CN103197327B - Method and system for updating global position system (GPS) ephemeris fast and reliably - Google Patents
Method and system for updating global position system (GPS) ephemeris fast and reliably Download PDFInfo
- Publication number
- CN103197327B CN103197327B CN201310129596.0A CN201310129596A CN103197327B CN 103197327 B CN103197327 B CN 103197327B CN 201310129596 A CN201310129596 A CN 201310129596A CN 103197327 B CN103197327 B CN 103197327B
- Authority
- CN
- China
- Prior art keywords
- gps
- ephemeris
- server
- local
- data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 34
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000001174 ascending effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
Landscapes
- Position Fixing By Use Of Radio Waves (AREA)
Abstract
本发明涉及一种快速可靠更新GPS星历的方法及系统。该系统设立了一个本地GPS星历服务器。本地GPS星历服务器内置有一个虚拟GPS星历生成模块,正常情况下本地GPS星历服务器从GPS官方星历服务器获取星历数据。当本地GPS星历服务器与GPS官方星历服务器断开连接后,虚拟GPS星历生成模块开始工作,生成精确的虚拟星历,本地GPS星历服务器的GPS星历数据立刻会切换成内部的虚拟GPS星历数据,以保证GPS星历数据的连续性和可靠性。能帮助各A-GPS终端主机显著缩短TTFF时间(开机后的第一次定位时间)。从而可将A-GPS终端定位系统冷启动后第一次定位的时间缩短到20秒内,实现快速可靠定位。
The invention relates to a method and system for quickly and reliably updating GPS ephemeris. The system sets up a local GPS ephemeris server. The local GPS ephemeris server has a built-in virtual GPS ephemeris generation module. Under normal circumstances, the local GPS ephemeris server obtains ephemeris data from the official GPS ephemeris server. When the local GPS ephemeris server is disconnected from the GPS official ephemeris server, the virtual GPS ephemeris generation module starts to work to generate accurate virtual ephemeris, and the GPS ephemeris data of the local GPS ephemeris server will immediately switch to the internal virtual ephemeris GPS ephemeris data to ensure the continuity and reliability of GPS ephemeris data. It can help each A-GPS terminal host to significantly shorten the TTFF time (time to first fix after power-on). Therefore, the time for the first positioning after the cold start of the A-GPS terminal positioning system can be shortened to within 20 seconds, realizing fast and reliable positioning.
Description
技术领域 technical field
本发明涉及一种快速可靠更新GPS星历的方法及系统。 The invention relates to a method and system for quickly and reliably updating GPS ephemeris.
背景技术 Background technique
当GPS的应用不断地推进个人的随身应用时,传统的GPS定位方式就出现了不小的使用瓶颈。采用自主定位(Autonomous Positioning)的独立式GPS设备,必须要在信号条件好的开放天空中接收到四颗以上的卫星信号,并且,此设备的GPS接收机还得将这些GPS卫星轨道信息数据完整收齐,接着才能进行定位计算。 When the application of GPS continues to promote personal portable applications, the traditional GPS positioning method has a considerable bottleneck in its use. A stand-alone GPS device that uses autonomous positioning (Autonomous Positioning) must receive more than four satellite signals in an open sky with good signal conditions, and the GPS receiver of this device must also complete the orbit information data of these GPS satellites. Collect all, and then the positioning calculation can be performed.
GPS接收机第一次开机后的启动定位时间,取决于启动的方式,一般可分为冷启动、温启动和热启动三种: The start-up and positioning time of the GPS receiver after it is turned on for the first time depends on the way of start-up. Generally, it can be divided into three types: cold start, warm start and hot start:
冷启动(Cold Start):GPS接收机清空了所有历史数据,或者GPS 接收机在没有加电工作的情况下移动距离超过1000km,GPS接收机会尝试定位并锁定卫星,由于清空了历史数据,将需要很长的时间。GPS接收机采用类似于轮询的方法,从所有的卫星中锁定信号,这将比事前知道需要搜索哪些卫星要慢很多。这一类重新获取锁定要花的时间非常长。根据使用GPS模块不同,重新获取锁定的时间从几分钟到一个小时不等。 Cold Start: The GPS receiver has cleared all historical data, or the GPS receiver has moved more than 1000km without power on, the GPS receiver will try to locate and lock the satellite, because the historical data has been cleared, it will need to a long time. GPS receivers use a method similar to polling to lock on to signals from all the satellites, which is much slower than knowing in advance which satellites to search for. This type of lock reacquisition takes a very long time. Depending on the GPS module used, the time to reacquire the lock can vary from a few minutes to an hour.
暖启动(Warm Start):GPS保存有最后计算的卫星的位置、历书和UTC时间,但保存的内容不是当前可视卫星的数据。GPS重启以后会尝试获得当前卫星和信号并计算其新位置。GPS基于其最后的位置和历书可以大致推测当前天空中的可视卫星。 Warm Start: GPS saves the last calculated satellite position, almanac and UTC time, but the saved content is not the current visible satellite data. After restarting, the GPS will try to obtain the current satellites and signals and calculate its new position. GPS can make an approximate guess at the current visible satellites in the sky based on its last position and almanac.
热启动(Hot Start):GPS保存有其最后计算的可视卫星的位置、almanac(历书)和UTC时间,在重启以后,GPS以上述保存的内容为基础获取和计算当前卫星的最新位置,可快速定位。 Hot Start: GPS saves the last calculated visible satellite position, almanac (almanac) and UTC time. After restarting, GPS obtains and calculates the latest position of the current satellite based on the above saved content, which can be Rapid positioning.
对于随身导航应用来说,由于冷启动的存在,自主定位在开机后的第一次定位时间(Time to first fix, TTFF)太长,而且用户时常处于建筑物林立的街道中,高架桥下,甚至是室内的环境中,由于这些地方的信号接收条件很差,用户需要很长时间才能等到第一次定位,而且还不一定能够成功。 For portable navigation applications, due to the existence of cold start, the time to first fix (TTFF) of autonomous positioning after power-on is too long, and users are often in streets with many buildings, under viaducts, or even Especially in the indoor environment, due to the poor signal reception conditions in these places, it takes a long time for the user to wait for the first positioning, and it may not be successful.
在此情况下对于单个A-GPS终端主机,启动定位最为快速的方式就是热启动,而通过另一套网络来取得卫星信息的辅助定位方式,将冷启动变为热启动,也就是A-GPS(即Aiding GPS),已成为GPS发展上的一个必然趋势。针对这种情况,目前市场上有两种不同形式的A-GPS解决方案,以帮助用户缩短TTFF时间,快速实现定位。 In this case, for a single A-GPS terminal host, the fastest way to start positioning is hot start, and the assisted positioning method of obtaining satellite information through another network turns cold start into hot start, that is, A-GPS (Aiding GPS), has become an inevitable trend in the development of GPS. In response to this situation, there are currently two different forms of A-GPS solutions on the market to help users shorten TTFF time and quickly realize positioning.
一种是在线A-GPS方式(AssistNow Online),实时性的通过GSM、GPRS、CDMA或UMTS等移动通信系统来取得实时卫星信息。另一种是采用离线A-GPS方式(AssistNow offline),通过移动网络或直接由因特网预先下载卫星数据,当需要时就能起到辅助定位的作用。本发明所涉及的A-GPS是在线A-GPS。 One is the online A-GPS method (AssistNow Online), which obtains real-time satellite information through mobile communication systems such as GSM, GPRS, CDMA or UMTS in real time. The other is to use the offline A-GPS method (AssistNow offline), download satellite data in advance through the mobile network or directly from the Internet, and can play the role of auxiliary positioning when needed. The A-GPS involved in the present invention is an online A-GPS.
传统的在线A-GPS方式的移动终端一般通过TCP/IP的协议方式来与传统的标准星历服务器(也可以是服务器的镜像(Mirror)或代理(Proxy)星历服务器)通信,以取得GPS定位所需的辅助卫星定位数据。传统星历服务器上的星历数据一般从GPS官方星历服务器,也就是所说的GPS根星历服务器获得。而星历数据的有效期仅为几小时,当传统的星历服务器与GPS根星历服务器断开连接后,各A-GPS终端主机主机便无法获取最新的GPS星历,无法进行快速定位。 The traditional online A-GPS mobile terminal generally communicates with the traditional standard ephemeris server (or the server's mirror (Mirror) or proxy (Proxy) ephemeris server) through the TCP/IP protocol to obtain GPS Auxiliary satellite positioning data required for positioning. The ephemeris data on the traditional ephemeris server is generally obtained from the GPS official ephemeris server, that is, the so-called GPS root ephemeris server. The validity period of the ephemeris data is only a few hours. When the traditional ephemeris server is disconnected from the GPS root ephemeris server, each A-GPS terminal host can not obtain the latest GPS ephemeris and cannot perform fast positioning.
发明内容 Contents of the invention
本发明针对现有技术的不足,提出了一种快速可靠更新A-GPS星历的解决方案。帮助各A-GPS终端主机即使在本地GPS星历服务器无法从GPS根星历服务器直接获取最新的GPS星历的情况下,也能在本地GPS星历服务器得到最新的高精度虚拟GPS星历,以帮助用户缩短TTFF时间,快速实现定位。从而可将A-GPS终端主机定位系统冷启动后第一次定位的时间缩短到20秒内。 Aiming at the deficiencies of the prior art, the invention proposes a solution for fast and reliable updating of A-GPS ephemeris. Help each A-GPS terminal host to obtain the latest high-precision virtual GPS ephemeris from the local GPS ephemeris server even if the local GPS ephemeris server cannot directly obtain the latest GPS ephemeris from the GPS root ephemeris server, To help users shorten the TTFF time and quickly achieve positioning. Therefore, the time for the first positioning after the cold start of the A-GPS terminal host positioning system can be shortened to within 20 seconds.
本发明解决技术问题所采取的技术方案为: The technical scheme that the present invention solves technical problem to take is:
一种快速可靠更新GPS星历的系统包含多个A-GPS终端主机和一个本地GPS星历服务器。所述本地GPS星历服务器,内部包含一个虚拟GPS星历生成模块。所述的虚拟GPS星历生成模块是本地GPS星历服务器上运行的一个GPS星历预测模块。该预测模块使用历史GPS星历数据,结合卫星的运行特性,通过差分星历修正数据的算法推测接下来几个小时的卫星运行轨迹,生成较为精确的卫星星历数据。 A system for quickly and reliably updating GPS ephemeris includes multiple A-GPS terminal hosts and a local GPS ephemeris server. The local GPS ephemeris server includes a virtual GPS ephemeris generation module inside. The virtual GPS ephemeris generation module is a GPS ephemeris prediction module running on the local GPS ephemeris server. The prediction module uses historical GPS ephemeris data, combined with the operating characteristics of satellites, and uses the algorithm of differential ephemeris correction data to predict the satellite trajectory in the next few hours and generate more accurate satellite ephemeris data.
每个A-GPS终端主机通过GPRS或者WIFI的连接方式,访问互联网上的本地GPS星历服务器,获取最新的GPS星历数据。 Each A-GPS terminal host accesses the local GPS ephemeris server on the Internet through GPRS or WIFI connection to obtain the latest GPS ephemeris data.
利用上述系统进行更新GPS星历的方法包括两个过程,分别是A-GPS终端主机从本地GPS星历服务器获取GPS星历;本地GPS星历服务器从GPS根星历服务器获取星历。 The method for updating the GPS ephemeris by using the above system includes two processes, namely, the A-GPS terminal host obtains the GPS ephemeris from the local GPS ephemeris server; the local GPS ephemeris server obtains the ephemeris from the GPS root ephemeris server. the
A-GPS终端主机从本地GPS星历服务器获取GPS星历过程,步骤包括: The A-GPS terminal host obtains the GPS ephemeris process from the local GPS ephemeris server, and the steps include:
101:A-GPS终端主机上电,对系统各部分进行初始化。 101: The A-GPS terminal host is powered on, and each part of the system is initialized.
102:判断是否需要更新GPS模块中的卫星星历,如果不需要更新就执行步骤107,如果需要更新,就执行步骤103。 102: Judging whether it is necessary to update the satellite ephemeris in the GPS module, if it is not necessary to update, then perform step 107, and if it needs to be updated, then perform step 103.
103:判断终端的GSM/GPRS或者WIFI是否已经接入了互联网。如果已经连接到了互联网就执行步骤104,如果没有连接到互联网就执行步骤107。 103: Determine whether the GSM/GPRS or WIFI of the terminal has connected to the Internet. If connected to the Internet, step 104 is performed, and if not connected to the Internet, step 107 is performed.
104:终端接入互联网后会连接到本地GPS星历服务器,确定正确连接后执行步骤105。 104: After the terminal is connected to the Internet, it will connect to the local GPS ephemeris server, and perform step 105 after confirming that the connection is correct.
105:从本地GPS星历服务器下载最新的GPS星历数据到A-GPS终端主机,完成后执行步骤106。 105: Download the latest GPS ephemeris data from the local GPS ephemeris server to the A-GPS terminal host, and execute step 106 after completion.
106:A-GPS终端主机获取了最新的GPS星历后,将星历数据转换成统一的GPS模块可识别的内部星历格式,再使用GPS模块的星历更新命令,将星历数据更新到A-GPS终端主机。完成后执行步骤107。 106: After the A-GPS terminal host obtains the latest GPS ephemeris, it converts the ephemeris data into a unified internal ephemeris format recognizable by the GPS module, and then uses the ephemeris update command of the GPS module to update the ephemeris data to A-GPS terminal host. Execute step 107 after completion.
107:系统会等待A-GPS终端主机定位,直到定位结束,A-GPS终端主机星历更新过程结束。 107: The system will wait for the A-GPS terminal host to locate until the positioning ends and the A-GPS terminal host ephemeris update process ends.
(2)本地GPS星历服务器从GPS根星历服务器获取星历的过程,步骤包括: (2) The process that the local GPS ephemeris server obtains the ephemeris from the GPS root ephemeris server, and the steps include:
201:本地GPS星历服务器每间隔2秒连接一次GPS根星历服务器,当定时时间达到2秒时,执行步骤202。 201: The local GPS ephemeris server connects to the GPS root ephemeris server every 2 seconds, and when the timing reaches 2 seconds, execute step 202.
202:本地GPS星历服务器会首先尝试连接列表中的首选第一个GPS根星历服务器,如果不能连接,执行步骤203。如果可以连接,执行步骤206。 202: The local GPS ephemeris server will first try to connect to the preferred first GPS root ephemeris server in the list, if not, go to step 203. If it can be connected, go to step 206.
203:尝试连接第二个备用GPS根星历服务器,如果不能连接,就执行步骤204.如果可以连接,执行步骤206。 203: Try to connect to the second backup GPS root ephemeris server, if not, go to step 204. If you can connect, go to step 206.
204:尝试连接第三个备用GPS根星历服务器,如果不能连接,执行步骤205.如果可以连接执行步骤206。 204: Try to connect to the third backup GPS root ephemeris server, if not, go to step 205. If you can connect, go to step 206.
205:尝试连接第n个备用GPS根星历服务器,如果不能连接,系统就会跳出连接任务,执行步骤206,如果可以连接,也执行步骤206。 205: Try to connect to the nth standby GPS root ephemeris server, if the connection cannot be made, the system will jump out of the connection task and go to step 206, if it can be connected, also go to step 206.
206:本地GPS星历服务器会判断是否能够与上述多个GPS根星历服务器进行通讯,如果能够正常通讯,执行步骤208,如果不能通讯,通知系统获取GPS根星历服务器连接失败。执行步骤207。 206: The local GPS ephemeris server will judge whether it can communicate with the above-mentioned multiple GPS root ephemeris servers, if it can communicate normally, execute step 208, if not, notify the system that the connection to the GPS root ephemeris server fails. Execute step 207.
207:系统会启动虚拟GPS星历模块,通过之前得到的GPS星历数据,根据差分星历修正数据的算法,得到精确的GPS星历,完成后执行步骤210。 207: The system will start the virtual GPS ephemeris module, obtain accurate GPS ephemeris through the previously obtained GPS ephemeris data and the algorithm of correcting the data according to the differential ephemeris, and execute step 210 after completion.
208:本地GPS星历服务器和(3,4,5,7)GPS根星历服务器建立连接后,系统会查询GPS根星历服务器是否有可以更新的GPS星历数据。当系统检测到有新的星历数据生成时,执行步骤209,如果没有检测到新更新的数据,数据更新结束,等待下一个数据更新过程,执行步骤201。 208: After the connection between the local GPS ephemeris server and the (3,4,5,7) GPS root ephemeris server is established, the system will query whether the GPS root ephemeris server has GPS ephemeris data that can be updated. When the system detects that new ephemeris data is generated, step 209 is executed. If no newly updated data is detected, the data update ends, and the next data update process is waited for, and step 201 is executed.
209:启用星历数据下载程序,将新的星历数据完整下载到本地GPS星历服务器。 209: Start the ephemeris data downloading program, and completely download the new ephemeris data to the local GPS ephemeris server.
210:本地GPS星历服务器从GPS根星历服务器或者虚拟GPS星历生成模块得到新的GPS星历数据后,会将数据进行转换,转换成GPS模块能够识别的星历数组,保存到本地GPS星历服务器中,等待A-GPS终端主机读取,执行步骤201,进行下一个循环。 210: After the local GPS ephemeris server obtains new GPS ephemeris data from the GPS root ephemeris server or the virtual GPS ephemeris generation module, it will convert the data into an ephemeris array that the GPS module can recognize, and save it to the local GPS In the ephemeris server, wait for the A-GPS terminal host to read, execute step 201, and proceed to the next cycle.
A-GPS终端主机通过使用GPS星历更新命令, 把GPS星历数据更新到A-GPS终端主机,将系统的冷启动过程转换成热启动。 The A-GPS terminal host updates the GPS ephemeris data to the A-GPS terminal host by using the GPS ephemeris update command, and converts the cold start process of the system into a hot start.
本发明能够辅助各A-GPS终端主机,在本地GPS星历服务器与GPS根星历服务器失去连接,无法从GPS根星历服务器获取最新的GPS星历的情况下,同样能实现快速定位,帮助各A-GPS终端主机缩短TTFF时间(开机后的第一次定位时间)。 The present invention can assist each A-GPS terminal host, and when the local GPS ephemeris server loses connection with the GPS root ephemeris server and cannot obtain the latest GPS ephemeris from the GPS root ephemeris server, it can also realize fast positioning and help Each A-GPS terminal host shortens the TTFF time (the first positioning time after power-on).
附图说明 Description of drawings
图1. GPS星历数据更新系统原理框图; Figure 1. Block diagram of GPS ephemeris data update system;
图2. 从本地GPS星历服务器更新A-GPS终端主机星历过程; Figure 2. The process of updating the A-GPS terminal host ephemeris from the local GPS ephemeris server;
图3. 本地GPS星历服务器获取GPS根星历服务器星历过程。 Figure 3. The local GPS ephemeris server obtains the GPS root ephemeris server ephemeris process.
具体实施方式 Detailed ways
下面结合附图对本发明的具体实施方式进行说明 The specific embodiment of the present invention is described below in conjunction with accompanying drawing
图1为GPS星历数据更新系统原理框图。GPS星历更新系统实际包含一个A-GPS终端主机6和一个本地GPS星历服务器2。A-GPS终端主机可以有很多个,本地GPS星历服务器只有一个。本地GPS星历服务器内部包含一个虚拟GPS星历生成模块1。本地GPS星历服务器连接到了互联网,从各个GPS根星历服务器3,4,5,7获取最新的星历数据。当本地GPS星历服务器与各个GPS根星历服务器断开连接时,内部的星历数据源会立即切换到内部虚拟GPS星历生成模块上。虚拟GPS星历生成模块可以在本地GPS星历服务器与GPS根星历服务器短暂断开连接的情况下,根据之前获取的卫星星历,通过差分星历修正数据(Differential Almanac Correction Data)的算法,推算出接下来几个小时,甚至几十个小时较为精确的卫星星历数据,从而生成一份高精度的虚拟GPS星历。这份虚拟的卫星星历数据可以脱离GPS根星历服务器单独运行,极限情况下有效期可以达到5天。 Figure 1 is a block diagram of the GPS ephemeris data update system. The GPS ephemeris updating system actually includes an A-GPS terminal host 6 and a local GPS ephemeris server 2 . There can be many A-GPS terminal hosts, and there is only one local GPS ephemeris server. The local GPS ephemeris server contains a virtual GPS ephemeris generation module 1 inside. The local GPS ephemeris server is connected to the Internet, and obtains the latest ephemeris data from each GPS root ephemeris server3,4,5,7. When the local GPS ephemeris server is disconnected from each GPS root ephemeris server, the internal ephemeris data source will immediately switch to the internal virtual GPS ephemeris generation module. The virtual GPS ephemeris generation module can use the differential almanac correction data (Differential Almanac Correction Data) algorithm based on the previously obtained satellite ephemeris when the local GPS ephemeris server is temporarily disconnected from the GPS root ephemeris server. Calculate the more accurate satellite ephemeris data for the next few hours, or even dozens of hours, to generate a high-precision virtual GPS ephemeris. This virtual satellite ephemeris data can be run independently from the GPS root ephemeris server, and the validity period can reach 5 days in extreme cases.
从而保证系统能够稳定可靠的提供GPS星历数据。每个A-GPS终端主机根据当前的网络连接情况自动选择GPRS或者WIFI的方式连接到本地GPS星历服务器下载最新星历。访问本地GPS星历服务器,获取最新的GPS星历数据,从而加速GPS首次定位过程。 So as to ensure that the system can provide GPS ephemeris data stably and reliably. Each A-GPS terminal host automatically selects GPRS or WIFI to connect to the local GPS ephemeris server to download the latest ephemeris according to the current network connection. Access the local GPS ephemeris server to obtain the latest GPS ephemeris data, thus speeding up the first GPS positioning process.
本地GPS星历服务器架设在互联网上,其中的星历数据有两个来源,一个数据来自GPS官方星历服务器,如IGS全球参考网络,也就是所说的GPS根星历服务器3,4,5,7。另外一个是本地GPS星历服务器内置运行的虚拟GPS星历生成模块。 The local GPS ephemeris server is set up on the Internet, and the ephemeris data has two sources, one data comes from the GPS official ephemeris server, such as the IGS global reference network, which is the so-called GPS root ephemeris server3,4,5 ,7. The other one is a virtual GPS ephemeris generating module built into the local GPS ephemeris server.
一般情况下,本地GPS星历服务器从GPS官方星历服务器实时获取星历数据,保证本地GPS星历服务器的数据和GPS官方星历服务器的数据实时同步更新。当本地GPS星历服务器与GPS官方星历服务器因某些原因断开连接后,本地GPS星历服务器的GPS星历数据立刻会切换成虚拟GPS星历数据,以保证GPS星历数据的连续性和可靠性。 Generally, the local GPS ephemeris server obtains the ephemeris data in real time from the GPS official ephemeris server, ensuring that the data of the local GPS ephemeris server and the data of the GPS official ephemeris server are updated synchronously in real time. When the local GPS ephemeris server is disconnected from the GPS official ephemeris server for some reason, the GPS ephemeris data of the local GPS ephemeris server will immediately switch to virtual GPS ephemeris data to ensure the continuity of GPS ephemeris data and reliability.
虚拟GPS星历的数据从本地GPS星历服务器内置的虚拟GPS星历生成模块获得。能够最多提供本地GPS星历服务器5天的星历数据,直到与GPS官方GPS根星历服务器的连接恢复。 The data of the virtual GPS ephemeris is obtained from the built-in virtual GPS ephemeris generation module of the local GPS ephemeris server. It can provide up to 5 days of ephemeris data from the local GPS ephemeris server until the connection with the GPS official GPS root ephemeris server is restored.
图2为A-GPS终端主机从本地GPS星历服务器获取GPS星历过程,步骤包括: Fig. 2 obtains the GPS ephemeris process from the local GPS ephemeris server for the A-GPS terminal host, and the steps include:
101:A-GPS终端主机上电,对系统各部分进行初始化。 101: The A-GPS terminal host is powered on, and each part of the system is initialized.
102:判断是否需要更新GPS模块中的卫星星历,如果不需要更新就执行步骤107,如果需要更新,就执行步骤103。 102: Judging whether it is necessary to update the satellite ephemeris in the GPS module, if it is not necessary to update, then perform step 107, and if it needs to be updated, then perform step 103.
103:判断终端的GSM/GPRS或者WIFI是否已经接入了互联网。如果已经连接到了互联网就执行步骤104,如果没有连接到互联网就执行步骤107。 103: Determine whether the GSM/GPRS or WIFI of the terminal has connected to the Internet. If connected to the Internet, step 104 is performed, and if not connected to the Internet, step 107 is performed.
104:终端接入互联网后会连接到本地GPS星历服务器,确定正确连接后执行步骤105。 104: After the terminal is connected to the Internet, it will connect to the local GPS ephemeris server, and perform step 105 after confirming that the connection is correct.
105:从(2)本地GPS星历服务器下载最新的GPS星历数据到(6)A-GPS终端主机,完成后执行步骤106。 105: Download the latest GPS ephemeris data from (2) the local GPS ephemeris server to (6) the A-GPS terminal host, and execute step 106 after completion.
106:(6)A-GPS终端主机获取了最新的GPS星历后,将星历数据转换成统一的GPS模块可识别的内部星历格式,再使用GPS模块的星历更新命令,将星历数据更新到(6)A-GPS终端主机。完成后执行步骤107。 106: (6) After obtaining the latest GPS ephemeris, the A-GPS terminal host converts the ephemeris data into a unified internal ephemeris format recognizable by the GPS module, and then uses the ephemeris update command of the GPS module to update the ephemeris The data is updated to (6) A-GPS terminal host. Execute step 107 after completion.
107:系统会等待(6)A-GPS终端主机定位,直到定位结束,(6)A-GPS终端主机星历更新过程结束。 107: The system will wait for (6) A-GPS terminal host positioning until the end of positioning, and (6) A-GPS terminal host ephemeris update process ends.
图3为本地GPS星历服务器从 (3,4,5,7)GPS根星历服务器获取星历过程,步骤包括: Fig. 3 obtains the ephemeris process from the (3,4,5,7) GPS root ephemeris server for the local GPS ephemeris server, and the steps include:
201:本地GPS星历服务器每间隔2秒连接一次GPS根星历服务器,当定时时间达到2秒时,执行步骤202。 201: The local GPS ephemeris server connects to the GPS root ephemeris server every 2 seconds, and when the timing reaches 2 seconds, execute step 202.
202:本地GPS星历服务器会首先尝试连接列表中的首选GPS根星历服务器3,如果不能连接,执行步骤203。如果可以连接,执行步骤206。 202: The local GPS ephemeris server will first try to connect to the preferred GPS root ephemeris server 3 in the list, if not, go to step 203. If it can be connected, go to step 206.
203:尝试连接第二个备用GPS根星历服务器4,如果不能连接,就执行步骤204。如果可以连接,执行步骤206。 203: Try to connect to the second backup GPS root ephemeris server 4, if not, go to step 204. If it can be connected, go to step 206.
204:尝试连接第三个备用GPS根星历服务器5,如果不能连接,执行步骤205.如果可以连接执行步骤206. 204: Try to connect to the third standby GPS root ephemeris server 5, if it cannot be connected, go to step 205. If it can be connected, go to step 206.
205:尝试连接第n个备用GPS根星历服务器7,如果不能连接,系统就会跳出连接任务,执行步骤206,如果可以连接,也执行步骤206。 205: Try to connect to the nth standby GPS root ephemeris server 7, if the connection cannot be made, the system will jump out of the connection task and go to step 206, if it can connect, also go to step 206.
206:本地GPS星历服务器会判断是否能够与GPS根星历服务器进行通讯,如果能够正常通讯,执行步骤208,如果不能通讯,通知系统获取GPS根星历服务器连接失败。执行步骤207。 206: The local GPS ephemeris server will judge whether it can communicate with the GPS root ephemeris server. If it can communicate normally, execute step 208. If not, notify the system that the connection to the GPS root ephemeris server fails. Execute step 207.
207:系统会启动虚拟GPS星历模块,通过之前得到的GPS星历数据,根据差分星历修正数据的算法,得到精确的GPS星历,完成后执行步骤210。 207: The system will start the virtual GPS ephemeris module, obtain accurate GPS ephemeris through the previously obtained GPS ephemeris data and the algorithm of correcting the data according to the differential ephemeris, and execute step 210 after completion.
208:本地GPS星历服务器和GPS根星历服务器建立连接后,系统会查询GPS根星历服务器是否有可以更新的GPS星历数据。当系统检测到有新的星历数据生成时,执行步骤209,如果没有检测到新更新的数据,数据更新结束,等待下一个数据更新过程,执行步骤201。 208: After the connection between the local GPS ephemeris server and the GPS root ephemeris server is established, the system will query whether the GPS root ephemeris server has GPS ephemeris data that can be updated. When the system detects that new ephemeris data is generated, step 209 is executed. If no newly updated data is detected, the data update ends, and the next data update process is waited for, and step 201 is executed.
209:启用星历数据下载程序,将新的星历数据完整下载到本地GPS星历服务器。 209: Start the ephemeris data downloading program, and completely download the new ephemeris data to the local GPS ephemeris server.
210:本地GPS星历服务器从GPS根星历服务器或者虚拟GPS星历生成模块得到新的GPS星历数据后,会将数据进行转换,转换成GPS模块能够识别的星历数组,保存到本地GPS星历服务器中,等待A-GPS终端主机读取,执行步骤201,进行下一个循环。 210: After the local GPS ephemeris server obtains new GPS ephemeris data from the GPS root ephemeris server or the virtual GPS ephemeris generation module, it will convert the data into an ephemeris array that the GPS module can recognize, and save it to the local GPS In the ephemeris server, wait for the A-GPS terminal host to read, execute step 201, and proceed to the next cycle.
有关步骤207中,(1)虚拟GPS星历生成模块的工作过程: In the relevant step 207, (1) the course of work of the virtual GPS ephemeris generating module:
虚拟GPS星历生成模块是本地GPS星历服务器上运行的一个GPS星历预测软件。软件使用历史GPS星历数据,结合卫星的运行特性,通过差分星历修正数据(Differential Almanac Correction Data)的算法推测接下来几个小时的卫星运行轨迹,生成较为精确的卫星星历数据。 The virtual GPS ephemeris generation module is a GPS ephemeris prediction software running on the local GPS ephemeris server. The software uses historical GPS ephemeris data, combined with the operating characteristics of satellites, and uses the Algorithm of Differential Almanac Correction Data to predict the satellite trajectory in the next few hours and generate more accurate satellite ephemeris data.
通过软件推断生成的虚拟星历可以维持几个小时甚至几十个小时的有效星历,使得在本地GPS星历服务器和GPS根星历服务器断开的情况下也能得到精确的星历数据。 The virtual ephemeris generated by software inference can maintain valid ephemeris for several hours or even tens of hours, so that accurate ephemeris data can be obtained even when the local GPS ephemeris server and the GPS root ephemeris server are disconnected.
在A-GPS终端主机从本地GPS星历服务器上获取,并导入GPS模块的星历数据一共有两种,Almanac 和 Ephemeris。中文名一般翻译为广播星历和精确历书: There are two types of ephemeris data that the A-GPS terminal host obtains from the local GPS ephemeris server and imports into the GPS module, Almanac and Ephemeris. The Chinese name is generally translated as broadcast ephemeris and precise almanac:
Almanac(广播星历) 数据是反映所有卫星状况的比较粗略的轨道参数,每一个卫星都会广播所有卫星的Almanac 数据,这类数据相对不精确,有效期长达几个月。 Almanac (broadcast ephemeris) data is a relatively rough orbital parameter that reflects the status of all satellites. Each satellite will broadcast the Almanac data of all satellites. This type of data is relatively imprecise and valid for several months.
Ephemeris(精确历书) 数据相比之下是十分精确的轨道和时钟纠正信息,每一颗卫星只会广播自己的Ephemeris 数据,这类数据的有效期约为几个小时(取决于广播信息的包含的内容)。Ephemeris 数据间隔平均15分钟更新一次,每隔30秒广播一次。 Ephemeris (precise almanac) data is in contrast very accurate orbit and clock correction information, each satellite will only broadcast its own Ephemeris data, this type of data is valid for about a few hours (depending on the broadcast information contains content). Ephemeris data is updated every 15 minutes on average and broadcast every 30 seconds.
有关步骤210中,星历数据的转换方法: In relevant step 210, the conversion method of ephemeris data:
星历数据获取的首选服务器是IGS全球参考网络。从IGS获取的原始Almanac星历数据,前面6颗GPS卫星星历数据注解如下: The preferred server for ephemeris data acquisition is the IGS Global Reference Network. The original Almanac ephemeris data obtained from IGS, the ephemeris data of the first 6 GPS satellites are annotated as follows:
这些数据是用来描述GPS卫星运行轨道的关键数据。 These data are the key data used to describe the orbit of GPS satellites.
根据卫星的原始Almanac数据,可以预测出GPS卫星在接下来几个小时,甚至几十个小时的运行轨迹。 According to the original Almanac data of the satellite, the trajectory of the GPS satellite in the next few hours, or even dozens of hours, can be predicted.
根据卫星的原始Almanac数据,可以得到GPS卫星在未来24小时内的可见性预测。 Visibility predictions for GPS satellites for the next 24 hours are available based on the satellite's raw Almanac data.
通过使用GPS星历更新命令,将上述Almanac数据更新到A-GPS终端主机,系统的冷启动过程就会转换成热启动,从而可将第一次开机的时间大大缩短。 By using the GPS ephemeris update command to update the above Almanac data to the A-GPS terminal host, the cold start process of the system will be converted into a hot start, which can greatly shorten the time for the first boot.
进一步的,可以将GPS卫星的Ephemeris(精确历书)更新到A-GPS终端主机,会进一步加速第一次开机卫星定位锁定的过程,缩短第一次开机的时间。 Furthermore, the Ephemeris (precise almanac) of GPS satellites can be updated to the A-GPS terminal host, which will further speed up the process of satellite positioning and locking for the first boot, and shorten the time for the first boot. the
下面是2013-03-10 凌晨0:30从(3,4,5,7)GPS根星历服务器得到的GPS卫星Ephemeris(精确历书)的部分 The following is the part of the GPS satellite Ephemeris (accurate almanac) obtained from the (3,4,5,7) GPS root ephemeris server at 0:30 am on March 10, 2013
* 2013 3 10 0 30 0.00000000 * 2013 3 10 0 30 0.00000000
PG01 -4238.806870 -14648.089913 -21767.768287 6.213531 9 10 9 185 PG01 -4238.806870 -14648.089913 -21767.768287 6.213531 9 10 9 185
PG02 -18430.600125 14005.325091 12734.023677 421.665203 7 7 9 185 PG02 -18430.600125 14005.325091 12734.023677 421.665203 7 7 9 185
PG03 8769.176587 -23998.363421 6301.471878 178.490494 8 6 8 170 PG03 8769.176587 -23998.363421 6301.471878 178.490494 8 6 8 170
PG04 -25956.152269 6264.296321 643.565173 156.746189 5 8 10 196 PG04 -25956.152269 6264.296321 643.565173 156.746189 5 8 10 196
PG05 -6176.671099 15283.380947 20766.453950 -387.151521 10 6 7 215 PG05 -6176.671099 15283.380947 20766.453950 -387.151521 10 6 7 215
PG06 13593.297005 -19504.175506 11565.689192 321.106033 8 6 6 197 PG06 13593.297005 -19504.175506 11565.689192 321.106033 8 6 6 197
PG07 -19608.594128 -7471.019306 16496.136938 189.380853 6 6 7 195 PG07 -19608.594128 -7471.019306 16496.136938 189.380853 6 6 7 195
PG08 -25738.017560 -2100.714400 7523.575627 5.034836 8 10 8 188 PG08 -25738.017560 -2100.714400 7523.575627 5.034836 8 10 8 188
GPS卫星星历数据格式的转换, GPS satellite ephemeris data format conversion,
从GPS根星历服务器获取的星历数据,是一个Yuma格式的星历预报文件current.alm 。current.alm是一个纯文本txt格式的文件,里面清楚的描述了当前每一个卫星的Almanac数据。 The ephemeris data obtained from the GPS root ephemeris server is an ephemeris forecast file current.alm in Yuma format. current.alm is a file in plain text txt format, which clearly describes the current Almanac data of each satellite.
Almanac数据由448个16位有符号类型的数据组成,代表了32颗不同卫星的相对状态,每颗卫星14个数据。 Almanac data consists of 448 16-bit signed data, representing the relative status of 32 different satellites, 14 data per satellite.
Almanac数据实际有效数据为 896个字节,其时效期可长达数月。 The actual effective data of Almanac data is 896 bytes, and its validity period can be as long as several months.
在本地GPS星历服务器内需要将星历文件的数据转换成系统能够识别的格式。 In the local GPS ephemeris server, the data of the ephemeris file needs to be converted into a format that the system can recognize.
下面以current.alm文件中第3颗卫星的星历数据为例: Let's take the ephemeris data of the third satellite in the current.alm file as an example:
******** Week 707 almanac for PRN-03 ******** ********* Week 707 almanac for PRN-03 ***********
ID: 03 ID: 03
Health: 000 Health: 000
Eccentricity: 0.1602125168E-001 Eccentricity: 0.1602125168E-001
Time of Applicability(s): 147456.0000 Time of Applicability(s): 147456.0000
Orbital Inclination(rad): 0.9334536747 Orbital Inclination(rad): 0.9334536747
Rate of Right Ascen(r/s): -0.8617501811E-008 Rate of Right Ascen(r/s): -0.8617501811E-008
SQRT(A) (m 1/2): 5153.613281 SQRT(A) (m 1/2): 5153.613281
Right Ascen at Week(rad): -0.1274126090E+001 Right Ascen at Week(rad): -0.1274126090E+001
Argument of Perigee(rad): 1.273876294 Argument of Perigee(rad): 1.273876294
Mean Anom(rad): 0.1450665333E+001 Mean Anom(rad): 0.1450665333E+001
Af0(s): 0.1792907715E-003 Af0(s): 0.1792907715E-003
Af1(s/s): 0.3637978807E-011 Af1(s/s): 0.3637978807E-011
week: 707 week: 707
将这些文本形式的星历数据以IRN-200D-001标准,进行转换。 Convert these ephemeris data in text form to the IRN-200D-001 standard.
以第3颗卫星的数据为例,转换后的数据包含一个长度为30(0x1E)字节的消息体,回复编号为0x0E,即Almanac数据。第0x03号的卫星数据为:97 C1....BB 3A,最后几位是校验码。 Taking the data of the third satellite as an example, the converted data contains a message body with a length of 30 (0x1E) bytes, and the reply number is 0x0E, which is Almanac data. The satellite data of No. 0x03 is: 97 C1....BB 3A, the last few digits are check codes.
A0 A2 00 1E 0E 03 97 C1 43 73 78 63 F6 BD FD 22 00 A1 0C B9 CB 69 6D 2C 0F 4D 46 B3 D8 5C 00 23 BB E4 0D 4A B0 B3 A0 A2 00 1E 0E 03 97 C1 43 73 78 63 F6 BD FD 22 00 A1 0C B9 CB 69 6D 2C 0F 4D 46 B3 D8 5C 00 23 BB E4 0D 4A B0 B3
转换完成后的数据会保存到本地GPS星历服务器,等待A-GPS终端主机读取。A-GPS终端主机获取到这些数据后,再通过执行0x82命令将当前的Almanac数据以二进制的形式写入到GPS模块,等待GPS模块锁定卫星并快速定位。 The converted data will be saved to the local GPS ephemeris server, waiting for the A-GPS terminal host to read. After the A-GPS terminal host obtains these data, it executes the 0x82 command to write the current Almanac data into the GPS module in binary form, and waits for the GPS module to lock the satellite and quickly locate it.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310129596.0A CN103197327B (en) | 2013-04-12 | 2013-04-12 | Method and system for updating global position system (GPS) ephemeris fast and reliably |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310129596.0A CN103197327B (en) | 2013-04-12 | 2013-04-12 | Method and system for updating global position system (GPS) ephemeris fast and reliably |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103197327A CN103197327A (en) | 2013-07-10 |
CN103197327B true CN103197327B (en) | 2014-12-17 |
Family
ID=48720003
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310129596.0A Expired - Fee Related CN103197327B (en) | 2013-04-12 | 2013-04-12 | Method and system for updating global position system (GPS) ephemeris fast and reliably |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103197327B (en) |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105223597A (en) * | 2014-04-04 | 2016-01-06 | 马维尔国际有限公司 | Based on the method and apparatus of satellite determination communications device locations |
FR3043789B1 (en) * | 2015-11-13 | 2019-05-03 | Parrot Drones | CHARGING OF EPHEMERID DATA IN A DRONE. |
CN107783161A (en) * | 2016-08-30 | 2018-03-09 | 厦门雅迅网络股份有限公司 | A kind of method and system that GPS location effect is lifted using AGPS |
CN108318899A (en) * | 2017-01-18 | 2018-07-24 | 中兴通讯股份有限公司 | A kind of ephemeris update method, device and mobile terminal |
CN107147707A (en) * | 2017-04-26 | 2017-09-08 | 大唐终端技术有限公司 | Android platform Big Dipper ephemeris service control method and system |
US10473790B2 (en) * | 2017-11-17 | 2019-11-12 | Swift Navigation, Inc. | Systems and methods for distributed dense network processing of satellite positioning data |
CN109639341B (en) * | 2018-12-17 | 2021-01-01 | 西南电子技术研究所(中国电子科技集团公司第十研究所) | Method for autonomously accessing low-orbit broadcast satellite without ephemeris |
CN111522045B (en) | 2019-02-02 | 2024-02-23 | 中兴通讯股份有限公司 | GPS module cold start method and device of terminal, terminal and storage medium |
WO2020223684A1 (en) | 2019-05-01 | 2020-11-05 | Swift Navigation, Inc. | Systems and methods for high-integrity satellite positioning |
CN110376618B (en) * | 2019-08-30 | 2020-08-28 | 北京航天宏图信息技术股份有限公司 | Positioning method, device and terminal based on Beidou third satellite-based augmentation |
CN110727006A (en) * | 2019-10-14 | 2020-01-24 | 广东星舆科技有限公司 | GNSS observation data generation method, storage medium and device |
CN111123313A (en) * | 2019-12-28 | 2020-05-08 | 北京华弘集成电路设计有限责任公司 | Positioning method, device and system of Internet of things equipment |
CN111510198B (en) * | 2020-04-09 | 2022-03-25 | 中电科航空电子有限公司 | Ephemeris updating method for airborne low-orbit satellite communication terminal |
CN111698347B (en) * | 2020-06-17 | 2022-09-02 | 阳光学院 | Article searching and positioning method and system |
CN116261676A (en) | 2020-07-13 | 2023-06-13 | 斯威夫特导航股份有限公司 | Systems and methods for determining GNSS position corrections |
CN116324511A (en) | 2020-07-17 | 2023-06-23 | 斯威夫特导航股份有限公司 | Systems and methods for providing GNSS corrections |
EP4222609A4 (en) | 2020-12-17 | 2025-02-05 | Swift Navigation Inc | SYSTEM AND METHOD FOR MERGING DUE DOWNHAND NAVIGATION AND GNSS DATA STREAMS |
CN112764067B (en) * | 2020-12-23 | 2023-07-07 | 深圳创维数字技术有限公司 | GPS satellite ephemeris data acquisition method and device, vehicle-mounted and readable storage medium |
US11733397B2 (en) | 2021-07-24 | 2023-08-22 | Swift Navigation, Inc. | System and method for computing positioning protection levels |
US20230184956A1 (en) | 2021-12-10 | 2023-06-15 | Swift Navigation, Inc. | System and method for correcting satellite observations |
US11860287B2 (en) | 2022-03-01 | 2024-01-02 | Swift Navigation, Inc. | System and method for detecting outliers in GNSS observations |
US11906640B2 (en) | 2022-03-01 | 2024-02-20 | Swift Navigation, Inc. | System and method for fusing sensor and satellite measurements for positioning determination |
WO2024050094A1 (en) | 2022-09-01 | 2024-03-07 | Swift Navigation, Inc. | System and method for determining gnss corrections |
WO2024058999A1 (en) | 2022-09-12 | 2024-03-21 | Swift Navigation, Inc. | System and method for gnss correction transmission |
CN119012122B (en) * | 2024-10-24 | 2024-12-24 | 四川创智联恒科技有限公司 | Ephemeris data transmission method, device, electronic device, storage medium and program product |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6915210B2 (en) * | 2003-07-17 | 2005-07-05 | Motorola, Inc. | Method of updating GPS almanac data for satellites not in view |
CN101153901A (en) * | 2006-09-25 | 2008-04-02 | 佛山市顺德区顺达电脑厂有限公司 | Method for updating ephemeris data of global positioning system |
JP2010060489A (en) * | 2008-09-05 | 2010-03-18 | Seiko Epson Corp | Satellite orbital modeling propriety determination method, long term prediction orbital data supply method, and satellite orbital modeling propriety determination device |
US7986267B2 (en) * | 2008-10-13 | 2011-07-26 | Broadcom Corporation | Method and system for customized full ephemeris compatible with standard AGPS network devices |
CN101566678A (en) * | 2009-05-27 | 2009-10-28 | 刘建 | Method and system for updating ephemeris |
-
2013
- 2013-04-12 CN CN201310129596.0A patent/CN103197327B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN103197327A (en) | 2013-07-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103197327B (en) | Method and system for updating global position system (GPS) ephemeris fast and reliably | |
CN101930076B (en) | Location method and communication system | |
CN101351686B (en) | Method and apparatus for generating and distributing satellite tracking information | |
JP6055826B2 (en) | Method and apparatus for positioning terminal equipment | |
US7427951B2 (en) | Method for updating ephemeris data of global positioning system | |
WO2017084361A1 (en) | Method and device for hybrid positioning based on v2x and gnss | |
JP2008003092A (en) | Method and system for ephemeris extension for gnss application | |
JP2004529032A (en) | Method and apparatus for generating / distributing satellite tracking information | |
CN103458501B (en) | A kind of localization method and device | |
JP2013522607A (en) | Method and apparatus for high speed TTFF | |
EP2426510B1 (en) | Satellite navigation receivers with self-provided future ephemeris and clock predictions | |
CN107678045A (en) | A global positioning system startup method, user terminal and related media products | |
CN105223597A (en) | Based on the method and apparatus of satellite determination communications device locations | |
CN104136937A (en) | Handling ephemeris extension data | |
CN101640839A (en) | WebGIS system and method for updating terminal position on client of WebGIS system | |
WO2019071838A1 (en) | Positioning method and apparatus | |
WO2014083745A1 (en) | Control method for position calculating device and position calculating device | |
CN103885075B (en) | Satellite borne obscuration receiver quick positioning method based on satellite platform system | |
KR20110031336A (en) | Event based support data delivery | |
JP7477008B2 (en) | Wearable device, positioning control method, and positioning control program | |
JP4816125B2 (en) | GPS positioning method and apparatus | |
JP6195264B2 (en) | Satellite navigation receiver with self-supplied future ephemeris and clock prediction | |
US20230125115A1 (en) | Methods and apparatus for efficient correction of a parameter associated with a navigation satellite or the propagation of signals transmitted thereby | |
CN115356753B (en) | Method for realizing rapid positioning of satellite positioning module by using base station position information | |
CN104730553A (en) | A Beidou navigation fast auxiliary positioning circuit and method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20141217 |
|
CF01 | Termination of patent right due to non-payment of annual fee |