CN103199790A - Control system and control method for three-phase four-bridge-arm permanent magnet synchronous motor - Google Patents
Control system and control method for three-phase four-bridge-arm permanent magnet synchronous motor Download PDFInfo
- Publication number
- CN103199790A CN103199790A CN2013101601970A CN201310160197A CN103199790A CN 103199790 A CN103199790 A CN 103199790A CN 2013101601970 A CN2013101601970 A CN 2013101601970A CN 201310160197 A CN201310160197 A CN 201310160197A CN 103199790 A CN103199790 A CN 103199790A
- Authority
- CN
- China
- Prior art keywords
- phase
- current
- permanent magnet
- controller
- synchronous motor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000001360 synchronised effect Effects 0.000 title claims abstract description 52
- 238000000034 method Methods 0.000 title claims abstract description 28
- 238000005070 sampling Methods 0.000 claims abstract description 11
- 239000000203 mixture Substances 0.000 claims abstract description 4
- 239000013598 vector Substances 0.000 claims description 53
- 230000009466 transformation Effects 0.000 claims description 42
- 230000007935 neutral effect Effects 0.000 claims description 23
- 238000004804 winding Methods 0.000 claims description 17
- 238000002955 isolation Methods 0.000 claims description 8
- 238000001514 detection method Methods 0.000 claims description 7
- 230000004907 flux Effects 0.000 claims description 6
- 230000003321 amplification Effects 0.000 claims description 3
- 230000015572 biosynthetic process Effects 0.000 claims description 3
- 230000005284 excitation Effects 0.000 claims description 3
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 3
- 230000008569 process Effects 0.000 claims description 3
- 238000003786 synthesis reaction Methods 0.000 claims description 3
- 238000000844 transformation Methods 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 16
- 230000004044 response Effects 0.000 description 8
- 230000008859 change Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 101000841267 Homo sapiens Long chain 3-hydroxyacyl-CoA dehydrogenase Proteins 0.000 description 1
- 102100029107 Long chain 3-hydroxyacyl-CoA dehydrogenase Human genes 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000011217 control strategy Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- JJYKJUXBWFATTE-UHFFFAOYSA-N mosher's acid Chemical compound COC(C(O)=O)(C(F)(F)F)C1=CC=CC=C1 JJYKJUXBWFATTE-UHFFFAOYSA-N 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
Images
Landscapes
- Control Of Ac Motors In General (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
Abstract
三相四桥臂永磁同步电动机控制系统及控制方法。传统的三相三桥臂主电路拓扑结构在缺相或单相断路故障时,将难以维持系统安全可靠运行,限制其在航空、航海、防爆等对控制系统冗余性、可靠性有严格要求的场合。 本发明的组成包括 : 主电路,所述的主电路的 220V 单相交流输入( 1 )与单相整流电路( 2 )连接,所述的单相整流电路与四桥臂逆变器( 3 )连接,所述的四桥臂逆变器通过桥臂 A ( 4 )、桥臂 B ( 5 )、桥臂 C ( 6 )、桥臂 D ( 7 )与永磁同步电动机( 8 )连接,所述的桥臂 A 、桥臂 B 、桥臂 C 与电流采样电路( 10 )连接,所述的永磁同步电动机与光电码盘( 11 )。 本发明用于 三相四桥臂永磁同步电动机控制 。
A three-phase four-arm permanent magnet synchronous motor control system and control method. The traditional three-phase three-arm main circuit topology will be difficult to maintain the safe and reliable operation of the system when there is a phase loss or a single-phase open circuit fault, which limits its use in aviation, navigation, explosion-proof, etc. There are strict requirements on the redundancy and reliability of the control system occasions. The composition of the present invention includes : a main circuit, the 220V single-phase AC input ( 1 ) of the main circuit is connected with a single-phase rectification circuit ( 2 ), and the single-phase rectification circuit is connected with a four-leg inverter ( 3 ) connection, the four-leg inverter is connected to the permanent magnet synchronous motor ( 8 ) through bridge arm A ( 4 ), bridge arm B ( 5 ), bridge arm C ( 6 ), bridge arm D ( 7 ), and The aforementioned bridge arm A , bridge arm B , and bridge arm C are connected to the current sampling circuit ( 10 ), and the aforementioned permanent magnet synchronous motor is connected to the photoelectric code disc ( 11 ). The invention is used for the control of a three-phase four-arm permanent magnet synchronous motor .
Description
技术领域: Technical field:
本发明涉及一种三相四桥臂永磁同步电动机控制系统及控制方法。 The invention relates to a control system and a control method of a three-phase four-arm permanent magnet synchronous motor.
背景技术: Background technique:
传统的三相三桥臂主电路拓扑结构采用电压空间矢量调制(SVPWM)技术还能减小绕组电流的谐波含量、提高直流母线电压的利用率,从而使电机转矩脉动降低、拓宽电机的调速范围。然而,这种传统的拓扑结构在缺相或单相断路故障时,将难以维持系统安全可靠运行,因此,限制其在航空、航天、航海、防爆等对控制系统冗余性、可靠性有严格要求的场合,大大限制其应用领域。 The traditional three-phase three-arm main circuit topology adopts the voltage space vector modulation (SVPWM) technology, which can also reduce the harmonic content of the winding current and improve the utilization rate of the DC bus voltage, thereby reducing the torque ripple of the motor and broadening the motor's capacity. speed range. However, this traditional topology will be difficult to maintain the safe and reliable operation of the system when there is a phase loss or a single-phase open circuit fault. Where required, its application field is greatly limited.
发明内容: Invention content:
本发明的目的是提供一种三相四桥臂永磁同步电动机控制系统及控制方法。 The purpose of the present invention is to provide a three-phase four-arm permanent magnet synchronous motor control system and control method.
上述的目的通过以下的技术方案实现: Above-mentioned purpose realizes by following technical scheme:
一种三相四桥臂永磁同步电动机控制系统,其组成包括:主电路,所述的主电路的220V单相交流输入与单相整流电路连接,所述的单相整流电路与四桥臂逆变器连接,所述的四桥臂逆变器通过桥臂A、桥臂B、桥臂C、桥臂D与永磁同步电动机连接,所述的桥臂A、桥臂B、桥臂C与电流采样电路连接,所述的永磁同步电动机与光电码盘。 A kind of three-phase four bridge arm permanent magnet synchronous motor control system, its composition comprises: main circuit, the 220V single-phase AC input of described main circuit is connected with single-phase rectification circuit, and described single-phase rectification circuit is connected with four bridge arms The inverter is connected, and the four-arm inverter is connected to the permanent magnet synchronous motor through the bridge arm A, the bridge arm B, the bridge arm C, and the bridge arm D, and the bridge arm A, the bridge arm B, and the bridge arm C is connected with the current sampling circuit, the permanent magnet synchronous motor and the photoelectric code disc.
所述的三相四桥臂永磁同步电动机控制系统,所述的光电码盘与控制电路的QEP单元连接,所述的QEP单元与PI控制器D连接,所述的电流采样电路与A/D模块连接,所述的A/D模块、所述的QEP单元通过坐标变换分别与PI控制器A、PI控制器B、PI控制器C连接,所述的PI控制器D与速度控制器连接,所述的速度控制器与所述的PI控制器A连接,所述的PI控制器A、PI控制器B、PI控制器C共同与电流控制器连接,所述的电流控制器与3D-SVPWM控制连接,所述的3D-SVPWM控制与光电隔离驱动电路连接,所述的光电隔离驱动电路与所述的四桥臂逆变器连接。 In the three-phase four-arm permanent magnet synchronous motor control system, the photoelectric encoder is connected to the QEP unit of the control circuit, the QEP unit is connected to the PI controller D, and the current sampling circuit is connected to the A/ D module is connected, and described A/D module, described QEP unit are respectively connected with PI controller A, PI controller B, PI controller C through coordinate transformation, and described PI controller D is connected with speed controller , the speed controller is connected to the PI controller A, the PI controller A, PI controller B, and PI controller C are connected to the current controller, and the current controller is connected to the 3D- The SVPWM control is connected, the 3D-SVPWM control is connected with the photoelectric isolation driving circuit, and the photoelectric isolation driving circuit is connected with the four-leg inverter.
所述的三相四桥臂永磁同步电动机控制系统,数码显示管与SPI单元连接,上位机与SCI单元连接,键盘与I/O单元B连接,故障检测单元与I/O单元A连接。 In the three-phase four-arm permanent magnet synchronous motor control system, the digital display tube is connected to the SPI unit, the host computer is connected to the SCI unit, the keyboard is connected to the I/O unit B, and the fault detection unit is connected to the I/O unit A.
一种三相四桥臂永磁同步电动机控制系统控制方法: A control method for a three-phase four-arm permanent magnet synchronous motor control system:
(1)永磁同步电机的工作方法: (1) Working method of permanent magnet synchronous motor:
式中为三相定子绕组通电流合成矢量、为永磁体磁链,为与轴的夹角,为轴与相轴的夹角。 In the formula The current synthesis vector for the three-phase stator winding, is the permanent magnet flux linkage, for and the included angle of the axis, for axis with The included angle of the phase axis.
ABC坐标系到坐标系的变换(Clarke变换)为 ABC coordinate system to The transformation of the coordinate system (Clarke transformation) is
(1) (1)
对应的逆变换(Clarke-1变换)为 The corresponding inverse transformation (Clarke -1 transformation) is
(2) (2)
坐标系到坐标系的变换(Park变换)为 coordinate system to The transformation of the coordinate system (Park transformation) is
(3) (3)
对应的逆变换(Park-1变换)为 The corresponding inverse transformation (Park -1 transformation) is
(4) (4)
式中,q r为电角度。 In the formula, q r is the electrical angle.
系统采用凸装式永磁同步电动机,可认为交直轴等效电感相等,即L q =L d 。这样PMSM的电压方程为 The system uses a convex-mounted permanent magnet synchronous motor, which can be considered to be equal to the equivalent inductance of the AC and DC axes, that is, L q = L d . So the voltage equation of PMSM is
(5) (5)
式中,i X 、u X 、e X 分别为相电流、相对直流侧中点的电压、相感应电动势(X可以是A、B、C中的一个);u N 为电动机中性点对第四桥臂中点的电压;r为定子电阻,L和M为定子绕组自感和互感。中线电流i N 为 In the formula, i X , u X , e X are the phase current, the voltage of the midpoint of the relative DC side, and the phase induced electromotive force ( X can be one of A, B, and C ); u N is the neutral point of the motor to the first The voltage at the midpoint of the four bridge arms; r is the stator resistance, L and M are the self-inductance and mutual inductance of the stator winding. The neutral current i N is
(6) (6)
利用坐标变换,将PMSM的电压方程(5)变换到dq0坐标系中,有
Using coordinate transformation, the voltage equation (5) of PMSM is transformed into
(7) (7)
(8) (8)
(9) (9)
电磁转矩为 Electromagnetic torque is
(10) (10)
运动方程为 The equation of motion is
(11) (11)
式(7)到(11)中,L dq 为d、q轴的等效电感;ω r为电角速度;y PM为转子永磁体磁链;L 0为零轴电感;J为转动惯量;P n为极对数。 In formulas (7) to (11), L dq is the equivalent inductance of the d and q axes; ω r is the electrical angular velocity; y PM is the flux linkage of the permanent magnet of the rotor; L 0 is the zero-axis inductance; J is the moment of inertia ; n is the pole logarithm.
(2)四桥臂逆变控制的工作方法: (2) The working method of four-leg inverter control:
由于选用了i d =0的矢量控制方案,具体实现过程如下:首先,检测电动机转子位置和定子绕组电流;利用转子位置计算电动机转速,经速度控制器输出电流转矩分量的参考值i q *,同时给定电流励磁分量i d *=0;并对定子绕组电流进行坐标变换得到反馈分量i q 和i d ,经电流控制器输出参考电压空间矢量d、q轴分量u d *和u q *;最后通过SVPWM模块产生6路PWM输出信号,经三相三桥臂逆变器功率放大后驱动永磁同步电机,最终实现转速、电流双闭环控制。 Since the vector control scheme with i d = 0 is selected, the specific implementation process is as follows: First, detect the motor rotor position and stator winding current; use the rotor position to calculate the motor speed, and output the reference value i q of the current torque component through the speed controller , at the same time given the current excitation component i d * =0; and the coordinate transformation of the stator winding current to obtain the feedback components i q and i d , and output the reference voltage space vector d, q- axis components u d * and u q through the current controller * ;Finally, 6 channels of PWM output signals are generated by the SVPWM module, and the power of the three-phase three-leg inverter is amplified to drive the permanent magnet synchronous motor, and finally realize the double closed-loop control of the speed and current.
三相四桥臂逆变器是在三相三桥臂的基础上增加了一个与电动机中性点相连的桥臂,从而多了一个可以控制的中线电流,而由式(1)、(6)可以得到零轴电流与之间的关系为 The three-phase four-leg inverter adds a bridge arm connected to the neutral point of the motor on the basis of the three-phase three-leg inverter, thus adding a controllable neutral current , and the zero-axis current can be obtained from equations (1) and (6) and The relationship between
(12) (12)
所以,只要控制零轴电流就可以对中线电流进行间接控制。 Therefore, as long as the zero axis current is controlled neutral current Take indirect control.
由式(2)、(4)可知 From formula (2), (4) we can know
(13) (13)
在正常运行情况下,中线电流为零,这样只需要控制零轴电流为零即可,即 Under normal operating conditions, the neutral current is zero, so only the zero axis current needs to be controlled can be zero, that is,
(14) (14)
(15) (15)
(16) (16)
当某相发生缺相故障时,这里假设A相发生断路故障(B、C相发生断路故障时情况与之相同),此时有=0。由于永磁同步电机的电磁转矩取决于i d 、i q 的大小,此时,为保证与正常运行时有着相同的驱动特性,必须产生与故障前一致的i d 、i q ,这里需要作补偿,因此不再等于0。 When a phase-opening fault occurs in a certain phase, here it is assumed that an open-circuit fault occurs in phase A (the situation is the same when there are open-circuit faults in phase B and C ), at this time there is =0. Since the electromagnetic torque of the permanent magnet synchronous motor depends on the size of i d and i q , at this time, in order to ensure the same driving characteristics as in normal operation, it is necessary to generate i d and i q that are consistent with those before the fault. Here, To compensate, it is no longer equal to 0.
把=0代入式(13),可以得到 Bundle =0 into formula (13), we can get
(17) (17)
(18) (18)
(19) (19)
通过式(7)和(17)得到 Through equations (7) and (17) we get
(20) (20)
依据式(17)或(20),可以采用两种方式配置达到转矩补偿的目的,即采用零轴电流补偿闭环控制方式,满足式(17)的要求;或采用式(20),采用零轴电压开环控制方式,实现零轴电压u 0的输出。这样就可以达到故障容错的目的,并且无需修改任何硬件电路。 According to formula (17) or (20), two configurations can be used to achieve the purpose of torque compensation, that is, adopt zero-axis current compensation closed-loop control mode to meet the requirements of formula (17); or adopt formula (20), adopt zero The shaft voltage open-loop control mode realizes the output of zero shaft voltage u0 . In this way, the purpose of fault tolerance can be achieved, and there is no need to modify any hardware circuits.
本专利采用零轴电流补偿闭环控制方式,由于采用的是i d =0控制,可以简化式(17)得到 This patent adopts the zero-axis current compensation closed-loop control method, since it adopts i d =0 control, it can be obtained by simplifying the formula (17)
(21) (twenty one)
所以,故障状态下只需要依照式(21)进行零轴电流的补偿。 Therefore, in the fault state, it is only necessary to compensate the zero-axis current according to formula (21).
上述的三相四桥臂永磁同步电动机控制系统工作方法,给定转速与反馈转速通过速度控制器得到电流转矩分量的给定值i q *,采样的相电流i A 、i B 、i C 经过Clarke、Park变换,得到dq0旋转坐标系中i d 、i q 、i 0,与电流给定i q *、i d *、i 0 *进行比较,其中i d * 、i 0 *的给定值都为0,而在单相故障的情况下i 0 *需要加入补偿值 i q sinq r。然后经过PI控制器获得u d *、u q *、u 0 *,再经过Park-1变换、Clarke-1变换、3D-SVPWM的调制、功率放大驱动四桥臂逆变器的8个功率开关管,最终构成三相四桥臂永磁同步电动机速度、电流双闭环控制系统。 The working method of the above-mentioned three-phase four-leg permanent magnet synchronous motor control system, the given speed and the feedback speed are obtained through the speed controller to obtain the given value i q * of the current torque component, and the sampled phase currents i A , i B , i After Clarke and Park transformation, C obtains i d , i q , i 0 in the dq0 rotating coordinate system, and compares them with current given i q * , i d * , i 0 * , where i d * , i 0 * give The fixed values are all 0, and in the case of single-phase fault i 0 * need to add compensation value i q sin q r . Then get u d * , u q * , u 0 * through PI controller, and then through Park -1 transformation, Clarke -1 transformation, 3D-SVPWM modulation, power amplification to drive 8 power switches of the four-leg inverter Tube, and finally constitute a three-phase four-arm permanent magnet synchronous motor speed, current double closed-loop control system.
有益效果: Beneficial effect:
1.本发明提出的三相四桥臂永磁同步电动机控制系统,在传统三相三桥臂的基础上增加了一个与电动机中性点相连的桥臂,采用三维电压空间矢量调制(3D-SVPWM)技术,使其驱动永磁同步电动机有着良好的运行特性。同时,这种拓扑结构将第四桥臂与电动机中性点相连接,为中线电流提供了通路,能够更好地平衡输出和抑制干扰,并且在缺相或者单相故障的情况下,通过对控制策略的适当调整以维持电机正常时的运行特性。 1. The three-phase four bridge arm permanent magnet synchronous motor control system proposed by the present invention adds a bridge arm connected to the neutral point of the motor on the basis of traditional three-phase three bridge arms, and adopts three-dimensional voltage space vector modulation (3D- SVPWM) technology makes it drive permanent magnet synchronous motor with good operating characteristics. At the same time, this topology connects the fourth bridge arm to the neutral point of the motor, providing a path for the neutral current, which can better balance the output and suppress interference, and in the case of phase loss or single-phase fault, through the Appropriate adjustment of the control strategy to maintain the normal operating characteristics of the motor.
本发明具有过压、欠压、过温保护功能,确保了系统安全、可靠运行。 The invention has over-voltage, under-voltage and over-temperature protection functions to ensure safe and reliable operation of the system.
本发明应用id=0控制模式,即转矩、电流比最大控制(MTPA),该方法以最小的定子电流获取所需的电机输出转矩,从而提高了系统效率。 The present invention applies the id=0 control mode, that is, the maximum torque-to-current ratio control (MTPA). The method obtains the required motor output torque with the minimum stator current, thereby improving the system efficiency.
附图说明: Description of drawings:
附图1是本发明的系统整体框图。图中,1为220V单相交流输入,2为单相整流电路,3为四桥臂逆变器,4为桥臂A,5为桥臂B,6为桥臂C,7为桥臂D,8为永磁同步电动机,10为电流采样电路,11为光电码盘,12为QEP单元,20为PI控制器D,14为A/D模块,15为坐标变换,17为PI控制器A,18为PI控制器B,19为PI控制器C,21为速度控制器,16为电流控制器,13为3D-SVPWM控制,9为光电隔离驱动电路,22为数码显示管,23为SPI单元,24为上位机,25为SCI单元,26为键盘,27为I/O单元B,28为故障检测单元,29为I/O单元A。
Accompanying drawing 1 is the overall block diagram of the system of the present invention. In the figure, 1 is 220V single-phase AC input, 2 is single-phase rectifier circuit, 3 is four-leg inverter, 4 is bridge arm A, 5 is bridge arm B, 6 is bridge arm C, and 7 is bridge arm D , 8 is the permanent magnet synchronous motor, 10 is the current sampling circuit, 11 is the photoelectric encoder, 12 is the QEP unit, 20 is the PI controller D, 14 is the A/D module, 15 is the coordinate transformation, 17 is the PI controller A , 18 is PI controller B, 19 is PI controller C, 21 is speed controller, 16 is current controller, 13 is 3D-SVPWM control, 9 is photoelectric isolation drive circuit, 22 is digital display tube, 23 is
图2是本发明的系统控制结构图。 Fig. 2 is a system control structure diagram of the present invention.
图3是本发明的位置信号差分接收电路原理图。 Fig. 3 is a schematic diagram of the position signal differential receiving circuit of the present invention.
图4是本发明的电流采样电路原理图。 Fig. 4 is a schematic diagram of the current sampling circuit of the present invention.
图5是本发明的主电路原理图。 Fig. 5 is a schematic diagram of the main circuit of the present invention.
图6是本发明的隔离驱动电路原理图。 Fig. 6 is a schematic diagram of the isolated driving circuit of the present invention.
图7是本发明的参考坐标系参考图。 Fig. 7 is a reference diagram of the reference coordinate system of the present invention.
图8是本发明的永磁同步电动机i d =0矢量控制原理图。 Fig. 8 is a schematic diagram of vector control of permanent magnet synchronous motor id = 0 according to the present invention.
图9是本发明的三相四桥臂逆变器结构简图。 Fig. 9 is a schematic structural diagram of the three-phase four-leg inverter of the present invention.
图10是本发明的ABC坐标系下3D-SVPWM的矢量图。 Fig. 10 is a vector diagram of 3D-SVPWM in the ABC coordinate system of the present invention.
图11是本发明的指针变量N与四面体对应关系图。 Fig. 11 is a diagram of the correspondence between pointer variable N and tetrahedron in the present invention.
图12是本发明的 N=1时的开关排序示意图。 Fig. 12 is a schematic diagram of switch sorting when N=1 of the present invention.
图13是本发明的系统主程序流程图。 Fig. 13 is a flow chart of the main program of the system of the present invention.
图14 是本发明的转子初始定位程序流程图。 Fig. 14 is a flow chart of the rotor initial positioning program of the present invention.
图15是本发明的转子位置检测程序流程图。 Fig. 15 is a flow chart of the rotor position detection program of the present invention.
图16是本发明的定时器中断子程序流程图。 Fig. 16 is a flow chart of the timer interrupt subroutine of the present invention.
图17 是本发明的3D-SVPWM程序流程图。 Fig. 17 is the 3D-SVPWM program flowchart of the present invention.
图18是本发明的给定转速、负载变化时转速和转矩的响应曲线。 Fig. 18 is the response curve of rotational speed and torque when the present invention is given rotational speed and load changes.
图19是本发明的给定转速、负载变化时三相绕组电流响应曲线。 Fig. 19 is a three-phase winding current response curve at a given speed and load variation of the present invention.
图20是本发明的转速、转矩响应曲线(0.05s发生单相故障)。 Fig. 20 is the speed and torque response curve of the present invention (single-phase fault occurs at 0.05s).
图21是本发明的三相定子电流以及中线电流响应曲线(0.05s时发生单相故障)。 Fig. 21 is the three-phase stator current and neutral line current response curves of the present invention (single-phase fault occurs at 0.05s).
图22是本发明的dq0轴电流响应曲线(0.05s时发生单相故障)。 Fig. 22 is the dq0 axis current response curve of the present invention (single-phase fault occurs at 0.05s).
具体实施方式: Detailed ways:
实施例1: Example 1:
一种具有容错功能的三相四桥臂永磁同步电动机控制系统,其组成包括:主电路,所述的主电路的220V单相交流输入1与单相整流电路2连接,所述的单相整流电路与四桥臂逆变器3连接,所述的四桥臂逆变器通过桥臂A4、桥臂B5、桥臂C6、桥臂D7与永磁同步电动机8连接,所述的桥臂A、桥臂B、桥臂C与电流采样电路10连接,所述的永磁同步电动机与光电码盘11。
A three-phase four-arm permanent magnet synchronous motor control system with fault-tolerant function, its composition includes: a main circuit, the 220V single-
实施例2: Example 2:
实施例1所述的具有容错功能的三相四桥臂永磁同步电动机控制系统,所述的光电码盘与控制电路的QEP单元12连接,所述的QEP单元与PI控制器D20连接,所述的电流采样电路与A/D模块14连接,所述的A/D模块、所述的QEP单元通过坐标变换15分别与PI控制器A17、PI控制器B18、PI控制器C19连接,所述的PI控制器D与速度控制器21连接,所述的速度控制器与所述的PI控制器A连接,所述的PI控制器A、PI控制器B、PI控制器C共同与电流控制器16连接,所述的电流控制器与3D-SVPWM控制13连接,所述的3D-SVPWM控制与光电隔离驱动电路9连接,所述的光电隔离驱动电路与所述的四桥臂逆变器连接。
The three-phase four-arm permanent magnet synchronous motor control system with fault-tolerant function described in
实施例3: Example 3:
实施例1或2所述的具有容错功能的三相四桥臂永磁同步电动机控制系统,数码显示管22与SPI单元23连接,上位机24与SCI单元25连接,键盘26与I/O单元B27连接,故障检测单元28与I/O单元A29连接。
In the three-phase four-arm permanent magnet synchronous motor control system with fault tolerance described in
实施例4: Example 4:
一种三相四桥臂永磁同步电动机控制方法: A control method for a three-phase four-arm permanent magnet synchronous motor:
(1)永磁同步电机的工作方法: (1) Working method of permanent magnet synchronous motor:
式中为三相定子绕组通电流合成矢量、为永磁体磁链,为与轴的夹角,为轴与相轴的夹角。 In the formula The current synthesis vector for the three-phase stator winding, is the permanent magnet flux linkage, for and the included angle of the axis, for axis with The included angle of the phase axis.
ABC坐标系到坐标系的变换(Clarke变换)为 ABC coordinate system to The transformation of the coordinate system (Clarke transformation) is
(1) (1)
对应的逆变换(Clarke-1变换)为 The corresponding inverse transformation (Clarke -1 transformation) is
(2) (2)
坐标系到坐标系的变换(Park变换)为 coordinate system to The transformation of the coordinate system (Park transformation) is
(3) (3)
对应的逆变换(Park-1变换)为 The corresponding inverse transformation (Park -1 transformation) is
(4) (4)
式中,q r为电角度。 In the formula, q r is the electrical angle.
系统采用凸装式永磁同步电动机,可认为交直轴等效电感相等,即L q =L d 。这样PMSM的电压方程为 The system uses a convex-mounted permanent magnet synchronous motor, which can be considered to be equal to the equivalent inductance of the AC and DC axes, that is, L q = L d . So the voltage equation of PMSM is
(5) (5)
式中,i X 、u X 、e X 分别为相电流、相对直流侧中点的电压、相感应电动势(X可以是A、B、C中的一个);u N 为电动机中性点对第四桥臂中点的电压;r为定子电阻,L和M为定子绕组自感和互感。中线电流i N 为 In the formula, i X , u X , e X are the phase current, the voltage of the midpoint of the relative DC side, and the phase induced electromotive force ( X can be one of A, B, and C ); u N is the neutral point of the motor to the first The voltage at the middle point of the four bridge arms; r is the stator resistance, L and M are the self-inductance and mutual inductance of the stator winding. The neutral current i N is
(6) (6)
利用坐标变换,将PMSM的电压方程(5)变换到dq0坐标系中,有
Using coordinate transformation, the voltage equation (5) of PMSM is transformed into
(7) (7)
(8) (8)
(9) (9)
电磁转矩为 Electromagnetic torque is
(10) (10)
运动方程为 The equation of motion is
(11) (11)
式(7)到(11)中,L dq 为d、q轴的等效电感;ω r为电角速度;y PM为转子永磁体磁链;L 0为零轴电感;J为转动惯量;P n为极对数。 In formulas (7) to (11), L dq is the equivalent inductance of the d and q axes; ω r is the electrical angular velocity; y PM is the flux linkage of the permanent magnet of the rotor; L 0 is the zero-axis inductance; J is the moment of inertia ; n is the pole logarithm.
(2)四桥臂逆变控制的工作方法: (2) The working method of four-leg inverter control:
由于选用了i d =0的矢量控制方案,具体实现过程如下:首先,检测电动机转子位置和定子绕组电流;利用转子位置计算电动机转速,经速度控制器输出电流转矩分量的参考值i q *,同时给定电流励磁分量i d *=0;并对定子绕组电流进行坐标变换得到反馈分量i q 和i d ,经电流控制器输出参考电压空间矢量d、q轴分量u d *和u q *;最后通过SVPWM模块产生6路PWM输出信号,经三相三桥臂逆变器功率放大后驱动永磁同步电机,最终实现转速、电流双闭环控制。 Since the vector control scheme with i d = 0 is selected, the specific implementation process is as follows: First, detect the motor rotor position and stator winding current; use the rotor position to calculate the motor speed, and output the reference value i q of the current torque component through the speed controller , at the same time given the current excitation component i d * =0; and the coordinate transformation of the stator winding current to obtain the feedback components i q and i d , and output the reference voltage space vector d, q- axis components u d * and u q through the current controller * ;Finally, 6 channels of PWM output signals are generated by the SVPWM module, and the power of the three-phase three-leg inverter is amplified to drive the permanent magnet synchronous motor, and finally realize the double closed-loop control of the speed and current.
三相四桥臂逆变器是在三相三桥臂的基础上增加了一个与电动机中性点相连的桥臂,从而多了一个可以控制的中线电流,而由式(1)、(6)可以得到零轴电流与之间的关系为 The three-phase four-leg inverter adds a bridge arm connected to the neutral point of the motor on the basis of the three-phase three-leg inverter, thus adding a controllable neutral current , and the zero-axis current can be obtained from equations (1) and (6) and The relationship between
(12) (12)
所以,只要控制零轴电流就可以对中线电流进行间接控制。 Therefore, as long as the zero axis current is controlled neutral current Take indirect control.
由式(2)、(4)可知 From formula (2), (4) we can know
(13) (13)
在正常运行情况下,中线电流为零,这样只需要控制零轴电流为零即可,即 Under normal operating conditions, the neutral current is zero, so only the zero axis current needs to be controlled can be zero, that is,
(14) (14)
(15) (15)
(16) (16)
当某相发生缺相故障时,这里假设A相发生断路故障(B、C相发生断路故障时情况与之相同),此时有=0。由于永磁同步电机的电磁转矩取决于i d 、i q 的大小,此时,为保证与正常运行时有着相同的驱动特性,必须产生与故障前一致的i d 、i q ,这里需要作补偿,因此不再等于0。 When a phase-opening fault occurs in a certain phase, here it is assumed that an open-circuit fault occurs in phase A (the situation is the same when there are open-circuit faults in phase B and C ), at this time there is =0. Since the electromagnetic torque of the permanent magnet synchronous motor depends on the size of i d and i q , at this time, in order to ensure the same driving characteristics as in normal operation, it is necessary to generate i d and i q that are consistent with those before the fault. Here, To compensate, it is no longer equal to 0.
把=0代入式(13),可以得到 Bundle =0 into formula (13), we can get
(17) (17)
(18) (18)
(19) (19)
通过式(7)和(17)得到 Through equations (7) and (17) we get
(20) (20)
依据式(17)或(20),可以采用两种方式配置达到转矩补偿的目的,即采用零轴电流补偿闭环控制方式,满足式(17)的要求;或采用式(20),采用零轴电压开环控制方式,实现零轴电压u 0的输出。这样就可以达到故障容错的目的,并且无需修改任何硬件电路。 According to formula (17) or (20), two configurations can be used to achieve the purpose of torque compensation, that is, adopt zero-axis current compensation closed-loop control mode to meet the requirements of formula (17); or adopt formula (20), adopt zero The shaft voltage open-loop control mode realizes the output of zero shaft voltage u0 . In this way, the purpose of fault tolerance can be achieved, and there is no need to modify any hardware circuits.
本专利采用零轴电流补偿闭环控制方式,由于采用的是i d =0控制,可以简化式(17)得到 This patent adopts the zero-axis current compensation closed-loop control method, and since it adopts i d =0 control, the formula (17) can be simplified to get
(21) (twenty one)
所以,故障状态下只需要依照式(21)进行零轴电流的补偿。 Therefore, in the fault state, it is only necessary to compensate the zero-axis current according to formula (21).
实施例5: Example 5:
上述的三相四桥臂永磁同步电动机控制方法,给定转速与反馈转速通过速度控制器得到电流转矩分量的给定值i q *,采样的相电流i A 、i B 、i C 经过Clarke、Park变换,得到dq0旋转坐标系中i d 、i q 、i 0,与电流给定i q *、i d *、i 0 *进行比较,其中i d * 、i 0 *的给定值都为0,而在单相故障的情况下i 0 *需要加入补偿值 i q sinq r。然后经过PI控制器获得u d *、u q *、u 0 *,再经过Park-1变换、Clarke-1变换、3D-SVPWM的调制、功率放大驱动四桥臂逆变器的8个功率开关管,最终构成三相四桥臂永磁同步电动机速度、电流双闭环控制系统。 In the above three-phase four-leg permanent magnet synchronous motor control method, the given speed and feedback speed are obtained through the speed controller to obtain the given value i q * of the current torque component, and the sampled phase currents i A , i B , and i C pass through Clarke and Park transform, get i d , i q , i 0 in the dq0 rotating coordinate system, and compare with the current given i q * , i d * , i 0 * , where the given values of i d * , i 0 * are all 0, and in the case of single-phase fault i 0 * need to add compensation value i q sin q r . Then get u d * , u q * , u 0 * through PI controller, and then through Park -1 transformation, Clarke -1 transformation, 3D-SVPWM modulation, power amplification to drive 8 power switches of the four-leg inverter Tube, and finally constitute a three-phase four-arm permanent magnet synchronous motor speed, current double closed-loop control system.
实施例6: Embodiment 6:
实施例1或2或3所述的三相四桥臂永磁同步电动机控制系统,图3永磁同步电机的转子检测传感器不仅要检测转子位置,还要测量电机转速。本系统采用混合式编码器,为了消除共模干扰,提高抗干扰能力,电机位置检测信号采用差分型式进行传输,然后采用差分芯片DS3486来接收差分信号,并经整形处理后输入至DSP相应引脚。
In the three-phase four-arm permanent magnet synchronous motor control system described in
图4永磁同步电动机相电流频率从零到上百赫兹,在此采用电流霍尔模块CHB-25NP实现定子相电流检测,以A相电流采样为例,霍尔传感器副边电流由电阻R12进行采样得到U R12 ,经过偏置、低通滤波和嵌位处理后输入到DSP的A/D转换口进行处理。 Figure 4 The phase current frequency of the permanent magnet synchronous motor is from zero to hundreds of Hz. Here, the current Hall module CHB-25NP is used to realize the detection of the stator phase current. Taking the A-phase current sampling as an example, the secondary side current of the Hall sensor is controlled by the resistor R12 Sampling to get U R12 , after bias, low-pass filtering and clamping processing, it is input to the A/D conversion port of DSP for processing.
图5为交-直-交变换电路,输入单相220V,经整流、稳压后得到310V左右直流电。整流桥选用KBPC3510,其反向峰值电压为1000V,正常工作电流可达35A;C2用于滤除直流电压中的高次谐波;C3起到稳压和为电机绕组提供续流回路的作用。
Figure 5 is the AC-DC-AC conversion circuit, the input is single-
图6驱动电路选用IR2110作为驱动芯片。IR2110上桥臂驱动电源为自举悬浮驱动设计,减少了驱动电路所用电源数量。IR2110的输入侧利用光耦6N137实现控制信号与主电路的电气隔离。PWM控制信号经光耦隔离、反相器74LS06反向并上拉到20V,使之与IR2110的输入电压匹配。为增加功率器件关断的可靠性,通过稳压管ZD2、ZD3和电容C11、C12为驱动信号提供负5V的关断电压。 The drive circuit in Figure 6 uses IR2110 as the drive chip. The IR2110 upper bridge arm drive power supply is designed for bootstrap suspension drive, which reduces the number of power supplies used by the drive circuit. The input side of IR2110 uses optocoupler 6N137 to realize the electrical isolation of the control signal and the main circuit. The PWM control signal is isolated by the optocoupler, reversed by the inverter 74LS06 and pulled up to 20V to match the input voltage of the IR2110. In order to increase the reliability of turning off the power device, a negative 5V turn-off voltage is provided for the driving signal through the regulator tubes ZD2, ZD3 and capacitors C11 and C12.
核心控制单元采用TI公司DSP处理芯片TMS320F2812,最高频率可达150MHz,该芯片外设包括16路12位精度ADC、2路SCI以及两个事件管理模块(EVA和EVB)等。每个事件管理模块包括6路PWM/CMP、2路QEP和3路CAP。 The core control unit adopts TI company's DSP processing chip TMS320F2812, the highest frequency can reach 150MHz, the chip peripherals include 16 channels of 12-bit precision ADC, 2 channels of SCI, and two event management modules (EVA and EVB). Each event management module includes 6-way PWM/CMP, 2-way QEP and 3-way CAP.
实施例7: Embodiment 7:
实施例1或2或3或4或5所述的三相四桥臂永磁同步电动机控制系统,图9为三相四桥臂逆变器结构简图,逆变器的相中点电压为U AN 、U BN 、U CN 。为了使开关电压矢量的表达清晰简明,这里先对U AN 、U BN 、U CN 的值进行标准化(令U dc=1),用标幺值表示电压空间矢量。
For the three-phase four-leg permanent magnet synchronous motor control system described in
假定S A 、S B 、S C 、S N 分别表示四个桥臂A、B、C、N的开关状态,每个桥臂上管导通(下管关断)为1,上管关断(下管导通)为0,这样一共有16个开关状态;每个开关状态对应的一个合成的开关矢量,这里令U 0到U 15为这16个开关矢量,其中U 0和U 15为零矢量,其对应关系如表1所示。 Assume that S A , S B , S C , and S N represent the switching states of the four bridge arms A, B, C, and N respectively. The upper tube of each bridge arm is turned on (the lower tube is turned off) is 1, and the upper tube is turned off. (lower tube conduction) is 0, so there are 16 switch states in total; each switch state corresponds to a synthesized switch vector, here let U 0 to U 15 be the 16 switch vectors, where U 0 and U 15 are The zero vector, and its corresponding relationship is shown in Table 1.
表1三相四桥臂逆变器开关状态表 Table 1 Three-phase four-leg inverter switch state table
将这16个合成的开关电压矢量在静止坐标系(ABC坐标系)下画成空间矢量图就得到了一个空间十二面体,如图10所示。以状态13为例有,此时S A 、S B 、S C 、S N 分别为1、0、1、1;U AN 、U BN 、U CN 分别为0、-1、0;这表示的是A、C 、N桥臂上管导通,下管关断;B桥臂上管关断,下管导通。开关电压矢量为U 13,位于静止坐标系中(0,-1,0)坐标处。
Drawing these 16 synthetic switching voltage vectors into a space vector diagram in the static coordinate system ( ABC coordinate system) will result in a space dodecahedron, as shown in Figure 10. Take
对于开关矢量图10,我们可用平面=0、=0、=0和-=0、-=0、-=0将控制区域分割成24个小的空间四面体,并且每一个四面体由三个非零开关电压矢量和两个零开关电压矢量构成,这样只要确定了参考电压矢量所在空间四面体就可以利用对应的开关电压矢量来进行拟合。例如,某一时刻的参考电压矢量在ABC坐标系中的坐标为(,,),并且有>0、>0、>0、->0、->0、->0,则能判断出它所在的小空间四面体,从而确定合成它的三个非零开关电压矢量为、、。 For the switch vector diagram 10, we can use the plane =0, =0, =0 and - =0, - =0, - =0 divides the control area into 24 small space tetrahedrons, and each tetrahedron is composed of three non-zero switching voltage vectors and two zero switching voltage vectors, so as long as the space tetrahedron where the reference voltage vector is located can be determined The fitting is performed using the corresponding switching voltage vectors. For example, the coordinates of the reference voltage vector at a certain moment in the ABC coordinate system are ( , , ), and have >0, >0, >0, - >0, - >0, - >0, the small space tetrahedron it is located in can be judged, and the three non-zero switching voltage vectors that synthesize it can be determined as , , .
为了简化这种判断,我们定义了k 1到k 6这六个变量,这六个变量代表着六个平面的划分方向,只要确定了它们是0还是1就能判断出参考电压矢量所在位置。六个变量的表达式如下 In order to simplify this judgment, we define six variables k 1 to k 6 , which represent the division directions of the six planes, as long as they are determined to be 0 or 1, the position of the reference voltage vector can be judged. The expressions of the six variables are as follows
(22) (twenty two)
(23) (twenty three)
(24) (twenty four)
(25) (25)
(26) (26)
(27) (27)
式中,、、为标准化参考电压矢量。 In the formula, , , is the normalized reference voltage vector.
定义指针函数: Define a pointer function:
(28) (28)
将到这六个变量的符号和唯一的指针变量N联系起来,通过计算N共有24个值,正好与24个四面体一一对应。图11给出了指针变量N所对应的四面体位置以及三个非零开关电压矢量。 Will arrive The symbols of these six variables are connected with the only pointer variable N , and there are 24 values in total through calculation, which correspond exactly to 24 tetrahedrons one by one. Figure 11 shows the position of the tetrahedron corresponding to the pointer variable N and three non-zero switching voltage vectors.
判断出参考电压矢量所在四面体的位置,确定了用于合成其的三个非零开关电压矢量后,就可以由伏秒面积相等原理计算出每个非零开关电压矢量及零矢量所对应的占空比。由于要把参考电压矢量用三个非零开关电压矢量和两个零矢量来合成等效,那么参考电压矢量大小等于当前时刻对应的每个开关电压矢量与其占空比的乘积之和,如式(29)所示。为了得到占空比的值,对式(29)作变换,得到式(30)和(31)。 After judging the position of the tetrahedron where the reference voltage vector is located and determining the three non-zero switching voltage vectors used to synthesize it, the corresponding value of each non-zero switching voltage vector and zero vector can be calculated by the principle of equal volt-second area. duty cycle. Since the reference voltage vector needs to be synthesized equivalently with three non-zero switch voltage vectors and two zero vectors, the size of the reference voltage vector is equal to the sum of the products of each switch voltage vector corresponding to the current moment and its duty cycle, as shown in the formula (29). In order to obtain the value of the duty ratio, formula (29) is transformed to obtain formula (30) and (31).
(31) (31)
式中,U ref为参考电压矢量;d 1、d 2、d 3分别为三个非零开关电压矢量所对应的占空比;U dx_A、 U dx_B 、U dx_C为开关电压矢量在ABC坐标系下的投影值(x=1、2、3); d 0则是零矢量的占空比(这个零矢量可以是U 0和U 15两个零矢量中的任意一个,也可以是两者的组合)。以N=1为例,非零开关电压矢量为U 8、U 9、U 11,根据式(30)计算它们的占空比为 In the formula, U ref is the reference voltage vector; d 1 , d 2 , d 3 are the duty cycles corresponding to the three non-zero switching voltage vectors; U dx_A , U dx_B , U dx_C are the switching voltage vectors in the ABC coordinate system The projection value below (x=1, 2, 3); d 0 is the duty cycle of the zero vector (this zero vector can be any one of the two zero vectors U 0 and U 15 , or both combination). Taking N = 1 as an example, the non-zero switching voltage vectors are U 8 , U 9 , U 11 , and their duty ratios are calculated according to formula (30):
(32) (32)
整理得 Tidy up
(33) (33)
用同样的方法,可以得到N等于其它23个值时所对应的情况,如表2所示给出了指针变量N与非零开关电压矢量以及其占空比的对应关系。 Using the same method, you can get the corresponding situation when N is equal to the other 23 values. As shown in Table 2, the corresponding relationship between the pointer variable N and the non-zero switching voltage vector and its duty cycle is given.
表2 指针变量N与矢量组、占空比的对应关系 Table 2 Correspondence between pointer variable N and vector group and duty cycle
得出各开关电压矢量的占空比后,乘以周期时间即可得到它们的导通时间,下面只需要对各开关电压矢量的导通顺序进行排列,合理的安排开关顺序。为了减小输出电压谐波含量、开关动作次数及其损耗,本文采用插入两零矢量的中心对称排序方式。以指针变量N=1时为例,U 8、U 9、U 11为此时对应的非零开关电压矢量,排序方式如图12所示。 After the duty cycle of each switch voltage vector is obtained, their turn-on time can be obtained by multiplying it by the cycle time. In the following, it is only necessary to arrange the turn-on sequence of each switch voltage vector to arrange the switch sequence reasonably. In order to reduce the harmonic content of the output voltage, the number of switching operations and its loss, this paper adopts the centrosymmetric sorting method of inserting two zero vectors. Taking the pointer variable N= 1 as an example, U 8 , U 9 , and U 11 are the corresponding non-zero switching voltage vectors at this time, and the sorting method is shown in Figure 12.
最后根据这种中心对称排序方式给出其开关切换点计算公式如式(34)所示,T 1 、T 2、T 3 、T 4依次为四桥臂中占空比从大到小的上管导通时刻。 Finally , according to this centrosymmetric sorting method, the calculation formula of the switching point is given as shown in formula ( 34 ) . tube conduction time.
图13~17为系统软件流程图。 Figures 13 to 17 are the flow charts of the system software.
实施例8: Embodiment 8:
实施例1或2或3或4或5所述的三相四桥臂永磁同步电动机控制系统,为验证系统对给定转速和负载变化的响应能力,在0.03s时电动机转速给定由500r/min突变至1000r/min;在0.06s时,电机负载由5N·m增至8N·m。转速、转矩和三相电流响应如图18、19所示。从图中可以看出,在0.03s时给定转速由500r/min突变至1000r/min,转子转速很好跟随上了给定值,同时绕组电流幅值不变、频率加快,加速时间4ms;在0.06s时电机负载由5 N·m突变至8 N·m,电机输出矩转瞬间加大,达到平衡,绕组电流幅值加大、频率不变,所花时间1ms,而转速受影响程度非常小。
The three-phase four-leg permanent magnet synchronous motor control system described in
为了验证容错的可行性,模拟单相故障状态,这里设置了在t=0.05s时A相桥臂断开并同时在零轴电流给定模块中把i 0 *的给定值切换至故障补偿值,如图20~22所示,其它不变,负载转矩仍为5N·m、给定转速仍为500r/min。 In order to verify the feasibility of fault tolerance and simulate a single-phase fault state, it is set that the A-phase bridge arm is disconnected at t=0.05s and at the same time, the given value of i 0 * is switched to fault compensation in the zero-axis current given module Value, as shown in Figure 20-22, other things remain unchanged, the load torque is still 5N·m, and the given speed is still 500r/min.
图20是为此情况的转速、转矩响应曲线图。可以看出在0.05s后转速与转矩几乎没有变化。 Fig. 20 is a speed and torque response curve diagram for this case. It can be seen that there is almost no change in the speed and torque after 0.05s.
图21显示了故障前后三相定子电流和中线电流的变化情况,可以看出0.05s后的i B 、i C 约为故障前的倍,相位差从2p/3变成了p/3。幅值的调整使得转矩不变,相位的改变避免了转矩脉动的产生。 Figure 21 shows the changes of the three-phase stator current and the neutral current before and after the fault. It can be seen that i B and i C after 0.05s are about the same as before the fault times, the phase difference changes from 2p/3 to p/3. The adjustment of the amplitude keeps the torque unchanged, and the change of the phase avoids the generation of torque ripple.
图22显示的是dq0轴电流的变化情况,i d 、i q 的大小保持不变,从而保证了故障前后电磁转矩的一致;i 0为故障前后0轴的补偿电流。 Figure 22 shows the variation of dq 0-axis current, and the magnitudes of i d and i q remain unchanged, thus ensuring the consistency of the electromagnetic torque before and after the fault; i 0 is the compensation current of the 0-axis before and after the fault.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310160197.0A CN103199790B (en) | 2013-05-03 | 2013-05-03 | Three-phase four-arm Control System of Permanent Magnet Synchronous Motor and control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310160197.0A CN103199790B (en) | 2013-05-03 | 2013-05-03 | Three-phase four-arm Control System of Permanent Magnet Synchronous Motor and control method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103199790A true CN103199790A (en) | 2013-07-10 |
CN103199790B CN103199790B (en) | 2016-06-29 |
Family
ID=48722180
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310160197.0A Expired - Fee Related CN103199790B (en) | 2013-05-03 | 2013-05-03 | Three-phase four-arm Control System of Permanent Magnet Synchronous Motor and control method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103199790B (en) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104579088A (en) * | 2014-12-25 | 2015-04-29 | 石永丽 | High-reliability electric-drive motor control method |
CN104601064A (en) * | 2014-12-25 | 2015-05-06 | 蒋和平 | High-reliability intelligent control method for power generation system |
CN104601065A (en) * | 2014-12-25 | 2015-05-06 | 蒋和平 | Low-cost power generation system control method |
CN104617841A (en) * | 2013-10-30 | 2015-05-13 | Zf腓德烈斯哈芬股份公司 | Processor, device, method and computer program to control multi-phase rotating field motor |
CN105490602A (en) * | 2016-01-04 | 2016-04-13 | 珠海格力电器股份有限公司 | Motor control method and device and servo driver |
CN106059325A (en) * | 2016-04-13 | 2016-10-26 | 国船电气(武汉)有限公司 | Three-phase four-leg pwm control method applicable to reactive power compensation |
CN107852112A (en) * | 2015-07-31 | 2018-03-27 | 日立工机株式会社 | Electric tool |
CN108390608A (en) * | 2018-04-20 | 2018-08-10 | 哈尔滨理工大学 | A kind of position-sensor-free control system for permanent-magnet synchronous motor and its method with harmonic restraining function |
CN108521242A (en) * | 2018-04-11 | 2018-09-11 | 西安交通大学 | A general control system and control method for a permanent magnet synchronous motor |
CN109450315A (en) * | 2018-10-22 | 2019-03-08 | 北京航空航天大学 | A kind of disconnected phase fault tolerant control method of durface mounted permanent magnet synchronous motor |
CN109600095A (en) * | 2018-10-22 | 2019-04-09 | 北京航空航天大学 | A kind of disconnected phase fault-tolerant control system and method for the permanent magnet synchronous motor based on four-leg inverter |
CN110138252A (en) * | 2019-05-13 | 2019-08-16 | 哈尔滨理工大学 | A kind of high reliability Fault tolerant inverter structure and its vector control method |
CN110266246A (en) * | 2018-03-12 | 2019-09-20 | 北京自动化控制设备研究所 | A Fault Tolerant Drive Control Method for Brushless DC Motor |
CN110932561A (en) * | 2019-12-23 | 2020-03-27 | 浙江佳乐科仪股份有限公司 | Wide-input bidirectional DC/DC converter applying hybrid control strategy |
CN110955220A (en) * | 2019-11-01 | 2020-04-03 | 郑州嘉晨电器有限公司 | Self-checking method and system for AC motor controller |
CN110995115A (en) * | 2019-12-23 | 2020-04-10 | 深圳市凌康技术有限公司 | Improved three-dimensional space vector modulation method and system |
CN112821842A (en) * | 2021-03-15 | 2021-05-18 | 合肥恒大江海泵业股份有限公司 | Fault-tolerant control method for open circuit fault of switched reluctance motor |
CN114244234A (en) * | 2021-12-14 | 2022-03-25 | 南京科远驱动技术有限公司 | Speed-sensorless fault-tolerant control method for double-stator permanent magnet motor |
CN116317720A (en) * | 2023-03-07 | 2023-06-23 | 兰州交通大学 | Permanent magnet synchronous motor torque ripple suppression method for improving active disturbance rejection control |
CN116885937A (en) * | 2023-09-04 | 2023-10-13 | 西安千帆翼数字能源技术有限公司 | Four-phase four-bridge arm inverter wave-by-wave current limiting method and system |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1710782A (en) * | 2005-05-27 | 2005-12-21 | 南京航空航天大学 | Bearingless switched reluctance starter generator and control method |
US20080100167A1 (en) * | 2006-10-25 | 2008-05-01 | Dawsey Robert T | Permanent magnet machine rotor |
CN201887672U (en) * | 2010-12-24 | 2011-06-29 | 东南大学 | High-power power electronic transformer based on fault-tolerant design |
US20120074879A1 (en) * | 2009-07-17 | 2012-03-29 | Board Of Regents, The University Of Texas System | Methods and Apparatuses for Fault Management in Permanent Magnet Synchronous Machines Using the Field Reconstruction Method |
CN203206173U (en) * | 2013-05-03 | 2013-09-18 | 哈尔滨理工大学 | Control system used for three-phase four-leg permanent-magnet synchronous motor and having fault tolerance |
-
2013
- 2013-05-03 CN CN201310160197.0A patent/CN103199790B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1710782A (en) * | 2005-05-27 | 2005-12-21 | 南京航空航天大学 | Bearingless switched reluctance starter generator and control method |
US20080100167A1 (en) * | 2006-10-25 | 2008-05-01 | Dawsey Robert T | Permanent magnet machine rotor |
US20120074879A1 (en) * | 2009-07-17 | 2012-03-29 | Board Of Regents, The University Of Texas System | Methods and Apparatuses for Fault Management in Permanent Magnet Synchronous Machines Using the Field Reconstruction Method |
CN201887672U (en) * | 2010-12-24 | 2011-06-29 | 东南大学 | High-power power electronic transformer based on fault-tolerant design |
CN203206173U (en) * | 2013-05-03 | 2013-09-18 | 哈尔滨理工大学 | Control system used for three-phase four-leg permanent-magnet synchronous motor and having fault tolerance |
Non-Patent Citations (1)
Title |
---|
宋博: "一种新型永磁同步电机控制技术的研究", 《中国优秀硕士学位论文全文数据库》 * |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104617841A (en) * | 2013-10-30 | 2015-05-13 | Zf腓德烈斯哈芬股份公司 | Processor, device, method and computer program to control multi-phase rotating field motor |
CN104617841B (en) * | 2013-10-30 | 2019-02-19 | Zf腓德烈斯哈芬股份公司 | Control processor, equipment, method and the computer program of multiphase rotary magnetic field motor |
CN104579088B (en) * | 2014-12-25 | 2018-05-22 | 绵阳赛恩新能源科技有限公司 | A kind of highly reliable electric drive motor control method |
CN104601064A (en) * | 2014-12-25 | 2015-05-06 | 蒋和平 | High-reliability intelligent control method for power generation system |
CN104601065A (en) * | 2014-12-25 | 2015-05-06 | 蒋和平 | Low-cost power generation system control method |
CN104579088A (en) * | 2014-12-25 | 2015-04-29 | 石永丽 | High-reliability electric-drive motor control method |
CN104601064B (en) * | 2014-12-25 | 2017-09-01 | 蒋和平 | A Highly Reliable Intelligent Control Method for Power Generation System |
CN104601065B (en) * | 2014-12-25 | 2018-08-31 | 蒋和平 | A kind of power generation system control method of low cost |
CN107852112B (en) * | 2015-07-31 | 2021-07-02 | 工机控股株式会社 | electrical tools |
CN107852112A (en) * | 2015-07-31 | 2018-03-27 | 日立工机株式会社 | Electric tool |
CN105490602A (en) * | 2016-01-04 | 2016-04-13 | 珠海格力电器股份有限公司 | Motor control method and device and servo driver |
CN106059325A (en) * | 2016-04-13 | 2016-10-26 | 国船电气(武汉)有限公司 | Three-phase four-leg pwm control method applicable to reactive power compensation |
CN106059325B (en) * | 2016-04-13 | 2019-07-19 | 国船电气(武汉)有限公司 | A kind of pwm control method of the three-phase four-arm suitable for reactive compensation |
CN110266246B (en) * | 2018-03-12 | 2021-09-14 | 北京自动化控制设备研究所 | Fault-tolerant brushless direct current motor drive control method |
CN110266246A (en) * | 2018-03-12 | 2019-09-20 | 北京自动化控制设备研究所 | A Fault Tolerant Drive Control Method for Brushless DC Motor |
CN108521242B (en) * | 2018-04-11 | 2020-03-17 | 西安交通大学 | Universal control system for permanent magnet synchronous motor and control method thereof |
CN108521242A (en) * | 2018-04-11 | 2018-09-11 | 西安交通大学 | A general control system and control method for a permanent magnet synchronous motor |
CN108390608A (en) * | 2018-04-20 | 2018-08-10 | 哈尔滨理工大学 | A kind of position-sensor-free control system for permanent-magnet synchronous motor and its method with harmonic restraining function |
CN109600095A (en) * | 2018-10-22 | 2019-04-09 | 北京航空航天大学 | A kind of disconnected phase fault-tolerant control system and method for the permanent magnet synchronous motor based on four-leg inverter |
CN109450315A (en) * | 2018-10-22 | 2019-03-08 | 北京航空航天大学 | A kind of disconnected phase fault tolerant control method of durface mounted permanent magnet synchronous motor |
CN110138252A (en) * | 2019-05-13 | 2019-08-16 | 哈尔滨理工大学 | A kind of high reliability Fault tolerant inverter structure and its vector control method |
CN110955220B (en) * | 2019-11-01 | 2021-05-11 | 郑州嘉晨电器有限公司 | Self-checking method and system for AC motor controller |
CN110955220A (en) * | 2019-11-01 | 2020-04-03 | 郑州嘉晨电器有限公司 | Self-checking method and system for AC motor controller |
CN110932561A (en) * | 2019-12-23 | 2020-03-27 | 浙江佳乐科仪股份有限公司 | Wide-input bidirectional DC/DC converter applying hybrid control strategy |
CN110995115A (en) * | 2019-12-23 | 2020-04-10 | 深圳市凌康技术有限公司 | Improved three-dimensional space vector modulation method and system |
CN110995115B (en) * | 2019-12-23 | 2023-01-03 | 深圳市凌康技术有限公司 | Improved three-dimensional space vector modulation method and system |
CN112821842A (en) * | 2021-03-15 | 2021-05-18 | 合肥恒大江海泵业股份有限公司 | Fault-tolerant control method for open circuit fault of switched reluctance motor |
CN112821842B (en) * | 2021-03-15 | 2022-01-25 | 合肥恒大江海泵业股份有限公司 | Fault-tolerant control method for open circuit fault of switched reluctance motor |
CN114244234A (en) * | 2021-12-14 | 2022-03-25 | 南京科远驱动技术有限公司 | Speed-sensorless fault-tolerant control method for double-stator permanent magnet motor |
CN116317720A (en) * | 2023-03-07 | 2023-06-23 | 兰州交通大学 | Permanent magnet synchronous motor torque ripple suppression method for improving active disturbance rejection control |
CN116885937A (en) * | 2023-09-04 | 2023-10-13 | 西安千帆翼数字能源技术有限公司 | Four-phase four-bridge arm inverter wave-by-wave current limiting method and system |
CN116885937B (en) * | 2023-09-04 | 2023-12-08 | 西安千帆翼数字能源技术有限公司 | Wave-by-wave current limiting method and system for three-phase four-bridge arm inverter |
Also Published As
Publication number | Publication date |
---|---|
CN103199790B (en) | 2016-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103199790B (en) | Three-phase four-arm Control System of Permanent Magnet Synchronous Motor and control method | |
CN104934989B (en) | Reactive power compensator and its control method based on modular multilevel topology | |
CN102624297B (en) | Fault tolerance permanent magnet power generation system and control method thereof | |
CN101335499A (en) | A control method for a four-phase permanent magnet fault-tolerant motor | |
CN106059428A (en) | Model prediction control method of three-phase four-switch inverter driven permanent magnet synchronous motor | |
CN108258976B (en) | An open-winding motor driver topology and its modulation method | |
CN106533310B (en) | A kind of direct current biasing sinusoidal current electric machine controller | |
CN106487308B (en) | A fault-tolerant direct torque control method for the lack of one phase input in a series motor drive system | |
CN110112964A (en) | A kind of brushless DC motor without position sensor commutation position correction system and method | |
CN103441726A (en) | Double three-phase permanent magnet motor vector control method based on proportional resonance regulator | |
CN106911277A (en) | Control system for permanent-magnet synchronous motor based on matrix converter | |
CN103475004A (en) | Unbalanced-load-inhibiting SVG and control method | |
CN104184380A (en) | One-phase-failure fault-tolerant torque control method of 60-degree offset six-phase permanent magnet synchronous motor | |
CN110601607A (en) | Dual-mode operation control system and control method for three-level six-phase permanent magnet synchronous motor | |
CN107834947B (en) | A Method of Suppressing Zero Sequence Current | |
CN108988725B (en) | Permanent magnet synchronous motor current harmonic suppression system and method adopting improved complex vector PI controller | |
CN1858988A (en) | Permanent magnet synchronous motor vector control system | |
CN105896856B (en) | Indirect matrixing type multi-phase multi-level permanent magnet motor system and its control method | |
CN110138252A (en) | A kind of high reliability Fault tolerant inverter structure and its vector control method | |
CN109600095B (en) | Phase failure fault-tolerant control system and method of permanent magnet synchronous motor based on four-bridge-arm inverter | |
CN104767447A (en) | Five-section type vector control system of brushless direct-current motor | |
CN103973192A (en) | Method for optimizing DTC system of six-phase asynchronous motor | |
CN108574442A (en) | A six-phase motor direct torque control system and its control method | |
CN109245660A (en) | The fault-tolerant drive system of four phase electric excitation biconvex electrode electric machines of one kind and its Dynamic Model method | |
CN108667379B (en) | A direct torque control method for two-phase permanent magnet synchronous motor fault-tolerant system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160629 Termination date: 20170503 |
|
CF01 | Termination of patent right due to non-payment of annual fee |