CN103212484B - Phosphorite reverse flotation process - Google Patents
Phosphorite reverse flotation process Download PDFInfo
- Publication number
- CN103212484B CN103212484B CN201310134970.6A CN201310134970A CN103212484B CN 103212484 B CN103212484 B CN 103212484B CN 201310134970 A CN201310134970 A CN 201310134970A CN 103212484 B CN103212484 B CN 103212484B
- Authority
- CN
- China
- Prior art keywords
- acid
- reverse flotation
- phosphate rock
- flotation process
- phosphate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005188 flotation Methods 0.000 title claims abstract description 37
- 238000000034 method Methods 0.000 title claims abstract description 29
- 239000002367 phosphate rock Substances 0.000 title claims abstract description 25
- OJMIONKXNSYLSR-UHFFFAOYSA-N phosphorous acid Chemical compound OP(O)O OJMIONKXNSYLSR-UHFFFAOYSA-N 0.000 title 1
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims abstract description 30
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims abstract description 20
- 239000003112 inhibitor Substances 0.000 claims abstract description 19
- 235000014113 dietary fatty acids Nutrition 0.000 claims abstract description 17
- 239000000194 fatty acid Substances 0.000 claims abstract description 17
- 229930195729 fatty acid Natural products 0.000 claims abstract description 17
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims abstract description 11
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims abstract description 10
- 150000004665 fatty acids Chemical class 0.000 claims abstract description 10
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 10
- 239000011574 phosphorus Substances 0.000 claims abstract description 10
- 239000012141 concentrate Substances 0.000 claims abstract description 9
- 229910001748 carbonate mineral Inorganic materials 0.000 claims abstract description 6
- 239000011777 magnesium Substances 0.000 claims abstract description 6
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 6
- -1 small molecule organic acid Chemical class 0.000 claims abstract description 6
- 150000007524 organic acids Chemical class 0.000 claims abstract description 5
- 239000000344 soap Substances 0.000 claims abstract description 5
- 229910052585 phosphate mineral Inorganic materials 0.000 claims abstract description 4
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 24
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 claims description 10
- LNTHITQWFMADLM-UHFFFAOYSA-N gallic acid Chemical compound OC(=O)C1=CC(O)=C(O)C(O)=C1 LNTHITQWFMADLM-UHFFFAOYSA-N 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 5
- 239000002002 slurry Substances 0.000 claims description 5
- 235000004515 gallic acid Nutrition 0.000 claims description 4
- 229940074391 gallic acid Drugs 0.000 claims description 4
- TUSDEZXZIZRFGC-UHFFFAOYSA-N 1-O-galloyl-3,6-(R)-HHDP-beta-D-glucose Natural products OC1C(O2)COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC1C(O)C2OC(=O)C1=CC(O)=C(O)C(O)=C1 TUSDEZXZIZRFGC-UHFFFAOYSA-N 0.000 claims description 3
- 239000001263 FEMA 3042 Substances 0.000 claims description 3
- LRBQNJMCXXYXIU-PPKXGCFTSA-N Penta-digallate-beta-D-glucose Natural products OC1=C(O)C(O)=CC(C(=O)OC=2C(=C(O)C=C(C=2)C(=O)OC[C@@H]2[C@H]([C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)O2)OC(=O)C=2C=C(OC(=O)C=3C=C(O)C(O)=C(O)C=3)C(O)=C(O)C=2)O)=C1 LRBQNJMCXXYXIU-PPKXGCFTSA-N 0.000 claims description 3
- 235000015523 tannic acid Nutrition 0.000 claims description 3
- LRBQNJMCXXYXIU-NRMVVENXSA-N tannic acid Chemical compound OC1=C(O)C(O)=CC(C(=O)OC=2C(=C(O)C=C(C=2)C(=O)OC[C@@H]2[C@H]([C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)O2)OC(=O)C=2C=C(OC(=O)C=3C=C(O)C(O)=C(O)C=3)C(O)=C(O)C=2)O)=C1 LRBQNJMCXXYXIU-NRMVVENXSA-N 0.000 claims description 3
- 229940033123 tannic acid Drugs 0.000 claims description 3
- 229920002258 tannic acid Polymers 0.000 claims description 3
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 claims description 2
- 239000002253 acid Substances 0.000 claims 1
- 238000011084 recovery Methods 0.000 abstract description 7
- 238000004537 pulping Methods 0.000 abstract description 4
- 238000000926 separation method Methods 0.000 abstract description 4
- 239000010459 dolomite Substances 0.000 abstract description 3
- 229910000514 dolomite Inorganic materials 0.000 abstract description 3
- 238000005516 engineering process Methods 0.000 abstract description 3
- 235000005985 organic acids Nutrition 0.000 abstract 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 9
- 239000011707 mineral Substances 0.000 description 9
- 238000010408 sweeping Methods 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 239000001384 succinic acid Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 3
- 229910019142 PO4 Inorganic materials 0.000 description 3
- 229910021645 metal ion Inorganic materials 0.000 description 3
- 239000010452 phosphate Substances 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 239000001630 malic acid Substances 0.000 description 2
- 235000011090 malic acid Nutrition 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 235000019353 potassium silicate Nutrition 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000011435 rock Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 2
- 229910021532 Calcite Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910052586 apatite Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000011045 chalcedony Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229960004106 citric acid Drugs 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- 235000019864 coconut oil Nutrition 0.000 description 1
- 239000003240 coconut oil Substances 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000013530 defoamer Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- YGANSGVIUGARFR-UHFFFAOYSA-N dipotassium dioxosilane oxo(oxoalumanyloxy)alumane oxygen(2-) Chemical compound [O--].[K+].[K+].O=[Si]=O.O=[Al]O[Al]=O YGANSGVIUGARFR-UHFFFAOYSA-N 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000010433 feldspar Substances 0.000 description 1
- 239000003337 fertilizer Substances 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 239000004137 magnesium phosphate Substances 0.000 description 1
- 229960002261 magnesium phosphate Drugs 0.000 description 1
- 229910000157 magnesium phosphate Inorganic materials 0.000 description 1
- 229940099690 malic acid Drugs 0.000 description 1
- 229910052627 muscovite Inorganic materials 0.000 description 1
- VSIIXMUUUJUKCM-UHFFFAOYSA-D pentacalcium;fluoride;triphosphate Chemical compound [F-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O VSIIXMUUUJUKCM-UHFFFAOYSA-D 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000002000 scavenging effect Effects 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 235000017550 sodium carbonate Nutrition 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 229910052613 tourmaline Inorganic materials 0.000 description 1
- 239000011032 tourmaline Substances 0.000 description 1
- 229940070527 tourmaline Drugs 0.000 description 1
- XWKBMOUUGHARTI-UHFFFAOYSA-N tricalcium;diphosphite Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])[O-].[O-]P([O-])[O-] XWKBMOUUGHARTI-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
本发明涉及一种磷矿反浮选工艺,包括有以下步骤:将磷矿石通过碎矿、磨矿和调浆之后进入反浮选工艺,其中,调浆后所得矿浆中添加硫酸或磷酸作为调整剂和抑制剂,再添加小分子有机酸作为联合抑制剂,抑制磷酸盐矿物;以脂肪酸类或脂肪酸皂类为捕收剂,进行反浮选脱出碳酸盐矿物,获得高品位低镁磷精矿。本发明具有以下优点:在采用小分子有机酸抑制剂来实现胶磷矿与白云石的有效分离,为提高磷精矿品位,降低尾矿的品位,可以提高回收率。同时替代磷酸及其衍生物在磷矿反浮选中的应用,从而节约磷资源,延长磷矿资源的使用时间,克服现有技术的不足。
The invention relates to a phosphate rock reverse flotation process, which includes the following steps: the phosphate rock enters the reverse flotation process after crushing, grinding and pulping, wherein sulfuric acid or phosphoric acid is added to the pulp obtained after pulping as Regulators and inhibitors, adding small molecular organic acids as combined inhibitors to inhibit phosphate minerals; using fatty acids or fatty acid soaps as collectors, reverse flotation to remove carbonate minerals, and obtain high-grade low-magnesium phosphorus concentrate. The invention has the following advantages: when the small molecule organic acid inhibitor is used to realize the effective separation of collophosite and dolomite, the recovery rate can be improved in order to improve the grade of phosphorus concentrate and reduce the grade of tailings. At the same time, it replaces the application of phosphoric acid and its derivatives in phosphate rock reverse flotation, thereby saving phosphorus resources, prolonging the use time of phosphate rock resources, and overcoming the shortcomings of the existing technology.
Description
技术领域technical field
本发明涉及一种磷矿反浮选工艺。The invention relates to a phosphate rock reverse flotation process.
背景技术Background technique
磷矿是生产磷肥、磷化工产品的必不可少的基础原料。我国磷矿资源储量167.86亿吨,平均品位16.95%,可直接利用的高品位矿石仅能维持十多年开采,而中低品位胶磷矿由于各种矿物嵌镶关系复杂、嵌布粒度细、解离性差,同时碳酸盐矿物含量等特点,其开发利用属于世界性难题。在磷矿反浮选中,硫酸与磷酸作为反浮选的抑制剂,存在硫酸、磷酸用量大,抑制性差,选择性低,使得选矿成本高。Phosphate rock is an essential basic raw material for the production of phosphate fertilizers and phosphorus chemical products. my country's phosphate resource reserves are 16.786 billion tons, with an average grade of 16.95%. The high-grade ore that can be directly used can only be mined for more than ten years. Poor dissociation, and carbonate mineral content and other characteristics, its development and utilization is a worldwide problem. In reverse flotation of phosphate rock, sulfuric acid and phosphoric acid are used as inhibitors of reverse flotation. There are large amounts of sulfuric acid and phosphoric acid, poor inhibition and low selectivity, which makes the cost of mineral processing high.
发明内容Contents of the invention
本发明所要解决的问题是针对上述现有的技术提出的一种磷矿反浮选工艺,其采用硫酸与小分子有机酸联合作为抑制剂,其原料价廉易采购,使用方便,抑制效果更好.The problem to be solved by the present invention is a kind of phosphate rock reverse flotation process proposed in view of the above-mentioned existing technology, which adopts sulfuric acid and small molecular organic acid as inhibitors, its raw materials are cheap and easy to purchase, easy to use, and the inhibitory effect is better. good.
本发明为解决上述技术问题所采用的技术方案为:一种磷矿反浮选工艺,其特征在于包括有以下步骤:将磷矿石通过碎矿、磨矿和调浆之后进入反浮选工艺,其中,调浆后所得矿浆中添加硫酸或磷酸作为调整剂和抑制剂,再添加小分子有机酸作为联合抑制剂,抑制磷酸盐矿物;采用脂肪酸类或脂肪酸皂类捕收剂,进行反浮选脱出碳酸盐矿物,获得高品位低镁磷精矿。The technical scheme adopted by the present invention to solve the above technical problems is: a reverse flotation process for phosphate rock, which is characterized in that it includes the following steps: the phosphor rock enters the reverse flotation process after crushing, grinding and pulping , wherein sulfuric acid or phosphoric acid is added to the pulp obtained after pulping as a regulator and inhibitor, and then a small molecular organic acid is added as a combined inhibitor to inhibit phosphate minerals; fatty acid or fatty acid soap collectors are used for defloating Separation of carbonate minerals to obtain high-grade low-magnesium phosphorus concentrate.
按上述方案,所述的反浮选工艺为正反浮选工艺、单一反浮选工艺或双反浮选工艺,以脱出碳酸盐矿物,降低MgO的含量。According to the above scheme, the reverse flotation process is forward and reverse flotation process, single reverse flotation process or double reverse flotation process to remove carbonate minerals and reduce the content of MgO.
按上述方案,所述的添加硫酸或磷酸以调整矿浆的pH值4-6。According to the above scheme, the addition of sulfuric acid or phosphoric acid is to adjust the pH value of the pulp to 4-6.
按上述方案,所述的小分子有机酸为柠檬酸、丁二酸、苹果酸、没食子酸和单宁酸的任意两种的混合物,其在反浮选工艺中用量为0.5kg/t~3.0kg/t磷矿石。According to the above scheme, the small molecular organic acid is a mixture of any two of citric acid, succinic acid, malic acid, gallic acid and tannic acid, and its dosage in the reverse flotation process is 0.5kg/t~3.0 kg/t phosphate rock.
按上述方案,所述的脂肪酸类或脂肪酸皂类捕收剂的用量为0.3~2.0kg/t磷矿石。According to the above scheme, the amount of the fatty acid or fatty acid soap collector is 0.3-2.0 kg/t of phosphate rock.
本发明具有以下优点:小分子有机酸联合抑制剂使用,因为它们具有来源广泛,水溶性良好,选择性高,无环境污染等特点,小分子有机酸联合抑制剂在浮选过程中主要通过三种不同的作用形式来影响浮选过程,(1)与矿浆中活化金属离子作用生成稳定的可溶性螯合物,从而防止其吸附到矿物表面,达到抑制作用;(2)与矿物表面金属离子作用,生成亲水性产物附着在矿物表面,并阻碍捕收剂的吸附,从而达到抑制磷矿物的目的;(3)与矿物表面活化金属离子作用生成稳定的水溶性的螯合物溶解于矿浆中,从而达到矿物表面去活作用。在采用小分子有机酸抑制剂来实现胶磷矿与白云石的有效分离,为提高磷精矿品位,降低尾矿的品位,可以提高回收率。同时替代磷酸及其衍生物在磷矿反浮选中的应用,从而节约磷资源,延长磷矿资源的使用时间,克服现有技术的不足。The present invention has the following advantages: small molecule organic acid combined inhibitors are used because they have the characteristics of wide source, good water solubility, high selectivity, and no environmental pollution. Small molecule organic acid combined inhibitor mainly passes through three stages in the flotation process (1) interact with activated metal ions in the pulp to form stable soluble chelates, thereby preventing them from adsorbing to the mineral surface and achieving inhibition; (2) interact with metal ions on the mineral surface , to generate hydrophilic products attached to the mineral surface, and hinder the adsorption of collectors, so as to achieve the purpose of inhibiting phosphorus minerals; (3) interact with mineral surface activated metal ions to form stable water-soluble chelates that dissolve in the pulp In order to achieve the deactivation of the mineral surface. The use of small molecule organic acid inhibitors to achieve the effective separation of collophosite and dolomite can improve the recovery rate in order to improve the grade of phosphorus concentrate and reduce the grade of tailings. At the same time, it replaces the application of phosphoric acid and its derivatives in phosphate rock reverse flotation, thereby saving phosphorus resources, prolonging the use time of phosphate rock resources, and overcoming the shortcomings of the existing technology.
附图说明Description of drawings
图1在宜昌磷矿单一反浮选的应用的工艺流程图;Fig. 1 is the process flow diagram of the application of single reverse flotation of phosphate rock in Yichang;
图2在贵州磷矿单一反浮选的应用的工艺流程图;Fig. 2 is the process flow diagram of the application of the single reverse flotation of phosphate rock in Guizhou;
图3在四川磷矿正反浮选的应用工艺流程图;Figure 3 is a flow chart of the application process of positive and negative flotation of phosphate rock in Sichuan;
图4在云南海口磷矿双反浮选的应用工艺流程图。Figure 4 is a flow chart of the application process of double reverse flotation of phosphate rock in Haikou, Yunnan.
具体实施方式Detailed ways
下面结合实施例对本发明做进一步详细的说明。Below in conjunction with embodiment the present invention is described in further detail.
实施例1:Example 1:
1)宜昌高镁磷矿含有P2O528.54%,MgO6.03%,原矿通过破碎机破碎至-12mm,再通过磨矿机进行磨矿,磨矿细度为-0.074mm80.45%,加水调浆至浓度20-50%,在反浮选粗选先添加H2SO4用量为12kg/t原矿,调整矿浆的pH为5.2-6,后添加柠檬酸与丁二酸作为联合抑制剂,其质量配比为2:1,其用量为1.5kg/t原矿,脂肪酸阴离子型捕收剂TSM-2的用量为0.4kg/t原矿,扫选H2SO4为1kg/t原矿条件下进行反浮选一粗一扫选闭路流程试验,试验的流程图如图1,得到精矿P2O534.52%,产率77.19%,P2O5回收率为97.71%。采用硫酸、柠檬酸与丁二酸作为联合抑制剂,回收率比硫酸与磷酸作为抑制剂用量为3.0kg/t时,提高了3.78%,产率提高了4.01%,尾矿品位降低了3.16%,说明柠檬酸与丁二酸作为联合抑制剂能有效抑制磷酸盐矿物的浮选,提高分选效率。1) Yichang high-magnesium phosphate rock contains P 2 O 5 28.54%, MgO6.03%. The raw ore is crushed to -12mm by a crusher, and then ground by a grinding machine. The grinding fineness is -0.074mm80.45%. Add water to adjust the slurry to a concentration of 20-50%. In reverse flotation roughing, first add H 2 SO 4 in an amount of 12kg/t raw ore, adjust the pH of the slurry to 5.2-6, and then add citric acid and succinic acid as joint inhibitors , the mass ratio is 2:1, the dosage is 1.5kg/t raw ore, the dosage of fatty acid anionic collector TSM-2 is 0.4kg/t raw ore, and H 2 SO 4 is 1kg/t raw ore The reverse flotation-roughing-sweeping closed-circuit process test was carried out. The flow chart of the test is shown in Figure 1. The concentrate P 2 O 5 was 34.52%, the yield was 77.19%, and the recovery rate of P2O5 was 97.71%. Using sulfuric acid, citric acid and succinic acid as combined inhibitors, the recovery rate increased by 3.78%, the yield increased by 4.01%, and the tailings grade decreased by 3.16% compared to when the sulfuric acid and phosphoric acid were used as inhibitors at a dosage of 3.0kg/t. , indicating that citric acid and succinic acid as a combined inhibitor can effectively inhibit the flotation of phosphate minerals and improve the separation efficiency.
实施例2:Example 2:
贵州磷矿含有P2O5为23.45%、MgO的含量为3.54%。原矿通过破碎机破碎,再通过磨矿机进行磨矿,磨矿细度为-0.074mm84.00%,加水调浆至浓度20-50%,在反浮选粗选先添加H2SO4用量为12.0kg/t原矿,后添加丁二酸、苹果酸为联合抑制剂,其质量配比为3:1,其用量为1.5kg/t原矿,再添加脂肪酸类阴离子型TSM-2捕收剂,用量为1.3kg/t原矿,扫选H2SO4为3.0kg/t原矿的条件下进行反浮选一粗一扫选闭路流程试验,试验的流程图如图2,得到精矿P2O530.25%,产率65.67%,P2O5回收率为84.71%。Guizhou phosphate rock contains 23.45% P 2 O 5 and 3.54% MgO. The raw ore is crushed by a crusher, and then ground by a grinder. The grinding fineness is -0.074mm84.00%. Add water to adjust the slurry to a concentration of 20-50%. Add H 2 SO 4 to the reverse flotation roughing 12.0kg/t raw ore, then add succinic acid and malic acid as combined inhibitors, the mass ratio is 3:1, the dosage is 1.5kg/t raw ore, and then add fatty acid anionic TSM-2 collector , the dosage is 1.3kg/t raw ore, under the conditions of scavenging H 2 SO 4 to 3.0kg/t raw ore, reverse flotation-coarse-sweeping closed-circuit process test is carried out. The flow chart of the test is shown in Figure 2, and the concentrate P 2 O 5 was 30.25%, the yield was 65.67%, and the recovery rate of P 2 O 5 was 84.71%.
实施例3:Example 3:
四川磷矿的多元素分析见表1,表1磷矿化学多元素分析The multi-element analysis of Sichuan phosphate rock is shown in Table 1, Table 1 Chemical multi-element analysis of phosphate rock
利用常温正反浮选,原矿的品位17.71%,原矿通过破碎机破碎,再通过磨矿机进行磨矿,磨矿细度为-0.074mm91.8%,加水调浆至浓度20-50%,正浮选采用一次粗选一次扫选和一次精选作业,粗选碳酸钠、水玻璃、脂肪酸类阴离子型捕收剂TSM-2的用量分别为6.0kg/t原矿、2.0kg/t原矿、1.0kg/t原矿,精选水玻璃的用量为1.0kg/t原矿,扫选脂肪酸类阴离子型捕收剂TSM-2的用量为0.5kg/t原矿;反浮选采用一粗两扫工艺,粗选作业的硫酸6.0kg/t原矿、柠檬酸与没食子酸(其质量配比为4:1)作为联合抑制剂用量1.0kg/t原矿、脂肪酸类阴离子型捕收剂TSM-2用量0.45kg/t原矿,在一扫中添加了硫酸6.0kg/t原矿,加入柠檬酸与没食子酸(质量配比为4:1)作为联合抑制剂0.5kg/t原矿,扫二作业加入硫酸3.0kg/t原矿,获得精矿的品位为26.63%,回收率80.15%,产率为53.3%的选矿指标。Using positive and negative flotation at normal temperature, the grade of the raw ore is 17.71%. The raw ore is crushed by a crusher, and then ground by a grinding machine. The grinding fineness is -0.074mm91.8%. Add water to adjust the slurry to a concentration of 20-50%. The positive flotation adopts one roughing, one sweeping and one beneficiation operation. The dosages of roughing sodium carbonate, water glass and fatty acid anionic collector TSM-2 are 6.0kg/t raw ore, 2.0kg/t raw ore, 1.0kg/t raw ore, the dosage of selected water glass is 1.0kg/t raw ore, and the dosage of fatty acid anionic collector TSM-2 is 0.5kg/t raw ore; Sulfuric acid 6.0kg/t raw ore for roughing, citric acid and gallic acid (the mass ratio is 4:1) as joint inhibitor dosage 1.0kg/t raw ore, fatty acid anionic collector TSM-2 dosage 0.45kg /t raw ore, add sulfuric acid 6.0kg/t raw ore in the first sweep, add citric acid and gallic acid (mass ratio: 4:1) as a joint inhibitor 0.5kg/t raw ore, add sulfuric acid 3.0kg/t raw ore in the second sweep t raw ore, the grade of the concentrate obtained is 26.63%, the recovery rate is 80.15%, and the production rate is 53.3%.
实施例4:Example 4:
海口磷矿,矿石主要矿物成分为胶磷矿、次为少量微晶磷灰石,次要矿物成分以白云石为主,含有石英、方解石、长石、玉髓及少量的电气石、海绿石、白云母和碳泥质物等。矿石主要化学成分有P2O5﹑CaO﹑SiO2,其次为CO2﹑MgO2及Fe2O3﹑Al2O3﹑﹑F等,矿石工业类型为硅钙质磷块岩。Haikou Phosphate Mine, the main mineral composition of the ore is collophosite, followed by a small amount of microcrystalline apatite, and the secondary mineral composition is mainly dolomite, containing quartz, calcite, feldspar, chalcedony and a small amount of tourmaline and sea green Stone, muscovite and carbon argillaceous matter, etc. The main chemical composition of the ore is P 2 O 5 ﹑ CaO ﹑ SiO 2 , followed by CO 2 ﹑ MgO 2 and Fe 2 O 3 ﹑ Al 2 O 3 ﹑ ﹑ F, etc. The industrial type of ore is siliceous calcium phosphorite.
针对云南海口中低磷矿双反浮选试验,原矿通过破碎机破碎,再通过磨矿机进行磨矿,磨矿细度为-0.074mm92.67%,加水调浆至浓度20-50%,反浮选粗选为粗选脱镁为:硫酸用量为9kg/t原矿,柠檬酸与单宁酸(质量配比5:1)用量1kg/t原矿,脂肪酸类阴离子型捕收剂TSM-2用量0.9kg/t原矿;精选脱镁为:硫酸1kg/t原矿,脂肪酸类阴离子型捕收剂TSM-20.3kg/t原矿;脱硅过程:胺类阳离子型捕收剂椰油二胺0.6kg/t原矿,消泡剂100g/t原矿。当药剂制度确定后通过实验确定最佳的开路流程为脱镁为一次粗选,一次精选和一次扫选;脱硅为一次粗选和一次扫选。最终获得了精矿品位31.11%,回收率达到了79.95%,选矿产率为54.96%的选矿指标。For the double-reverse flotation test of medium and low phosphorus ore in Haikou, Yunnan, the raw ore is crushed by a crusher, and then ground by a grinder. The grinding fineness is -0.074mm92.67%. Reverse flotation roughing is roughing and magnesium removal: the dosage of sulfuric acid is 9kg/t raw ore, the dosage of citric acid and tannic acid (mass ratio 5:1) is 1kg/t raw ore, fatty acid anionic collector TSM-2 The dosage is 0.9kg/t raw ore; selected magnesium removal is: sulfuric acid 1kg/t raw ore, fatty acid anionic collector TSM-20.3kg/t raw ore; desiliconization process: amine cationic collector coconut oil diamine 0.6 kg/t raw ore, defoamer 100g/t raw ore. When the reagent system is determined, the best open-circuit process is determined through experiments as one roughing, one refining and one sweeping for magnesium removal; one roughing and one sweeping for desiliconization. Finally, the concentrate grade was 31.11%, the recovery rate reached 79.95%, and the beneficiation yield rate was 54.96%.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310134970.6A CN103212484B (en) | 2013-04-18 | 2013-04-18 | Phosphorite reverse flotation process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310134970.6A CN103212484B (en) | 2013-04-18 | 2013-04-18 | Phosphorite reverse flotation process |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103212484A CN103212484A (en) | 2013-07-24 |
CN103212484B true CN103212484B (en) | 2015-05-20 |
Family
ID=48810829
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310134970.6A Active CN103212484B (en) | 2013-04-18 | 2013-04-18 | Phosphorite reverse flotation process |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103212484B (en) |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103706488A (en) * | 2013-12-31 | 2014-04-09 | 中蓝连海设计研究院 | Reverse flotation technology of phosphate ore in alkaline medium |
CN103909017B (en) * | 2014-04-18 | 2017-02-15 | 武汉工程大学 | Flotation process for silicon-calcium mixed collophanite containing organic carbon |
CN104259013A (en) * | 2014-08-08 | 2015-01-07 | 西北矿冶研究院 | Inhibitor for separating blue chalcocite from pyrite and beneficiation method thereof |
CN104437819B (en) * | 2014-11-04 | 2017-05-31 | 中蓝连海设计研究院 | A kind of suspension and method for improving phosphate reverse flotation carbonate efficiency |
CN104787739A (en) * | 2014-12-10 | 2015-07-22 | 湖北新洋丰肥业股份有限公司 | Powdered monoammonium phosphate with 60% of total nutrient and production method |
CN104624379B (en) * | 2014-12-29 | 2017-07-18 | 中蓝连海设计研究院 | A kind of positive and negative reverse flotation method of low-grade silicon calcium collophanite |
CN104741244B (en) * | 2015-04-23 | 2017-04-12 | 中国地质科学院矿产综合利用研究所 | Silicon-calcium collophanite normal-temperature direct flotation collecting agent and preparation method thereof |
CN104826741B (en) * | 2015-05-08 | 2017-05-31 | 中蓝连海设计研究院 | A kind of flotation and water return method for collophane bi-anti-symmetric matrix technique |
CN104907183B (en) * | 2015-07-03 | 2017-12-12 | 武汉工程大学 | A kind of silico-calcium matter low grade collophanite direct reverse flotation technique |
CN105152716B (en) * | 2015-09-05 | 2018-05-08 | 山东红日阿康化工股份有限公司 | A kind for the treatment of process of the acid solution produced in phosphorus ore acid system ore dressing and ore dressing process and application |
CN105268560A (en) * | 2015-11-13 | 2016-01-27 | 中蓝连海设计研究院 | Method for simultaneous anti-flotation of carbonate and silicate in phosphorus ore |
CN105562213A (en) * | 2015-12-23 | 2016-05-11 | 中蓝连海设计研究院 | Preparation method for phosphorus ore reverse flotation depressing agent sulfuric acid and reverse flotation method |
CN105728177A (en) * | 2016-03-10 | 2016-07-06 | 湖北大峪口化工有限责任公司 | Leaching-reverse flotation method of collophanite |
CN105833986B (en) * | 2016-05-23 | 2019-03-08 | 武汉工程大学 | A forward and reverse flotation process for demanganese removal from manganese low-grade phosphate ore |
CN107159468A (en) * | 2017-04-20 | 2017-09-15 | 宜昌东圣磷复肥有限责任公司 | A kind of low grade collophanite reverse floatation process |
CN108940601B (en) * | 2017-05-24 | 2022-03-18 | 中蓝连海设计研究院有限公司 | Application and use method of aminodisuccinic acid or iminodisuccinic acid salt |
WO2018222524A1 (en) * | 2017-05-30 | 2018-12-06 | Ecolab Usa Inc. | Improved compositions and methods for reverse froth flotation of phosphate ores |
CN107890955A (en) * | 2017-11-06 | 2018-04-10 | 云南磷化集团有限公司 | A kind of and supporting short route method for floating of chemical plant installations |
CN108620240B (en) * | 2018-05-22 | 2019-10-08 | 中南大学 | A kind of sulfide mineral inhibitor of bismuth and its application |
CN110280392A (en) * | 2019-07-15 | 2019-09-27 | 宜都兴发化工有限公司 | A kind of preparation method of vegetable fatty acid galla turcica ester collecting agent |
CN110394239A (en) * | 2019-08-26 | 2019-11-01 | 贵州大学 | A flotation method for depositing calcareous phosphorite rock |
CN111036412B (en) * | 2019-11-27 | 2021-03-16 | 东北大学 | Application of inhibitor HPMA in positive flotation and magnesium removal of phosphate ore |
CN111451001B (en) * | 2020-03-10 | 2021-05-11 | 中国地质科学院矿产综合利用研究所 | Medium-low grade mixed collophanite flotation separation reagent system and application thereof |
CN112705360A (en) * | 2020-12-11 | 2021-04-27 | 山东省地质科学研究院 | Oleic acid flotation process method of tourmaline ore |
CN112371346B (en) * | 2020-12-15 | 2023-05-23 | 武汉工程大学 | Dolomite inhibitor and application method thereof |
CN115400881B (en) * | 2022-08-26 | 2025-03-07 | 广东邦普循环科技有限公司 | A method for purifying and whitening phosphogypsum |
CN115532445A (en) * | 2022-09-30 | 2022-12-30 | 湖北兴顺矿业有限公司 | A kind of flotation process of high-magnesium and low-grade collophosite |
CN115594353B (en) * | 2022-10-28 | 2024-06-04 | 矿冶科技集团有限公司 | Treatment method of collophanite double reverse flotation wastewater |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB504395A (en) * | 1937-07-28 | 1939-04-25 | Phosphate Recovery Corp | Improvements in or relating to processes of concentrating non-metallic minerals fromores containing silicious matter |
CN1806931A (en) * | 2006-01-27 | 2006-07-26 | 湖北宜化大江复合肥有限公司 | Mineral dressing method of mid-low grade collophane |
-
2013
- 2013-04-18 CN CN201310134970.6A patent/CN103212484B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB504395A (en) * | 1937-07-28 | 1939-04-25 | Phosphate Recovery Corp | Improvements in or relating to processes of concentrating non-metallic minerals fromores containing silicious matter |
CN1806931A (en) * | 2006-01-27 | 2006-07-26 | 湖北宜化大江复合肥有限公司 | Mineral dressing method of mid-low grade collophane |
Non-Patent Citations (4)
Title |
---|
云南会泽中低品位胶磷矿选矿工艺对比研究;方世祥等;《化工矿物与加工》;20120229(第2期);9-11,38 * |
磷矿浮选工艺和药剂的研究现状;张裕书等;《中国矿业》;20090731;第18卷;58-61 * |
磷矿物浮选药剂的应用现状;张旭等;《矿业快报》;20080430(第468期);10-12 * |
胶磷矿反浮选抑制剂PT-4与磷酸抑制性能对比研究;罗惠华等;《化工矿物与加工》;20130331(第3期);1-3 * |
Also Published As
Publication number | Publication date |
---|---|
CN103212484A (en) | 2013-07-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103212484B (en) | Phosphorite reverse flotation process | |
CN101905190B (en) | A kind of beneficiation method of collophosite | |
CN103909017B (en) | Flotation process for silicon-calcium mixed collophanite containing organic carbon | |
CN104907183B (en) | A kind of silico-calcium matter low grade collophanite direct reverse flotation technique | |
CN103495506B (en) | A kind of medicament for iron ore reverse flotation and combinationally use method | |
CN105344494B (en) | The beneficiation method of low-grade copper sulfide ores under a kind of low alkalinity | |
CN106423536B (en) | A kind of substep ore grinding floatation process anyway handling silicon calcium collophanite | |
CN105268560A (en) | Method for simultaneous anti-flotation of carbonate and silicate in phosphorus ore | |
CN110369120A (en) | A kind of phosphorus ore weight-floating combined mineral dressing technology | |
CN104858067A (en) | Process for direct flotation and double reverse flotation of low-grade collophanite | |
CN103831170B (en) | Floatation method for silica-calcium collophane with difficult separation | |
CN105833986A (en) | Demanganizing direct-reverse flotation process for manganese low-grade phosphate ores | |
CN101602031A (en) | A combined collector of apatite | |
CN104801427A (en) | Direct and reverse flotation technique for high-magnesium low-grade phosphorus ore coarse grains | |
CN102274797A (en) | Sorting process capable of improving sorting indexes of siderite-containing ore | |
CN114653480A (en) | Reverse flotation process for synchronously removing silicon and magnesium impurities from collophanite and collecting agent thereof | |
CN110142145A (en) | The technique of sesquichloride and magnesium addition in a kind of flotation removing silicon calcium collophanite | |
CN101670317B (en) | A combined regulator for flotation of silicon-containing gangue phosphorus minerals | |
CN102965079B (en) | Phosphate rock grinding aid and preparation method thereof | |
CN108722680A (en) | A kind of phosphate rock floating combination medicament and its application method for high-silicon high magnesium | |
CN112007759B (en) | Double-reverse middling direct flotation method for treating low-magnesium high-iron aluminum silicon calcium collophanite | |
CN105013595B (en) | Beneficiation method for producing high-purity kyanite through low-grade kyanite | |
CN104624379A (en) | Obverse and reverse flotation method of low-grade silica-calcia bearing collophane | |
CN103817012A (en) | Pulp pH combined regulator for phosphorite flotation process | |
CN111330744A (en) | Flotation method and pretreatment method for phosphate rock containing calcite |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20170310 Address after: Lotus town 444211 Hubei city of Yichang Province in Yuan'an County flag village two groups Patentee after: Yuan'an County Liaoyuan mining limited liability company Address before: 430074 Wuhan, Hongshan Province District, hung Chu street, No. 693 Patentee before: Wuhan Institute of Technology |