CN103207942A - 基于动量-叶素理论的致动盘不均匀受力载荷计算方法 - Google Patents

基于动量-叶素理论的致动盘不均匀受力载荷计算方法 Download PDF

Info

Publication number
CN103207942A
CN103207942A CN2012100119825A CN201210011982A CN103207942A CN 103207942 A CN103207942 A CN 103207942A CN 2012100119825 A CN2012100119825 A CN 2012100119825A CN 201210011982 A CN201210011982 A CN 201210011982A CN 103207942 A CN103207942 A CN 103207942A
Authority
CN
China
Prior art keywords
foline
actuator dial
annulus
sweeping
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012100119825A
Other languages
English (en)
Other versions
CN103207942B (zh
Inventor
贾利民
雷涛
刘展
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing nenggaopukang measurement and Control Technology Co., Ltd
Original Assignee
BEIJING NEGO AUTOMATION TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BEIJING NEGO AUTOMATION TECHNOLOGY Co Ltd filed Critical BEIJING NEGO AUTOMATION TECHNOLOGY Co Ltd
Priority to CN201210011982.5A priority Critical patent/CN103207942B/zh
Publication of CN103207942A publication Critical patent/CN103207942A/zh
Application granted granted Critical
Publication of CN103207942B publication Critical patent/CN103207942B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Wind Motors (AREA)

Abstract

本发明公开一种基于动量-叶素理论的致动盘载荷不均匀受力计算方法。本发明针对目前常规的动量-叶素理论方法不能有效求解致动盘平面内通过流体不均匀同时致动盘内各叶片规格、桨距角并不相同情况下致动盘相关载荷计算,提出了一种基于对传统的动量-叶素理论进行扩展的快速解析求解方法,并给出具体的求解解析公式和关键变量轴向诱导因子、径向诱导因子的具体迭代求解方法及步骤,该方法相对于目前的常用有限元求解方法可以大大的降低求解数据要求和计算量,特别适用于兆瓦级变速变桨风机风轮气动载荷相关计算。

Description

基于动量-叶素理论的致动盘不均匀受力载荷计算方法
技术领域
本发明属于流体力学技术领域,涉及基于动量-叶素理论的致动盘不均匀受力载荷计算方法。
背景技术
致动盘是一种实现流体的动能与致动盘的机械能相互转换的装置。常见的致动盘包括风力发电机组的风轮,飞机、轮船的螺旋桨等;
动量-叶素理论是目前最常用的求解致动盘载荷的方法,但目前的求解方法在实际应用中有以下问题:
1.现有方法只能求解流体均匀通过致动盘情况下的相关载荷计算,而实际生产过程中特别是大功率风力发电机组等致动盘由于其旋转覆盖面积巨大,很难确保在致动盘范围内通过的流体完全是均匀的;
2.现有方法在求解过程中假设致动盘内各叶片尺寸规格完全一致,而实际生产过程中的致动盘中叶片由于生产制造及安装误差不可能完全一致;
3. 现有方法要求在求解过程中致动盘内各叶片变桨角度完全一致,即保持致动盘内各叶片统一动作,而在实际生产过程中,由于各叶片机械环节的执行误差以及相关特有的控制需求(如风力发电机组的独立变桨控制技术),很难保证致动盘内各叶片变桨角度完全一致。
针对以上实际问题,目前许多商业软件推出了通过有限元计算分析方法处理在致动盘平面内通过流体不均匀同时致动盘内各叶片规格、桨距角并不相同情况下致动盘载荷计算方法,该方法计算精度较高但计算量相对较大,同时对数据需求也相对较多。
发明内容
本发明提出一种基于动量-叶素理论的致动盘载荷不均匀受力计算方法。
本发明的技术方案是基于动量-叶素理论的致动盘载荷不均匀受力计算方法,该方法基本原理与传统叶素-动量理论建模方法原理基本相同,也是通过迭代求出轴向诱导因子                                                
Figure 46549DEST_PATH_IMAGE001
和径向诱导因子
Figure 289442DEST_PATH_IMAGE002
后,计算出相关载荷,其具体推导过程如下:
根据叶素理论和动量模型分析方法,设致动盘的旋转角速度为,则半径
Figure 242410DEST_PATH_IMAGE004
处展向长度为
Figure 698930DEST_PATH_IMAGE005
的叶素,其切向速度为
Figure 96413DEST_PATH_IMAGE006
,相应的尾流切向速度分量为
Figure 261553DEST_PATH_IMAGE007
。当风速
Figure 402684DEST_PATH_IMAGE008
作用其上时,两者形成合速度为:
 
Figure 280423DEST_PATH_IMAGE009
根据叶素模型,作用在致动盘距旋转中心
Figure 865119DEST_PATH_IMAGE010
处叶素圆环产生的轴向力合力为:
 
式中
为空气密度;
Figure 300014DEST_PATH_IMAGE013
表示为致动盘内叶素扫略圆环中第条叶片中对应叶素的弦长;
Figure 616464DEST_PATH_IMAGE014
为致动盘内叶素扫略圆环中第条叶片中对应叶素的合成风速;
为致动盘内叶素扫略圆环中第条叶片中对应叶素法向力系数;
Figure 350382DEST_PATH_IMAGE016
表示致动盘内叶片的数量; 
Figure 196853DEST_PATH_IMAGE017
 
Figure 372619DEST_PATH_IMAGE018
式中
Figure 110899DEST_PATH_IMAGE019
表示致动盘中叶素扫略圆环中第
Figure 703249DEST_PATH_IMAGE020
条叶片中对应叶素受风;
 
式中
Figure 986780DEST_PATH_IMAGE022
表示致动盘中叶素扫略圆环中第
Figure 710891DEST_PATH_IMAGE020
条叶片中对应叶素的升力系数;
Figure 801207DEST_PATH_IMAGE023
表示致动盘中叶素扫略圆环中第
Figure 858156DEST_PATH_IMAGE020
条叶片中对应叶素的阻力系数;
Figure 359413DEST_PATH_IMAGE024
表示致动盘叶素扫略圆环中第
Figure 134602DEST_PATH_IMAGE020
条叶片中对应叶素上合成风速与致动盘旋转平面的夹角。
根据动量模型,考虑旋转尾流影响,在风轮平面受风不均匀,且桨距角不同时,作用在致动盘叶素扫略圆环面的轴向推力可列写为下式:
 
Figure 763030DEST_PATH_IMAGE025
式中
Figure 438599DEST_PATH_IMAGE026
表示叶素扫略圆环能量等效风速,可以按照下式计算:
 
Figure 612223DEST_PATH_IMAGE027
根据叶素模型,作用在致动盘距旋转中心
Figure 628370DEST_PATH_IMAGE028
处叶素圆环产生的切向力矩为:
 
Figure 873538DEST_PATH_IMAGE029
根据动量模型,通过叶素扫略圆环面的空气角动量变化率可列写为下式:
 
Figure 826450DEST_PATH_IMAGE017
式中
为致动盘叶素扫略圆环中第条叶片中对应叶素法切向力系数。
Figure 419292DEST_PATH_IMAGE031
联立以上结果,可以求得叶素扫略圆环轴向诱导因子和径向诱导因子
Figure 655101DEST_PATH_IMAGE032
推导公式为:
Figure 39684DEST_PATH_IMAGE033
式中
Figure 820689DEST_PATH_IMAGE034
由计算出的相关结果,可以求得叶片不均匀受力情况下,致动盘叶素扫略圆环载荷可以按照下式计算:
 
Figure 308300DEST_PATH_IMAGE035
式中
Figure 82221DEST_PATH_IMAGE036
表示致动盘中叶素扫略圆环中第条叶片中对应叶素的俯仰力矩系数;
Figure 760458DEST_PATH_IMAGE037
表示致动盘叶素扫略圆环所受到的轴向推力;
表示致动盘叶素扫略圆环所受到的切向转矩;
Figure 918962DEST_PATH_IMAGE039
表示致动盘叶素扫略圆环中第条叶片叶素所受到的俯仰力矩。
则致动盘载荷可以按照下式计算:
式中
表示致动盘中叶片叶素分段数;
Figure 712978DEST_PATH_IMAGE042
表示致动盘所受到的轴向推力;
Figure 596751DEST_PATH_IMAGE043
表示致动盘所受到的切向转矩;
Figure 24059DEST_PATH_IMAGE044
表示致动盘中第条叶片所受到的俯仰力矩。
附图说明
图1 致动盘载荷示意图
图2 动量-叶素理论示意图
图3 诱导因子迭代算法流程图。
具体实施方式
对致动盘中,对应叶素扫略圆环的轴向诱导因子和径向诱导因子
Figure 282182DEST_PATH_IMAGE046
的求解可以采用迭代法,具体步骤如下:
步骤1:设初值,
Figure 624531DEST_PATH_IMAGE048
一般可取很小的值和迭代终止条件
Figure 692719DEST_PATH_IMAGE049
为极小正实数;
步骤2:计算致动盘叶素扫略圆环中对应第
Figure 406597DEST_PATH_IMAGE050
条叶片的叶素上合成风速与致动盘旋转平面的夹角,计算公式如下:
Figure 264962DEST_PATH_IMAGE051
步骤3:计算致动盘叶素扫略圆环中对应第条叶片的叶素攻角
Figure 645183DEST_PATH_IMAGE052
,其中
Figure 608591DEST_PATH_IMAGE053
为叶素对应叶片的桨距角;
步骤4:由叶素的攻角
Figure 187209DEST_PATH_IMAGE054
,根据其翼型查表求叶素的升力系数
Figure 323792DEST_PATH_IMAGE055
、阻力系数
Figure 32817DEST_PATH_IMAGE056
和俯仰力矩系数
Figure 167126DEST_PATH_IMAGE057
步骤5:分别计算致动盘叶素扫略圆环中各叶素法向力系数
Figure 983772DEST_PATH_IMAGE058
和切向力系数
Figure 32368DEST_PATH_IMAGE059
步骤6:计算致动盘叶素扫略圆环中轴向诱导因子
Figure 431120DEST_PATH_IMAGE045
和径向诱导因子
Figure 923281DEST_PATH_IMAGE046
的迭代值
Figure 210912DEST_PATH_IMAGE060
步骤7:计算迭代误差
Figure 626981DEST_PATH_IMAGE061
步骤8:判断如果,则
Figure 979519DEST_PATH_IMAGE063
,返回步骤2,否则迭代结束为最终迭代结果。
本发明针对致动盘平面内通过流体不均匀同时致动盘内各叶片规格、桨距角并不相同情况下致动盘载荷计算方法,提出了一种基于对传统的动量-叶素理论进行扩展的快速解析求解方法,并给出具体的求解解析公式和关键变量轴向诱导因子
Figure 724939DEST_PATH_IMAGE045
、径向诱导因子
Figure 540360DEST_PATH_IMAGE046
的具体迭代求解方法及步骤,该方法相对于目前的常用有限元求解方法可以大大的降低求解数据要求和计算量。

Claims (5)

1.基于动量-叶素理论的致动盘载荷不均匀受力计算方法,其特征是求得叶素扫风圆环轴向诱导因子                                                和径向诱导因子
Figure 722199DEST_PATH_IMAGE002
推导公式为:
 
式中
表示致动盘叶素扫略圆环中叶素中心到致动盘旋转中心的距离;
Figure 188580DEST_PATH_IMAGE005
表示叶素扫略圆环能量等效风速;
表示致动盘内叶片的数量;
Figure 710140DEST_PATH_IMAGE007
为致动盘叶素扫略圆环中第条叶片中对应叶素的弦长;
Figure 633096DEST_PATH_IMAGE008
为致动盘叶素扫略圆环中第条叶片中对应叶素法向力系数;
Figure 755904DEST_PATH_IMAGE009
为致动盘叶素扫略圆环中第条叶片中对应叶素法切向力系数;
Figure 888945DEST_PATH_IMAGE010
表示致动盘叶素扫略圆环中第条叶片中对应叶素受风;
Figure 585479DEST_PATH_IMAGE011
表示致动盘叶素扫略圆环中第条叶片中对应叶素上合成风速与致动盘旋转平面的夹角。
2.根据权利要求1所述基于动量-叶素理论的致动盘载荷不均匀受力计算方法,其特征是叶素扫略圆环能量等效风速,按照下式计算:
 
Figure 487576DEST_PATH_IMAGE012
式中
Figure 781286DEST_PATH_IMAGE013
表示致动盘叶素扫略圆环中第条叶片中对应叶素受风;
Figure 949093DEST_PATH_IMAGE014
表示致动盘内叶片的数量。
3.基于动量-叶素理论的致动盘载荷不均匀受力计算方法,其特征是致动盘叶素扫略圆环载荷可以按照下式计算:
 
Figure 868507DEST_PATH_IMAGE015
式中
Figure 375843DEST_PATH_IMAGE016
为空气密度;
Figure 89721DEST_PATH_IMAGE017
表示致动盘内叶片的数量;
Figure 948087DEST_PATH_IMAGE018
表示为致动盘内叶素扫略圆环中第条叶片中对应叶素的弦长;
Figure 405613DEST_PATH_IMAGE019
为致动盘内叶素扫略圆环中第条叶片中对应叶素的合成风速;
Figure 767456DEST_PATH_IMAGE020
为致动盘内叶素扫略圆环中第条叶片中对应叶素法向力系数;
Figure 917814DEST_PATH_IMAGE021
为致动盘叶素扫略圆环中第条叶片中对应叶素法切向力系数;
Figure 997897DEST_PATH_IMAGE022
表示致动盘中叶素扫略圆环中第条叶片中对应叶素的俯仰力矩系数;
Figure 993535DEST_PATH_IMAGE023
表示致动盘叶素扫略圆环所受到的轴向推力;
Figure 475463DEST_PATH_IMAGE024
表示致动盘叶素扫略圆环所受到的切向转矩;
Figure 796723DEST_PATH_IMAGE025
表示致动盘叶素扫略圆环中第条叶片叶素所受到的俯仰力矩。
4.基于动量-叶素理论的致动盘载荷不均匀受力计算方法,其特征是致动盘载荷可以按照下式计算:
 
Figure 92663DEST_PATH_IMAGE026
式中
Figure 157571DEST_PATH_IMAGE027
表示致动盘中叶片叶素分段数;
Figure 494005DEST_PATH_IMAGE028
表示致动盘所受到的轴向推力;
表示致动盘所受到的切向转矩;
Figure 775262DEST_PATH_IMAGE030
表示致动盘中第条叶片所受到的俯仰力矩。
5.根据权利要求1所述基于动量-叶素理论的致动盘载荷不均匀受力计算方法,其特征是对应叶素扫略圆环的轴向诱导因子
Figure 378282DEST_PATH_IMAGE032
和径向诱导因子的求解可以采用迭代法,具体步骤如下:
步骤1:设
Figure 232285DEST_PATH_IMAGE036
初值,
Figure 2012100119825100001DEST_PATH_IMAGE038
一般可取很小的值和迭代终止条件
Figure 2012100119825100001DEST_PATH_IMAGE040
为极小正实数;
步骤2:计算致动盘叶素扫略圆环中对应第条叶片的叶素上合成风速与致动盘旋转平面的夹角,计算公式如下:
 
Figure 2012100119825100001DEST_PATH_IMAGE042
式中
Figure 2012100119825100001DEST_PATH_IMAGE044
表示致动盘叶素扫略圆环中第
Figure 2012100119825100001DEST_PATH_IMAGE046
条叶片中对应叶素受风;
Figure 2012100119825100001DEST_PATH_IMAGE048
表示致动盘叶素扫略圆环中叶素中心到致动盘旋转中心的距离;
Figure 2012100119825100001DEST_PATH_IMAGE050
为致动盘的旋转角速度;
步骤3:计算致动盘叶素扫略圆环中对应第
Figure 4282DEST_PATH_IMAGE046
条叶片的叶素攻角
Figure 2012100119825100001DEST_PATH_IMAGE052
,其中为叶素对应叶片的桨距角;
步骤4:由叶素的攻角
Figure 2012100119825100001DEST_PATH_IMAGE056
,根据其翼型查表求叶素的升力系数
Figure 2012100119825100001DEST_PATH_IMAGE058
、阻力系数
Figure 2012100119825100001DEST_PATH_IMAGE060
和俯仰力矩系数
Figure 2012100119825100001DEST_PATH_IMAGE062
步骤5:分别计算致动盘叶素扫略圆环中各叶素法向力系数
Figure 2012100119825100001DEST_PATH_IMAGE064
和切向力系数
Figure 2012100119825100001DEST_PATH_IMAGE066
,计算公式为:
 
Figure 2012100119825100001DEST_PATH_IMAGE068
步骤6:计算致动盘叶素扫略圆环中轴向诱导因子和径向诱导因子
Figure 2012100119825100001DEST_PATH_IMAGE072
的迭代值
Figure 2012100119825100001DEST_PATH_IMAGE074
步骤7:计算迭代误差
Figure 2012100119825100001DEST_PATH_IMAGE076
步骤8:判断如果
Figure 2012100119825100001DEST_PATH_IMAGE078
,则
Figure 2012100119825100001DEST_PATH_IMAGE080
,返回步骤2,否则迭代结束
Figure 2012100119825100001DEST_PATH_IMAGE082
为最终迭代结果。
CN201210011982.5A 2012-01-16 2012-01-16 基于动量-叶素理论的致动盘不均匀受力载荷计算方法 Active CN103207942B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210011982.5A CN103207942B (zh) 2012-01-16 2012-01-16 基于动量-叶素理论的致动盘不均匀受力载荷计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210011982.5A CN103207942B (zh) 2012-01-16 2012-01-16 基于动量-叶素理论的致动盘不均匀受力载荷计算方法

Publications (2)

Publication Number Publication Date
CN103207942A true CN103207942A (zh) 2013-07-17
CN103207942B CN103207942B (zh) 2016-08-17

Family

ID=48755162

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210011982.5A Active CN103207942B (zh) 2012-01-16 2012-01-16 基于动量-叶素理论的致动盘不均匀受力载荷计算方法

Country Status (1)

Country Link
CN (1) CN103207942B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104537251A (zh) * 2015-01-06 2015-04-22 西安交通大学 一种风机叶片的冲击载荷识别方法
CN105971821A (zh) * 2016-05-30 2016-09-28 广东明阳风电产业集团有限公司 一种风力发电机组基于风轮推力预估的控制算法
CN106762409A (zh) * 2016-11-23 2017-05-31 沈阳大学 一种基于β锥角的风力机叶素动量修正方法
CN111046533A (zh) * 2019-11-22 2020-04-21 中国华能集团清洁能源技术研究院有限公司 一种基于cfd预计算的风电机组单尾流分布模拟方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3758233A (en) * 1972-01-17 1973-09-11 Gen Motors Corp Vibration damping coatings
CN101532906A (zh) * 2009-04-27 2009-09-16 东南大学 风力发电机叶片的流体动力学和结构力学分析方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3758233A (en) * 1972-01-17 1973-09-11 Gen Motors Corp Vibration damping coatings
CN101532906A (zh) * 2009-04-27 2009-09-16 东南大学 风力发电机叶片的流体动力学和结构力学分析方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
魏煜锋: "风力发电机组叶片三维模型自动成型系统的开发与研究", 《中国优秀硕士学位论文全文数据库》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104537251A (zh) * 2015-01-06 2015-04-22 西安交通大学 一种风机叶片的冲击载荷识别方法
CN105971821A (zh) * 2016-05-30 2016-09-28 广东明阳风电产业集团有限公司 一种风力发电机组基于风轮推力预估的控制算法
CN105971821B (zh) * 2016-05-30 2018-11-09 明阳智慧能源集团股份公司 一种风力发电机组基于风轮推力预估的控制方法
CN106762409A (zh) * 2016-11-23 2017-05-31 沈阳大学 一种基于β锥角的风力机叶素动量修正方法
CN111046533A (zh) * 2019-11-22 2020-04-21 中国华能集团清洁能源技术研究院有限公司 一种基于cfd预计算的风电机组单尾流分布模拟方法

Also Published As

Publication number Publication date
CN103207942B (zh) 2016-08-17

Similar Documents

Publication Publication Date Title
Dai et al. Analysis of wind turbine blades aeroelastic performance under yaw conditions
De Vaal et al. Effect of wind turbine surge motion on rotor thrust and induced velocity
Pereira et al. Validation of the Beddoes–Leishman dynamic stall model for horizontal axis wind turbines using MEXICO data
Chen et al. Numerical analysis of unsteady aerodynamic performance of floating offshore wind turbine under platform surge and pitch motions
Sagharichi et al. Variable pitch blades: An approach for improving performance of Darrieus wind turbine
Menegozzo et al. Small wind turbines: A numerical study for aerodynamic performance assessment under gust conditions
Corsini et al. Modeling of rain drop erosion in a multi-MW wind turbine
Laursen et al. 3D CFD quantification of the performance of a multi-megawatt wind turbine
Soraghan et al. Double multiple streamtube model for variable pitch vertical axis wind turbines
Wu et al. Effects of lateral wind gusts on vertical axis wind turbines
Ramos‐García et al. Hybrid vortex simulations of wind turbines using a three‐dimensional viscous–inviscid panel method
CN103207942A (zh) 基于动量-叶素理论的致动盘不均匀受力载荷计算方法
Marten et al. Development and application of a simulation tool for vertical and horizontal axis wind turbines
Chaudhary et al. Modeling and optimal design of small HAWT blades for analyzing the starting torque behavior
Guerri et al. Simulations of the fluid flow around a rotating vertical axis wind turbine
Bangga et al. An examination of rotational effects on large wind turbine blades
Abedi et al. Vortex method application for aerodynamic loads on rotor blades
Velázquez et al. Design and experimentation of a 1 MW horizontal axis wind turbine
Rogowski et al. Numerical analysis of a small-size vertical-axis wind turbine performance and averaged flow parameters around the rotor
Zahle et al. Overset grid flow simulation on a modern wind turbine
Kyle et al. The effect of a leading edge erosion shield on the aerodynamic performance of a wind turbine blade
Xu et al. Development and application of a dynamic stall model for rotating wind turbine blades
Jourieh et al. Hybrid rotor models for the numerical optimisation of wind turbine farms
de Vaal et al. Influence of rigid body motions on rotor induced velocities and aerodynamic loads of a floating horizontal axis wind turbine
Moshfeghi et al. A new method for horizontal axis wind turbine angle of attack determination

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20200401

Address after: 100071 207, 2 / F, building 3, yard 128, South Fourth Ring West Road, Fengtai District, Beijing

Patentee after: Beijing nenggaopukang measurement and Control Technology Co., Ltd

Address before: 100044 Beijing city Haidian District Xizhimen, Beijing Jiaotong University Simon Jiaotong University for six storey building

Patentee before: BEIJING NEGO AUTOMATION TECHNOLOGY Co.,Ltd.