terms of sintering process, combined with the preparation process of special high-activity sub-micron powder, high-activity sub-micron powder is prepared. With the help of the amphoteric effect of compound additives, the secondary reduction process is applied in the sintering process to achieve high-density and uniform grain sintering of materials. . That is: through the iron-rich formula and Ni substitution technology, the super exchange between the A and B sublattices is enhanced to achieve a high Curie temperature of the MnZn ferrite material; the occupancy of magnetic/nonmagnetic ions in the sublattice is controlled distribution, increase the net magnetic moment of the material, and achieve high saturation magnetic induction of the material. Relying on the high Curie temperature, it can passivate the Brillouin attenuation characteristic of the saturation magnetic induction of the material changing with temperature so that the material still has a high B at high temperature. s ; Combining the amphoteric effect of the composite additive and the secondary reduction sintering technology, the grain/grain boundary characteristics of the material are controlled to obtain a uniform microstructure, thereby improving the magnetic permeability of the material and reducing loss.
针对目前国内外兼具高居里温度Tc、宽温高饱和磁感应强度Bs及较低损耗PL特性的MnZn铁氧体材料的技术空白和市场需求,本发明提供了高Tc、宽温高Bs及较低PL特性的MnZn铁氧体材料及其制备方法。其指导思想是:强超交换作用、高磁化动力和较低磁化阻力、均匀显微结构主导的晶粒/晶界特性以及致密化烧结技术。首先,通过优选高纯度的Fe2O3、Mn3O4、ZnO以及NiO为原材料,深入地分析了MnZn铁氧体材料中存在的超交换作用、磁化动力及磁化阻力,采用富铁、较低ZnO、适量NiO替换Mn3O4为主导思想,制定最优的配方范围;其次,深入分析不同种类掺杂剂对MnZn铁氧体材料显微结构的交互作用机制,研究了掺杂剂MoO3、Bi2O3、SnO2、Nb2O5、Ta2O5等对MnZn铁氧体材料晶界、晶粒特性的影响,制定最优的掺杂剂配方;接着,选用并按一定比例配好不同直径大小的超硬球磨介质,结合适宜的分散剂球磨粉料至0.5μm-0.9μm,制备了高活性粉体;最后,在上述配方、掺杂剂及粉体制备工艺优化的前提下,结合致密化烧结工艺,制备了具有高居里温度Tc、宽温高饱和磁感应强度Bs及较低损耗PL特性的MnZn铁氧体材料。 Aiming at the technical blank and market demand of MnZn ferrite materials with high Curie temperature Tc , wide temperature, high saturation magnetic induction Bs and low loss PL characteristics at home and abroad, the present invention provides high Tc , wide temperature MnZn ferrite material with high B s and low PL characteristics and its preparation method. Its guiding principles are: strong super exchange, high magnetization dynamics and low magnetization resistance, uniform microstructure-dominated grain/grain boundary characteristics, and densification sintering technology. Firstly, by selecting high-purity Fe 2 O 3 , Mn 3 O 4 , ZnO and NiO as raw materials, the superexchange effect, magnetization dynamics and magnetization resistance in MnZn ferrite materials were deeply analyzed. Low ZnO, appropriate amount of NiO to replace Mn 3 O 4 as the leading idea, formulate the optimal formula range; secondly, analyze the interaction mechanism of different types of dopants on the microstructure of MnZn ferrite materials in depth, and study the dopant MoO 3. The influence of Bi 2 O 3 , SnO 2 , Nb 2 O 5 , Ta 2 O 5 etc. on the grain boundaries and grain characteristics of MnZn ferrite materials, formulate the optimal dopant formula; then, select and press certain Superhard ball milling media with different diameters are prepared in proportion, combined with a suitable dispersant ball mill powder to 0.5μm-0.9μm, and a high-activity powder is prepared; finally, the above formula, dopant and powder preparation process are optimized. Under the premise, combined with the densification sintering process, MnZn ferrite materials with high Curie temperature T c , wide temperature and high saturation magnetic induction B s and low loss PL characteristics were prepared.
本发明的MnZn铁氧体材料主成分按摩尔百分比,以氧化物计算;掺杂剂成分按重量百分比,以氧化物计算。本发明的高居里温度Tc、宽温高饱和磁感应强度Bs及较低损耗PL特性的MnZn铁氧体材料由主料和掺杂剂组成,主料包括:58.0-62.0mol%Fe2O3,10.0-15.0mol%ZnO,4.0-6.0mol%NiO,余量为MnO; The main component of the MnZn ferrite material of the present invention is calculated as an oxide by mole percentage; the dopant component is calculated by weight percentage as an oxide. The MnZn ferrite material with high Curie temperature T c , wide temperature, high saturation magnetic induction B s and low loss PL characteristics of the present invention is composed of main material and dopant, and the main material includes: 58.0-62.0mol% Fe 2 O 3 , 10.0-15.0mol% ZnO, 4.0-6.0mol% NiO, the balance being MnO;
以预烧后的主料为参考基准,按重量百分比,以氧化物计算,掺杂剂包括:0.001-0.30wt%MoO3、0.01-0.40wt%Bi2O3、0.001-0.05wt%SnO2、0.001-0.05wt%Nb2O5、0.001-0.20wt%Ta2O5。例如,如果预烧后的主料质量为a克,则MoO3的质量为a×(0.001-0.30)wt%克。 Taking the main material after pre-calcination as a reference, by weight percentage, calculated as oxides, dopants include: 0.001-0.30wt%MoO 3 , 0.01-0.40wt%Bi 2 O 3 , 0.001-0.05wt%SnO 2 , 0.001-0.05wt% Nb 2 O 5 , 0.001-0.20wt% Ta 2 O 5 . For example, if the mass of the main material after pre-burning is a gram, the mass of MoO 3 is a × (0.001-0.30) wt% gram.
本发明的制备方法包括以下步骤: The preparation method of the present invention comprises the following steps:
1、配方 1. Formula
采用58.0-62.0mol%Fe2O3,10.0-15.0mol%ZnO,4.0-6.0mol%NiO,余量为MnO; Use 58.0-62.0mol% Fe 2 O 3 , 10.0-15.0mol% ZnO, 4.0-6.0mol% NiO, and the balance is MnO;
2、一次球磨 2. One ball mill
将以上料粉在球磨机内混合均匀,时间1-3小时; Mix the above powders evenly in the ball mill for 1-3 hours;
3、预烧 3. Pre-burning
将步骤2所得球磨料烘干,在60-100MPa下压制成圆饼,并在800-1000℃炉内预烧1-3小时; Dry the ball abrasive obtained in step 2, press it into a round cake at 60-100MPa, and pre-fire it in a furnace at 800-1000°C for 1-3 hours;
4、掺杂 4. Doping
将步骤3所得料粉按重量比加入以下掺杂剂:0.001-0.30wt%MoO3、0.01-0.40wt%Bi2O3、0.001-0.05wt%SnO2、0.001-0.05wt%Nb2O5、0.001-0.20wt%Ta2O5; Add the following dopants to the powder obtained in step 3 by weight ratio: 0.001-0.30wt% MoO 3 , 0.01-0.40wt% Bi 2 O 3 , 0.001-0.05wt% SnO 2 , 0.001-0.05wt% Nb 2 O 5 , 0.001-0.20wt% Ta 2 O 5 ;
5、二次球磨 5. Secondary ball milling
在球磨机中按一定比例配好不同直径大小的超硬球磨介质,将步骤4中得到的料粉按照一定料球比例混合,在球磨机中球磨4-8小时; Mix superhard ball milling media with different diameters in the ball mill according to a certain ratio, mix the powder obtained in step 4 according to a certain ball ratio, and mill in the ball mill for 4-8 hours;
6、成型 6. Forming
将步骤5所得料粉按重量比加入8-12wt%有机粘合剂,混匀,造粒后,在压机上将粒状粉料压制成坯件; Add 8-12wt% organic binder to the powder obtained in step 5 by weight, mix evenly, and after granulation, press the granular powder into a blank on a press;
7、烧结 7. Sintering
将步骤6所得坯件置于气氛烧结炉内烧结,在1000℃-1300℃温度段,体积 比O2/N2=1/999,在1300℃-1400℃温度段,O2/N2=4/96,保温4-6小时;在降温段进行平衡气氛烧结。 Put the blank obtained in step 6 into an atmosphere sintering furnace for sintering. In the temperature range of 1000°C-1300°C, the volume ratio O 2 /N 2 =1/999; in the temperature range of 1300°C-1400°C, O 2 /N 2 = 4/96, keep warm for 4-6 hours; carry out equilibrium atmosphere sintering in the cooling section.
8、测试 8. Test
将步骤7所得样品进行电磁性能测试。 The sample obtained in step 7 is subjected to an electromagnetic performance test. the
用同惠TH2828精密LCR测试仪测试样品的电感L,适当调整绕线两端电压值Us使其满足:Us=4.44NfAeB,样品的起始磁导率根据下式计算: Use Tonghui TH2828 precision LCR tester to test the inductance L of the sample, properly adjust the voltage value U s at both ends of the winding to meet: U s =4.44NfA e B, and the initial permeability of the sample is calculated according to the following formula:
其中L为样品的电感,N为绕线匝数,h为样品厚度,D为样品外径,d为样品内径,Ae为样品的有效截面积。测试条件为:频率f=10kHz,磁感应强度B≤0.25mT。结合温控箱得出μi-T曲线图,使用外延法确定居里温度Tc。 Where L is the inductance of the sample, N is the number of winding turns, h is the thickness of the sample, D is the outer diameter of the sample, d is the inner diameter of the sample, and A e is the effective cross-sectional area of the sample. The test conditions are: frequency f=10kHz, magnetic induction B≤0.25mT. Combined with the temperature control box, the μ i -T curve is obtained, and the Curie temperature T c is determined by the epitaxy method.
用IWATSU SY-8232B-H分析仪测试样品的磁滞回线,测试条件为:f=0.1kHz,H=1200A/m。 Use the IWATSU SY-8232B-H analyzer to test the hysteresis loop of the sample, and the test conditions are: f=0.1kHz, H=1200A/m. the
用IWATSU SY-8232B-H分析仪测试样品的损耗,测试条件为:f=100kHz,Bm=200mT,T=25℃-120℃。 The loss of the sample was tested with an IWATSU SY-8232B-H analyzer, and the test conditions were: f=100kHz, B m =200mT, T=25°C-120°C.
具体实施例: Specific examples:
实施例1-4:一种高居里温度Tc、宽温高饱和磁感应强度Bs及较低损耗PL特性的MnZn铁氧体材料及其制备方法,包括以下步骤: Embodiment 1-4: a kind of MnZn ferrite material and preparation method thereof with high Curie temperature T c , wide temperature high saturation magnetic induction B s and lower loss PL characteristics, comprising the following steps:
1、配方 1. Formula
实施例1-4主料配方见下表: Embodiment 1-4 major ingredient formula sees the following table:
2、一次球磨 2. One ball mill
将以上料粉在球磨机内混合均匀,时间2小时; Mix the above powders evenly in a ball mill for 2 hours;
3、预烧 3. Pre-burning
将步骤2所得球磨料烘干,在60MPa下压制成圆饼,并在850℃炉内预烧2小时; Dry the ball mill material obtained in step 2, press it into a round cake at 60MPa, and pre-fire it in a furnace at 850°C for 2 hours;
4、掺杂 4. Doping
将步骤3所得料粉按重量比加入下表所示掺杂剂: Add the powder obtained in step 3 by weight ratio to the dopant shown in the table below:
5、二次球磨 5. Secondary ball milling
在球磨机中按一定比例配好不同直径大小的超硬球磨介质,将步骤4中得到的料粉按照一定料球比例混合,在球磨机中球磨6小时; Mix superhard ball milling media of different diameters in the ball mill according to a certain ratio, mix the powder obtained in step 4 according to a certain ball ratio, and ball mill in the ball mill for 6 hours;
6、成型 6. Forming
将步骤5所得料粉按重量比加入10wt%有机粘合剂,混匀,造粒后,在压机上将粒状粉料压制成坯件; Add 10wt% organic binder to the powder obtained in step 5 by weight, mix evenly, and after granulation, press the granular powder into a blank on a press;
7、烧结 7. Sintering
将步骤6所得坯件置于气氛烧结炉内烧结,在1000℃-1300℃温度段,体积比O2/N2=1/999,在1360℃保温5小时,O2/N2=4/96;在降温段进行平衡气氛烧结。 Put the blank obtained in step 6 into an atmosphere sintering furnace for sintering, in the temperature range of 1000°C-1300°C, the volume ratio O 2 /N 2 =1/999, keep warm at 1360°C for 5 hours, O 2 /N 2 =4/ 96; carry out balanced atmosphere sintering in the cooling section.
经过以上工艺制备出的高居里温度Tc、宽温高饱和磁感应强度Bs及较低损耗PL特性的MnZn铁氧体材料,其性能指标如下: The MnZn ferrite material with high Curie temperature T c , wide temperature, high saturation magnetic induction B s and low loss PL characteristics prepared by the above process has the following performance indicators:
实施例1-4测试结果如下: Embodiment 1-4 test result is as follows:
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310092273.9A CN103214233B (en) | 2013-01-31 | 2013-03-21 | High TcWide temperature range and super high BsMnZn ferrite material and preparation method thereof |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310037163 | 2013-01-31 | ||
CN201310037163.2 | 2013-01-31 | ||
CN201310092273.9A CN103214233B (en) | 2013-01-31 | 2013-03-21 | High TcWide temperature range and super high BsMnZn ferrite material and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103214233A CN103214233A (en) | 2013-07-24 |
CN103214233B true CN103214233B (en) | 2014-10-15 |
Family
ID=48812456
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310092273.9A Active CN103214233B (en) | 2013-01-31 | 2013-03-21 | High TcWide temperature range and super high BsMnZn ferrite material and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103214233B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105384435B (en) * | 2015-11-12 | 2018-03-09 | 横店集团东磁股份有限公司 | A kind of 4 yuan of formula superelevation Bs MnZn ferrite materials and preparation method |
CN107540360B (en) * | 2016-06-25 | 2020-12-04 | 临沂春光磁业有限公司 | Ferrite material with high saturation magnetic induction intensity and high direct current superposition |
CN106747397B (en) * | 2017-03-09 | 2021-02-12 | 电子科技大学 | YIG ferrite material and preparation method thereof |
CN108530050B (en) * | 2018-03-27 | 2021-04-27 | 电子科技大学 | Wide-temperature low-loss high-impedance MnZn soft magnetic ferrite material and preparation method thereof |
CN112125657B (en) * | 2020-08-31 | 2022-07-29 | 常熟浩博电子科技有限公司 | Wide-temperature high-power MnZn ferrite material and preparation method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1649039A (en) * | 2004-01-30 | 2005-08-03 | Tdk株式会社 | Manufacturing method of MnZn ferrite |
CN1662470A (en) * | 2002-09-26 | 2005-08-31 | Tdk株式会社 | Ferrite material |
CN1692089A (en) * | 2003-01-10 | 2005-11-02 | Tdk株式会社 | Ferrite material and method of manufacturing the same |
-
2013
- 2013-03-21 CN CN201310092273.9A patent/CN103214233B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1662470A (en) * | 2002-09-26 | 2005-08-31 | Tdk株式会社 | Ferrite material |
CN1692089A (en) * | 2003-01-10 | 2005-11-02 | Tdk株式会社 | Ferrite material and method of manufacturing the same |
CN1649039A (en) * | 2004-01-30 | 2005-08-03 | Tdk株式会社 | Manufacturing method of MnZn ferrite |
Also Published As
Publication number | Publication date |
---|---|
CN103214233A (en) | 2013-07-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103172358B (en) | High BsHigh TcMnZn ferrite material and preparation method thereof | |
CN102603279B (en) | High-strength high-Bs (saturation magnetic induction intensity) nickel-zinc ferrite and preparation method thereof | |
CN108530050B (en) | Wide-temperature low-loss high-impedance MnZn soft magnetic ferrite material and preparation method thereof | |
CN106587977B (en) | A kind of power-type nickel-zinc-ferrite material and preparation method thereof | |
CN108558383B (en) | NiZn ferrite material and preparation method | |
CN101256866B (en) | Wide temperature ultra-low loss MnZn soft magnetic ferrite material and preparation method | |
CN102390984A (en) | NiZn ferrite material with high magnetic conductivity and high Curie temperature and preparation method thereof | |
CN103214233B (en) | High TcWide temperature range and super high BsMnZn ferrite material and preparation method thereof | |
CN112979301B (en) | High-frequency high-temperature low-loss MnZn power ferrite material and preparation method thereof | |
CN105174932B (en) | High DC stacked characteristic MnZn Ferrite Material and preparation method | |
CN108424136A (en) | MHz grades of Switching Power Supply MnZn power ferrites and preparation method thereof | |
CN103274676B (en) | Wide temperature range high BsMnZn soft magnetic ferrite material and preparation method thereof | |
CN104200944A (en) | High-Q-value composite soft magnetic materials and preparing method thereof | |
CN104409189A (en) | Compound soft magnetic material and preparation method thereof | |
CN103664158A (en) | High-Bs (saturation magnetic flux density) low-power-consumption MnZn powder ferrite material and making method thereof | |
CN108774056B (en) | NiZn ferrite magnetic sheet and preparation method and application thereof | |
CN102063989B (en) | High-saturation magnetic flux, high-direct current superposition and low-loss soft magnetic material and preparation method thereof | |
CN114436636A (en) | High-permeability manganese-zinc ferrite material for differential and common mode inductors and preparation method thereof | |
CN109678483A (en) | The preparation method of wide temperature low-temperature coefficient low-consumption Mn-Zn ferrite material | |
CN109678486A (en) | A kind of wide warm low-temperature coefficient low-consumption Mn-Zn ferrite material | |
CN107445607A (en) | A kind of high-performance permanent-magnet ferrite with extremely low Hcj temperatures coefficient and preparation method thereof | |
CN100491569C (en) | Magnesium-zine-series ferrite and preparing method | |
CN113149630B (en) | A kind of MnZn ferrite material with high magnetic permeability, high Bs and high Tc and preparation method thereof | |
CN100372801C (en) | Low temperature preparation method of high frequency power ferrite material | |
CN112079633B (en) | Nickel-zinc high-permeability material with wide temperature range and low specific temperature coefficient and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20130724 Assignee: MAANSHAN NEW CONDA MAGNETIC INDUSTRIAL CO.,LTD. Assignor: University of Electronic Science and Technology of China Contract record no.: 2014510000194 Denomination of invention: High Tc, wide temperature ultra high BsMnZn ferrite material and preparation method Granted publication date: 20141015 License type: Exclusive License Record date: 20141224 |
|
LICC | Enforcement, change and cancellation of record of contracts on the licence for exploitation of a patent or utility model | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20170315 Address after: 243031 Anhui New District of Ma'anshan City Economic Development Zone magnetic Yushan Mountain Rain Road No. 1 Patentee after: MAANSHAN NEW CONDA MAGNETIC INDUSTRIAL CO.,LTD. Address before: 610000 Chengdu province high tech Zone (West) West source Avenue, No. 2006 Patentee before: University of Electronic Science and Technology of China |
|
CP03 | Change of name, title or address | ||
CP03 | Change of name, title or address |
Address after: 243000 No.1, Cishan Road, Yushan Economic Development Zone, Yushan District, Ma'anshan, Anhui Province Patentee after: Ma'anshan Xinkangda Magnetic Industry Co.,Ltd. Address before: 243031 No.1 Cishan Road, Yushan Economic Development Zone, Yushan District, Ma'anshan City, Anhui Province Patentee before: MAANSHAN NEW CONDA MAGNETIC INDUSTRIAL CO.,LTD. |