CN103199508A - Method for achieving electric transmission line single phase grounding fault relay protection by using distribution parameter - Google Patents
Method for achieving electric transmission line single phase grounding fault relay protection by using distribution parameter Download PDFInfo
- Publication number
- CN103199508A CN103199508A CN2013100726377A CN201310072637A CN103199508A CN 103199508 A CN103199508 A CN 103199508A CN 2013100726377 A CN2013100726377 A CN 2013100726377A CN 201310072637 A CN201310072637 A CN 201310072637A CN 103199508 A CN103199508 A CN 103199508A
- Authority
- CN
- China
- Prior art keywords
- transmission line
- fault
- protection
- gamma
- phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 55
- 238000000034 method Methods 0.000 title claims abstract description 17
- 238000009434 installation Methods 0.000 claims abstract description 6
- 230000001681 protective effect Effects 0.000 claims description 5
- 230000001012 protector Effects 0.000 claims 1
- 230000009471 action Effects 0.000 abstract description 11
- 230000007704 transition Effects 0.000 abstract description 5
- 230000035945 sensitivity Effects 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Landscapes
- Emergency Protection Circuit Devices (AREA)
Abstract
本发明公开了一种利用分布参数实现输电线路单相接地故障继电保护方法。该方法利采用长线方程精确描述输电线路电压、电流传输的物理特性,利用保护安装处的故障相电气量计算输电线路保护安装处到单相接地故障点的输电线路故障阻抗幅值,比较输电线路故障阻抗幅值与输电线路保护整定阻抗幅值之间的大小关系,若输电线路故障阻抗幅值小于输电线路保护整定阻抗幅值,则保护发出动作跳闸信号。应用本发明方法作为特高压交流输电线路单相接地故障继电保护,能精确计算故障阻抗幅值,其动作性能不受接地故障点电压、分布电容电流、过渡电阻和负荷电流的影响,其动作性能满足继电保护选择性、可靠性、灵敏性和速动性的要求。
The invention discloses a single-phase grounding fault relay protection method for a power transmission line by using distributed parameters. This method uses the long-line equation to accurately describe the physical characteristics of transmission line voltage and current transmission, and uses the fault phase electric quantity at the protection installation to calculate the transmission line fault impedance amplitude from the transmission line protection installation to the single-phase ground fault point, and compares the transmission line The magnitude relationship between the fault impedance amplitude and the transmission line protection setting impedance amplitude. If the transmission line fault impedance amplitude is smaller than the transmission line protection setting impedance amplitude, the protection will send an action trip signal. Applying the method of the present invention as a single-phase ground fault relay protection for UHV AC transmission lines can accurately calculate the fault impedance amplitude, and its action performance is not affected by ground fault point voltage, distributed capacitive current, transition resistance and load current. The performance meets the requirements of relay protection selectivity, reliability, sensitivity and quick action.
Description
技术领域 technical field
本发明涉及电力系统继电保护技术领域,具体地说是涉及一种利用分布参数模型实现输电线路单相接地故障继电保护方法。 The invention relates to the technical field of electric power system relay protection, in particular to a method for realizing single-phase ground fault relay protection of transmission lines by using a distributed parameter model. the
背景技术 Background technique
距离保护由于受电力系统运行方式和结构变化影响小,能瞬间有选择性的切除输电线路各种故障,在电力系统输电线路保护中获得了广泛应用。高压输电线路上距离保护被用作输电线路主保护,超/特高压交流输电线路上距离保护被用作输电线路后备保护。目前电力系统输电线路广泛应用的距离保护主要包括工频变化量距离保护和阻抗距离保护。 Since distance protection is less affected by power system operation mode and structural changes, it can selectively remove various faults in transmission lines instantly, and has been widely used in power system transmission line protection. The distance protection on the high-voltage transmission line is used as the main protection of the transmission line, and the distance protection on the EHV/UHV AC transmission line is used as the backup protection of the transmission line. At present, the distance protection widely used in power system transmission lines mainly includes power frequency variation distance protection and impedance distance protection. the
工频变化量距离保护通过反应工作电压幅值突变量构成距离保护,该方法具有受电力系统运行方式影响小和抗过渡电阻能力强等优势。但由于该方法所采用的工作电压幅值突变量仅在故障初期存在,无法用作超/特高压交流输电线路后备保护。 The power frequency variation distance protection constitutes the distance protection by reflecting the sudden change of the working voltage amplitude. This method has the advantages of being less affected by the operation mode of the power system and having a strong ability to resist transition resistance. However, since the mutation of the working voltage amplitude used in this method only exists in the initial stage of the fault, it cannot be used as a backup protection for EHV/UHV AC transmission lines. the
阻抗距离保护根据故障阻抗大小反映故障距离长度以区分故障点位于保护区内或是位于保护区外。阻抗距离保护由于受电力系统运行方式和结构变化影响小,用于计算故障阻抗的电气量为全故障分量,适用于整个故障过程。因此,阻抗距离保护既可用于高压输电线路主保护,也可用作超/特高压交流输电线路后备保护。 Impedance distance protection reflects the fault distance length according to the fault impedance to distinguish whether the fault point is inside the protection zone or outside the protection zone. Impedance distance protection is less affected by power system operation mode and structural changes, and the electrical quantity used to calculate fault impedance is the total fault component, which is applicable to the entire fault process. Therefore, the impedance distance protection can be used not only for the main protection of high-voltage transmission lines, but also for the backup protection of EHV/UHV AC transmission lines. the
然而,传统接地阻抗距离保护前提假设接地故障点电压为零,通过故障相电压和故障相电流比值计算故障阻抗,并根据故障阻抗大小来反映故障点的远近以决定是否发出跳闸信号。实际上,在电力系统中,除了人为构造的金属性接地短路故障外,接地故障点电压几乎不可能为零,因此,接地故障点电压会对接地阻抗距离保护动作性能造成严重影响。 However, the premise of the traditional grounding impedance distance protection is that the voltage of the grounding fault point is zero, and the fault impedance is calculated by the ratio of the fault phase voltage to the fault phase current, and the distance of the fault point is reflected according to the magnitude of the fault impedance to determine whether to send a trip signal. In fact, in the power system, the voltage at the ground fault point is almost impossible to be zero except for the artificially constructed metallic ground short-circuit fault. Therefore, the voltage at the ground fault point will have a serious impact on the performance of the ground impedance distance protection. the
实际电力系统中,特高压交流输电线路的电压、电流传输具有明显的波过程,沿线分布电容电流大,对阻抗距离保护动作性能的影响不能忽略。考虑线路沿线对地电容的影响,故 障阻抗与故障距离呈双曲正切函数关系,双曲正切函数特性决定了阻抗继电器耐过渡电阻能力差,过渡电阻所带来的附加阻抗将严重影响阻抗继电器的动作性能。特压交流输电线路输送大容量电能,是重负荷输电线路,重负荷电流会使阻抗距离保护的动作灵敏度降低,重负荷电流对阻抗距离保护动作性能的影响不能忽略。 In the actual power system, the voltage and current transmission of UHV AC transmission lines have obvious wave process, and the distributed capacitive current along the line is large, so the influence on the performance of impedance distance protection cannot be ignored. Considering the influence of the ground capacitance along the line, the relationship between the fault impedance and the fault distance is a hyperbolic tangent function. The characteristics of the hyperbolic tangent function determine that the resistance of the impedance relay is poor, and the additional impedance brought by the transition resistance will seriously affect the impedance relay. action performance. The UV AC transmission line transmits large-capacity electric energy, and it is a heavy-duty transmission line. The heavy-load current will reduce the action sensitivity of the impedance distance protection, and the impact of the heavy-load current on the action performance of the impedance distance protection cannot be ignored. the
据国家电网公司统计,电力系统输电线路发生的各种故障类型中单相接地故障占80%以上,因此,研究一种适用于特高压交流输电线路单相接地故障的继电保护方法具有非常重要的工程意义。 According to the statistics of the State Grid Corporation of China, single-phase ground faults account for more than 80% of the various fault types that occur in power system transmission lines. Therefore, it is very important to study a relay protection method suitable for single-phase ground faults in UHV AC transmission lines. engineering significance. the
发明内容 Contents of the invention
本发明的目的在于克服已有技术存在的不足,提供一种适用于特高压交流输电线路的利用分布参数模型实现输电线路单相接地故障的继电保护方法。 The purpose of the present invention is to overcome the deficiencies in the prior art, and provide a relay protection method suitable for UHV AC transmission lines using a distributed parameter model to realize single-phase grounding faults in transmission lines. the
本发明的目的是通过以下途径来实现的: The purpose of the present invention is achieved by the following approach:
利用分布参数模型实现输电线路单相接地故障继电保护方法,其要点在于,包括如下步骤: Using the distributed parameter model to realize the single-phase ground fault relay protection method of transmission line, the main point is that it includes the following steps:
(1)提供一种保护装置,该保护装置测量输电线路保护安装处的故障相电压故障相电流故障相负序电流和零序电流其中,φ=A、B、C相; (1) Provide a protective device that measures the fault phase voltage at the installation of the transmission line protection fault phase current Fault phase negative sequence current and zero sequence current Among them, φ=A, B, C phase;
(2)保护装置利用其测量到的故障相电气量计算φ相输电线路的故障阻抗幅值|Zφ|: (2) The protection device calculates the fault impedance amplitude |Z φ | of the φ-phase transmission line by using the measured electrical quantity of the fault phase:
其中,φ=A、B、C相;lset为保护整定范围;Z0为输电线路保护安装处的系统零序等值阻抗;γ1、γ0分别为输电线路正序、零序传播系数;Zc1、Zc0分别为输电线路正序、零序 波阻抗;
(3)保护装置进一步计算φ相输电线路的保护整定阻抗幅值|Zc1th(γ1lset)|,其中,th(.)为双曲正切函数; (3) The protection device further calculates the protection setting impedance amplitude |Z c1 th(γ 1 l set )| of the φ-phase transmission line, where th(.) is a hyperbolic tangent function;
(4)保护装置比较|Zc1th(γ1lset)|与|Zφ|之间的大小关系,若满足|Zφ|<|Zc1th(γ1lset)|,则保护发出动作跳闸信号。 (4) The protection device compares the size relationship between |Z c1 th(γ 1 l set )| and |Z φ |, if it satisfies |Z φ |<|Z c1 th(γ 1 l set )|, then the protection will send out Action trip signal.
本发明与现有技术相比较,具有下列积极成果: Compared with the prior art, the present invention has the following positive results:
(1)本发明方法采用长线方程精确描述输电线路的物理特性,具有天然的抗分布电容影响的能力。 (1) The method of the present invention uses the long-term equation to accurately describe the physical characteristics of the transmission line, and has a natural ability to resist the influence of distributed capacitance. the
(2)本发明方法能精确计算输电线路故障阻抗幅值,用作特高压交流输电线路单相接地故障继电保护,其动作性能不受接地故障点电压、分布电容电流、过渡电阻和负荷电流的影响,动作性能稳定可靠。 (2) The method of the present invention can accurately calculate the fault impedance amplitude of the transmission line, and is used as a single-phase ground fault relay protection of the UHV AC transmission line, and its operating performance is not affected by the ground fault point voltage, distributed capacitive current, transition resistance and load current. The impact, the action performance is stable and reliable. the
附图说明 Description of drawings
图1为应用本发明的线路输电系统示意图。 Fig. 1 is a schematic diagram of a line transmission system applying the present invention. the
具体实施方式 Detailed ways
下面根据说明书附图对本发明的技术方案做进一步详细表述。 The technical solution of the present invention will be further described in detail according to the accompanying drawings. the
图1为应用本发明的线路输电系统示意图。图1中CVT为电压互感器、CT为电流互感器。保护装置对输电线路保护安装处的电压互感器CVT的电压波形和电流互感器CT的电流波形进行采样得到电压、电流瞬时值。 Fig. 1 is a schematic diagram of a line transmission system applying the present invention. In Fig. 1, CVT is a voltage transformer, and CT is a current transformer. The protection device samples the voltage waveform of the voltage transformer CVT and the current waveform of the current transformer CT at the place where the transmission line protection is installed to obtain instantaneous values of voltage and current. the
保护装置对采样得到的电压、电流瞬时值利用傅里叶算法计算输电线路保护安装处的故障相电压故障相电流故障相负序电流和零序电流其中,φ=A、B、C相。 The protection device uses the Fourier algorithm to calculate the fault phase voltage at the protection installation of the transmission line on the instantaneous value of the voltage and current obtained by sampling fault phase current Fault phase negative sequence current and zero sequence current Among them, φ=A, B, C phase.
保护装置利用其测量到的故障相电气量计算φ相输电线路的故障阻抗幅值|Zφ|: The protection device calculates the fault impedance amplitude |Z φ | of the φ-phase transmission line by using the measured fault phase electrical quantity:
其中,φ=A、B、C相;lset为保护整定范围;Z0为输电线路保护安装处的系统零序等值阻抗;γ1、γ0分别为输电线路正序、零序传播系数;Zc1、Zc0分别为输电线路正序、零序波阻抗;
保护装置进一步计算φ相输电线路的保护整定阻抗幅值|Zc1th(γ1lset)|,其中,th(.)为双曲正切函数。 The protection device further calculates the protection setting impedance amplitude |Z c1 th(γ 1 l set )| of the φ-phase transmission line, where th(.) is a hyperbolic tangent function.
保护装置比较|Zc1th(γ1lset)|与|Zφ|之间的大小关系,若满足|Zφ|<|Zc1th(γ1lset)|,则保护发出动作跳闸信号。 The protection device compares the size relationship between |Z c1 th(γ 1 l set )| and |Z φ |, if it satisfies |Z φ |<|Z c1 th(γ 1 l set )|, then the protection sends out an action trip signal .
应用本发明方法作为特高压交流输电线路单相接地故障继电保护,能精确计算故障阻抗幅值,其动作性能不受接地故障点电压、分布电容电流、过渡电阻和负荷电流的影响,其动作性能满足继电保护选择性、可靠性、灵敏性和速动性的要求。 Applying the method of the present invention as a single-phase ground fault relay protection for UHV AC transmission lines can accurately calculate the fault impedance amplitude, and its action performance is not affected by ground fault point voltage, distributed capacitive current, transition resistance and load current. The performance meets the requirements of relay protection selectivity, reliability, sensitivity and quick action. the
以上所述仅为本发明的较佳具体实施例,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。 The above descriptions are only preferred specific embodiments of the present invention, but the scope of protection of the present invention is not limited thereto, any changes or substitutions that can be easily conceived by those skilled in the art within the technical scope disclosed in the present invention , should be covered within the protection scope of the present invention. the
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2013100726377A CN103199508A (en) | 2013-03-07 | 2013-03-07 | Method for achieving electric transmission line single phase grounding fault relay protection by using distribution parameter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2013100726377A CN103199508A (en) | 2013-03-07 | 2013-03-07 | Method for achieving electric transmission line single phase grounding fault relay protection by using distribution parameter |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103199508A true CN103199508A (en) | 2013-07-10 |
Family
ID=48721912
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2013100726377A Pending CN103199508A (en) | 2013-03-07 | 2013-03-07 | Method for achieving electric transmission line single phase grounding fault relay protection by using distribution parameter |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103199508A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103762571A (en) * | 2014-02-18 | 2014-04-30 | 国家电网公司 | Method for achieving circuit single-phase earth fault relay protection with hyperbolic tangent function amplitude characteristics |
CN103762567A (en) * | 2014-02-18 | 2014-04-30 | 国家电网公司 | Electric transmission line single-phase earth fault relay protection method based on fault position factor |
CN104092199A (en) * | 2014-07-25 | 2014-10-08 | 国家电网公司 | Single-phase-to-ground voltage protection method for line based on voltage amplitude distribution characteristics along the line |
CN111817273A (en) * | 2020-07-08 | 2020-10-23 | 国网福建省电力有限公司检修分公司 | Ground fault relay protection method for UHV double-circuit lines with the same pole and parallel frame based on the six-sequence component method |
CN113848427A (en) * | 2021-09-29 | 2021-12-28 | 武汉理工大学 | A parameter optimization method for physical simulation system of DC transmission line |
CN113887039A (en) * | 2021-09-29 | 2022-01-04 | 南方电网科学研究院有限责任公司 | Optimal equivalent length determination method for physical simulation system of direct-current transmission line |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060276979A1 (en) * | 2005-05-13 | 2006-12-07 | Price Elmo D | Method and apparatus for improving operational reliability during a loss of a phase voltage |
CN102200563A (en) * | 2011-01-20 | 2011-09-28 | 福建省电力有限公司福州超高压输变电局 | Line single-phase earth fault single-terminal location method based on positioning function amplitude characteristics |
CN102709891A (en) * | 2012-06-11 | 2012-10-03 | 福建省电力有限公司检修分公司 | Distributed parameter measurement impedance-based relay protection method for single-phase grounding fault of power transmission line |
CN102707197A (en) * | 2012-06-11 | 2012-10-03 | 福建省电力有限公司检修分公司 | Distance measuring method and type diagnostic method of single-phase grounding fault of electric transmission line |
-
2013
- 2013-03-07 CN CN2013100726377A patent/CN103199508A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060276979A1 (en) * | 2005-05-13 | 2006-12-07 | Price Elmo D | Method and apparatus for improving operational reliability during a loss of a phase voltage |
CN102200563A (en) * | 2011-01-20 | 2011-09-28 | 福建省电力有限公司福州超高压输变电局 | Line single-phase earth fault single-terminal location method based on positioning function amplitude characteristics |
CN102709891A (en) * | 2012-06-11 | 2012-10-03 | 福建省电力有限公司检修分公司 | Distributed parameter measurement impedance-based relay protection method for single-phase grounding fault of power transmission line |
CN102707197A (en) * | 2012-06-11 | 2012-10-03 | 福建省电力有限公司检修分公司 | Distance measuring method and type diagnostic method of single-phase grounding fault of electric transmission line |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103762571A (en) * | 2014-02-18 | 2014-04-30 | 国家电网公司 | Method for achieving circuit single-phase earth fault relay protection with hyperbolic tangent function amplitude characteristics |
CN103762567A (en) * | 2014-02-18 | 2014-04-30 | 国家电网公司 | Electric transmission line single-phase earth fault relay protection method based on fault position factor |
CN103762567B (en) * | 2014-02-18 | 2016-02-03 | 国家电网公司 | Based on the transmission line one-phase earth fault relay protecting method of the abort situation factor |
CN103762571B (en) * | 2014-02-18 | 2016-08-17 | 国家电网公司 | Hyperbolic tangent function amplitude characteristic is utilized to realize single-phase line earth fault relay protection method |
CN104092199A (en) * | 2014-07-25 | 2014-10-08 | 国家电网公司 | Single-phase-to-ground voltage protection method for line based on voltage amplitude distribution characteristics along the line |
CN111817273A (en) * | 2020-07-08 | 2020-10-23 | 国网福建省电力有限公司检修分公司 | Ground fault relay protection method for UHV double-circuit lines with the same pole and parallel frame based on the six-sequence component method |
CN113848427A (en) * | 2021-09-29 | 2021-12-28 | 武汉理工大学 | A parameter optimization method for physical simulation system of DC transmission line |
CN113887039A (en) * | 2021-09-29 | 2022-01-04 | 南方电网科学研究院有限责任公司 | Optimal equivalent length determination method for physical simulation system of direct-current transmission line |
CN113848427B (en) * | 2021-09-29 | 2022-06-28 | 武汉理工大学 | A parameter optimization method for physical simulation system of DC transmission line |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103293439B (en) | Based on distribution parameter measurement impedance magnitude characteristic line single-phase earth fault single-terminal location method | |
CN103199508A (en) | Method for achieving electric transmission line single phase grounding fault relay protection by using distribution parameter | |
CN103107524B (en) | Electric transmission line phase fault relay protection method | |
CN103248026B (en) | Relay protection method for line single-phase ground fault against distributed capacitive current and transition resistance | |
CN103227455B (en) | Based on the single-phase line earth fault relay protection method of fault impedance phase characteristic | |
CN103296654B (en) | Distributed constant is utilized to realize single-phase line earth fault relay protection method | |
CN103293441B (en) | Distribution parameter is utilized to realize line single-phase earth fault single-terminal location method | |
CN103311909B (en) | Positive sequence Sudden Changing Rate and zero-sequence component is utilized to realize line single phase grounding failure voltage protection method | |
CN103278742B (en) | Voltage drop imaginary part characteristic is utilized to realize line single-phase earth fault single-terminal location method | |
CN103323739B (en) | Based on distribution parameter measurement impedance magnitude characteristic circuit inter-phase fault single-end ranging | |
CN103166207B (en) | Based on the single-phase line earth fault relay protection method of voltage-drop characteristic along the line | |
CN104076240B (en) | Ultrahigh voltage alternating current transmission lines three phase short circuit fault recognition methods | |
CN103762566B (en) | Hyperbolic tangent function amplitude characteristic is utilized to realize line interphase fault relay protection method | |
CN103762567B (en) | Based on the transmission line one-phase earth fault relay protecting method of the abort situation factor | |
CN103296646B (en) | Distributed constant is utilized to realize line single-phase earth fault distance protection method | |
CN103762571B (en) | Hyperbolic tangent function amplitude characteristic is utilized to realize single-phase line earth fault relay protection method | |
CN103227456B (en) | A kind of transmission line one-phase earth fault distance protecting method | |
CN103227458B (en) | Based on the single-phase line earth fault relay protection method of voltage drop phase characteristic | |
CN103217630B (en) | Method of achieving single-phase ground fault single-end distance measurement of line by means of voltage drop real part characteristics | |
CN103178504B (en) | Relay protection method for electric transmission line single-phase earth faults | |
CN103197201B (en) | Low-resistance, medium-resistance and high-resistance grounding fault type recognition method of power transmission line | |
CN105866619A (en) | Method for detecting high impedance earth faults in power transmission line based on amplitude feature of distributed parameter zero sequence impedance | |
CN103296645B (en) | Distributed constant is utilized to realize line inter-phase fault distance protection method | |
CN103296652B (en) | Transmission line one-phase earth fault zero-sequence voltage protection method | |
CN104078949A (en) | Circuit interphase fault relay protection method based on hyperbolic tangent function amplitude characteristic |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C12 | Rejection of a patent application after its publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20130710 |