WO2014083745A1 - Control method for position calculating device and position calculating device - Google Patents

Control method for position calculating device and position calculating device Download PDF

Info

Publication number
WO2014083745A1
WO2014083745A1 PCT/JP2013/006003 JP2013006003W WO2014083745A1 WO 2014083745 A1 WO2014083745 A1 WO 2014083745A1 JP 2013006003 W JP2013006003 W JP 2013006003W WO 2014083745 A1 WO2014083745 A1 WO 2014083745A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
satellite
positioning
signal
ephemeris
Prior art date
Application number
PCT/JP2013/006003
Other languages
French (fr)
Japanese (ja)
Inventor
村木 清孝
Original Assignee
セイコーエプソン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セイコーエプソン株式会社 filed Critical セイコーエプソン株式会社
Publication of WO2014083745A1 publication Critical patent/WO2014083745A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/27Acquisition or tracking or demodulation of signals transmitted by the system creating, predicting or correcting ephemeris or almanac data within the receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/05Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing aiding data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/25Acquisition or tracking or demodulation of signals transmitted by the system involving aiding data received from a cooperating element, e.g. assisted GPS

Definitions

  • the present invention relates to a control method for a position calculation device.
  • GPS Global Positioning System
  • orbit information ephemeris and almanac
  • the position of the satellite is specified, and the position is calculated based on the pseudorange.
  • portable electronic devices such as portable telephones, PDAs, portable navigation devices, and wristwatches have been equipped with position calculation devices that are not only used outdoors like car navigation devices, but also in buildings. It is also used in various places such as underground and underground.
  • the position calculation device cannot receive the GPS satellite signal at all in the building or underground, or it is difficult to receive the GPS satellite signal, and the position calculation cannot be performed.
  • Patent Document 1 discloses a position information providing system using an indoor transmitter as a technique for providing position information to a position calculation device in a place where a GPS satellite signal does not reach.
  • the position calculation device specifies the position of the own device based on the position information transmitted from the indoor transmitter. be able to.
  • the problem here is the case where the position calculation is performed after the position calculation device goes out of the room.
  • a user carrying a position calculation device may stay indoors for many hours.
  • the effective period of the ephemeris is a maximum of 4 hours in the current satellite operation. For this reason, even if the position calculation device receives the GPS satellite signal and acquires the orbit information before entering the room, the orbit information cannot be used for position calculation when the user stays indoors for a long time. There is a case.
  • the present invention has been made in view of the above problems, and its object is to shorten the initial position calculation time (TTFF).
  • a first invention for solving the above problem is a control method of a position calculation device, wherein it is determined whether orbit information of a positioning satellite stored in a storage unit satisfies a predetermined useful condition. And, when the result of the determination is a negative determination, executing a first acquisition process of acquiring the positioning support information from the ground communication device that transmits the positioning support information that is the basis of the calculation of the trajectory information; The orbit information is calculated using the obtained positioning support information, the orbit information stored in the storage unit is updated, the signal from the positioning satellite, and the orbit stored in the storage unit. Calculating the position of the position calculating device using information.
  • a storage unit that stores orbit information of a positioning satellite, a determination unit that determines whether orbit information stored in the storage unit satisfies a predetermined useful condition, and When the determination result is negative, the acquisition unit that acquires the positioning support information from the ground communication device that transmits the positioning support information that is the basis of the calculation of the orbit information, and the acquired positioning support information Using the calculation unit that calculates the orbit information and updates the orbit information stored in the storage unit, the signal from the positioning satellite, and the orbit information stored in the storage unit, the position calculation device A position calculation apparatus including a position calculation unit that calculates a position may be configured.
  • the positioning support information is acquired from the ground communication device, and the orbit information is used by using this information. Is calculated and the trajectory information in the storage unit is updated. This makes it possible to store useful orbit information in the storage unit before performing position calculation using signals from positioning satellites. Then, the initial position calculation time can be shortened by calculating the position of the position calculation device using the signal from the positioning satellite and the orbit information stored in the storage unit.
  • the orbit information includes 1) first orbit information calculated from the positioning support information, and 2) a signal from the positioning satellite.
  • a control method including at least one of the second orbit information obtained by demodulation may be configured.
  • the orbit information includes 1) first orbit information calculated from positioning support information, and 2) second orbit information obtained by demodulating a signal from a positioning satellite. And at least one of.
  • the first orbit information calculated from the positioning support information and the second orbit information obtained by demodulating the signal from the positioning satellite If it is determined that is not useful, positioning support information can be acquired from the ground communication device.
  • the orbit information is acquired by demodulating a signal from the positioning satellite. It is good also as comprising the control method which further includes performing a 2nd acquisition process.
  • the second acquisition for acquiring the orbit information by demodulating the signal from the positioning satellite executes the process.
  • the first acquisition process is executed with priority over the second acquisition process. If the first acquisition process executed with priority fails, the second acquisition process is executed because there is a possibility of being outdoors.
  • the ground communication device uses the spread code different from that of the positioning satellite, and uses the same spread spectrum method as the positioning satellite to support the positioning.
  • An information transmitting device wherein the obtaining includes receiving a signal from the ground communication device in the first obtaining process and receiving a signal from the positioning satellite in the second obtaining process. It is also possible to constitute a control method including realizing by switching the spreading code.
  • the terrestrial communication device is a device that transmits positioning support information using the same spread spectrum method as that of the positioning satellite using a spreading code different from that of the positioning satellite. Therefore, by switching the spreading code, it is possible to realize reception of a signal from the ground communication device in the first acquisition process and reception of a signal from the positioning satellite in the second acquisition process. For the position calculation device, it is possible to receive signals from the ground communication device and signals from the positioning satellite with a common receiving unit.
  • the positioning support information includes position and speed information and time information of the positioning satellite, To calculate the orbit information, using the equation of motion representing the movement of the satellite orbiting the earth, the position and velocity information of the positioning satellite included in the positioning support information and the time information, It is good also as comprising the control method which is calculating.
  • the positioning support information includes the position and speed information of the positioning satellite and the time information.
  • Orbital information of the positioning satellite can be calculated by using the position and velocity information and time information of the positioning satellite included in.
  • the storage unit stores an effective period of the orbit information in association with the orbit information
  • the determination Doing may constitute a control method including determining whether or not the useful condition is satisfied based on the effective period.
  • the effective period of the orbit information is stored in the storage unit in association with the orbit information. Therefore, the usefulness of the trajectory information can be easily determined based on the effective period.
  • the storage unit stores a reliability index value of the orbit information in association with the orbit information and stores the determination. This may constitute a control method including determining whether or not the useful condition is satisfied based on a combination of the valid period and the reliability index value.
  • the storage unit stores the reliability index value of the orbit information in association with the orbit information. And it is determined whether useful conditions are satisfy
  • structure of a position calculation system structure of a position calculation system.
  • GPS Global Positioning System
  • FIG. 1 is a diagram illustrating an example of a system configuration of a position calculation system 1000 according to the present embodiment.
  • the position calculation system 1000 includes a position calculation device 1, a GPS satellite 3, an IMES (Indoor Messaging System) transmitter 5, a GNSS (Global Navigation Satellite System) base station 6, an outdoor GPS receiver 7, and a precise calendar. And a server 8.
  • the IMES transmitter 5, the GNSS base station 6, the outdoor GPS receiver 7, and the fine calendar providing server 8 are connected to each other via a network N.
  • the network (distribution network, communication line) N is a communication path using, for example, the Internet or a wireless LAN (Local Area Network), and is a LAN using a dedicated line (dedicated cable) or Ethernet (registered trademark) for direct connection.
  • a communication network such as a telephone communication network, a cable network, and a wireless LAN can be included.
  • the communication method may be wired / wireless.
  • the GPS satellite 3 is a kind of positioning satellite, and transmits a navigation message including orbit information such as almanac and ephemeris on a GPS satellite signal which is a kind of positioning signal.
  • the GPS satellite signal is a 1.57542 [GHz] communication signal modulated by a CDMA (Code Division Multiple Access) method known as a spread spectrum method by a C / A (Coarse and Acquisition) code which is a kind of spreading code. is there.
  • the C / A code is a pseudo random noise code having a repetition period of 1 ms with a code length of 1023 chips as one PN frame, and is a code unique to each GPS satellite 3.
  • the IMES transmitter 5 is a kind of ground communication device, and is arranged in various places in the room, and transmits positioning support information that is information for supporting GPS positioning. In the example of FIG. 1, it is installed on each floor of the building. As the facility where the IMES transmitter 5 is arranged, for example, various indoor facilities such as a shopping mall, an underground mall, an airport, a movie theater, and a hotel are conceivable. A PRN code different from that of the GPS satellite 3 is assigned to the IMES transmitter 5, and positioning support information is transmitted by the same spread spectrum method as that of the GPS satellite 3 using the assigned PRN code.
  • the IMES transmitter 5 acquires the ephemeris of the GPS satellite 3 distributed from the GNSS base station 6 via the network N (hereinafter referred to as “distributed ephemeris”). Then, positioning support information generation processing for generating positioning support information for all GPS satellites 3 is performed using the acquired distribution ephemeris, and the positioning support information is included in the IMES signal compliant with the GPS satellite signal standard (communication standard). To send.
  • the positioning support information transmitted from the IMES transmitter 5 is information serving as a basis for calculating the orbit information of the GPS satellite 3, and in this embodiment, the satellite position speed information of each GPS satellite 3 and the earth attitude parameter (Earth Orientation Parameter: EOP).
  • the satellite position speed information includes the satellite position r0 and the satellite speed v0 at a certain reference time t0 of each GPS satellite 3 and a clock error.
  • the Earth attitude parameters which are the Earth attitude information, are UT1-UTC, day length (Length Of Day: LOD), X-pole motion, X-pole motion speed, Y-pole motion, and Y-pole motion speed. Contains.
  • the reference time t0 may be, for example, the time when the distribution ephemeris is acquired, or may be the start time of the effective period of the distribution ephemeris. Then, the satellite position r0 and the satellite velocity v0 at the reference time t0 are calculated using the values of the satellite orbit parameters included in the distribution ephemeris, and these information, clock error information, and earth attitude parameter EOP information are collected. Thus, positioning support information is generated.
  • the GNSS base station 6 is installed, for example, in various parts of the world, receives satellite signals from a plurality of types of GNSS satellites including the GPS satellite 3, and acquires and distributes data necessary for positioning.
  • the GNSS base station 6 periodically receives a GPS satellite signal from the GPS satellite 3, and acquires a broadcast ephemeris (broadcast calendar) from the received GPS satellite signal. Then, the acquired broadcast ephemeris is distributed as a distribution ephemeris to the IMES transmitter 5 via the network N.
  • the outdoor GPS receiver 7 is, for example, a GPS receiver disposed on the roof of a building where the IMES transmitter 5 is installed, and a predetermined vicinity condition (for example, within 1 km) from the position of the IMES transmitter 5 in the ground plane coordinates.
  • the GPS satellites 3 are installed at positions where the sky arrangement of the GPS satellites 3 can be said to be substantially the same, such as a position that satisfies.
  • the outdoor GPS receiver 7 then acquires a navigation message by demodulating the GPS satellite signal received from the GPS satellite 3. Then, the ephemeris obtained from the acquired navigation message is transmitted to the IMES transmitter 5 via the network N.
  • the precision calendar providing server 8 is a server that provides a precision calendar that is a high-precision GPS calendar.
  • the precision calendar providing server 8 is a server or server system installed in an organization or organization established for the purpose of, for example, observing the GPS satellite 3 or analyzing the data and distributing the observation data of the high-precision GPS satellite. is there.
  • the precision calendar providing server 8 will be described as transmitting a breaking calendar or a super breaking calendar, which is a kind of the precision calendar, to the IMES transmitter 5 via the network N.
  • the IMES transmitter 5 acquires broadcast ephemeris related to all GPS satellites 3 from the GNSS base station 6, and uses this to generate and transmit positioning support information for all GPS satellites 3. .
  • the position calculation device 1 acquires the positioning support information of all the GPS satellites 3 from the IMES transmitter 5 indoors. And the ephemeris of all the GPS satellites 3 is calculated using this, and the ephemeris memorize
  • the position of the own device is calculated using the signal from the GPS satellite 3 and the ephemeris stored in the storage unit.
  • the positioning support information includes satellite position speed information (position and speed information) of each GPS satellite 3 and an earth attitude parameter (EOP).
  • equation (1) determines the equation of motion representing the motion of the satellite orbiting the earth in outer space.
  • the satellite position r (t) of the satellite 3, that is, the orbit function indicating the satellite orbit is obtained as the following equation (3).
  • the initial values given here are the satellite position r0 and the satellite velocity v0 of the GPS satellite 3 at the reference time t0, which are included in the positioning support information.
  • the position calculation device 1 can also estimate an ephemeris having a valid period equal to the broadcast ephemeris broadcast from the GPS satellite 3 based on the above principle, or an ephemeris having a longer valid period than the broadcast ephemeris (Hereinafter referred to as “long-term prediction femeris”).
  • Equation (1) representing the motion of the satellite is defined in the Earth Centered Inertial (ECI) coordinate system which is an inertial coordinate system based on the earth center.
  • ECI Earth Centered Inertial
  • the position calculated by the position calculation device 1 and the position and velocity of the GPS satellite 3 included in the positioning support information transmitted by the IMES transmitter 5 are based on the earth center, which is a coordinate system fixed to the earth. Defined in the Earth Centered Earth Fixed (ECEF) coordinate system.
  • ECEF Earth Centered Earth Fixed
  • Equation (4) A represents a polar motion rotation matrix
  • B represents a stellar rotation matrix
  • C represents a nutation rotation matrix
  • D represents a precession rotation matrix.
  • FIG. 2 is a block diagram illustrating an example of a functional configuration of the position calculation device 1.
  • the position calculation device 1 includes an antenna 10, a satellite signal receiving unit 20, a host processing unit 30, an operation unit 31, a display unit 32, a sound output unit 33, a clock unit 34, and a storage unit 35. Configured.
  • the antenna 10 is an antenna that receives a GPS satellite signal transmitted from the GPS satellite 3 and an RF (Radio Frequency) signal including the IMES signal transmitted from the IMES transmitter 5.
  • RF Radio Frequency
  • the satellite signal receiving unit 20 includes an RF receiving circuit unit 21 and a baseband processing circuit unit 22.
  • the satellite signal receiving unit 20 demodulates the positioning support information from the IMES signal received by the antenna 10, or is received by the antenna 10. Performs processing such as demodulating navigation messages from GPS satellite signals. Further, the ephemeris is calculated using the positioning support information, and the position of the position calculation device 1 is calculated by performing a known position calculation using a pseudorange based on the satellite position obtained from the ephemeris.
  • the RF receiving circuit unit 21 and the baseband processing circuit unit 22 can be manufactured as separate LSIs (Large Scale Integration) or as a single chip.
  • the RF receiving circuit unit 21 is an RF signal receiving circuit.
  • an RF signal received by the antenna 10 may be converted into a digital signal by an A / D converter to process the digital signal, or an RF signal received by the antenna 10 may be used.
  • the digital signal may be output to the baseband processing circuit unit 22 by subjecting the signal to analog signal processing and finally A / D conversion.
  • the RF receiving circuit unit 21 can be configured as follows. That is, an oscillation signal for RF signal multiplication is generated by dividing or multiplying a predetermined oscillation signal. Then, by multiplying the generated oscillation signal by the RF signal output from the antenna 10, the RF signal is down-converted to an intermediate frequency signal (hereinafter referred to as IF (Intermediate Frequency) signal), and the IF signal is amplified. Thereafter, the signal is converted into a digital signal by an A / D converter and output to the baseband processing circuit unit 22.
  • IF Intermediate Frequency
  • the baseband processing circuit unit 22 performs carrier removal, correlation processing, and the like on the signal received by the RF receiving circuit unit 21 to capture a GPS satellite signal and an IMES signal.
  • the baseband processing circuit unit 22 determines whether or not the ephemeris 232 of the GPS satellite 3 stored in the storage unit 200 satisfies a predetermined useful condition. If the determination result is negative, the positioning support information 220 is acquired from the IMES transmitter 5, the ephemeris is calculated using the positioning support information 220, and the ephemeris 232 stored in the storage unit 200 is updated. To do. Then, using the signal from the GPS satellite 3 and the ephemeris 232 stored in the storage unit 200, the position (position coordinates) and clock error (clock bias) of the position calculation device 1 are calculated.
  • the host processing unit 30 is realized by an arithmetic device such as a CPU (Central Processing Unit), for example, and comprehensively controls each unit of the position calculation device 1 according to various programs such as a system program stored in the storage unit 35. . For example, based on the position coordinates acquired from the baseband processing circuit unit 22, a map indicating the current position is displayed on the display unit 32, or the position coordinates are used for various application processes.
  • a CPU Central Processing Unit
  • the operation unit 31 is an input device such as a touch panel or a button switch, and outputs an operation signal corresponding to the performed operation to the host processing unit 30. By operating the operation unit 31, various instructions such as a position calculation request are input.
  • the display unit 32 is a display device such as an LCD, and performs various displays based on a display signal input from the host processing unit 30.
  • the sound output unit 33 is a sound output device such as a speaker, for example, and outputs various sounds based on an audio signal input from the host processing unit 30.
  • the clock unit 34 is an internal clock and includes an oscillation circuit such as a crystal oscillator.
  • the storage unit 35 is implemented by a storage device such as a ROM (Read Only Memory), a flash ROM, or a RAM (Random Access Memory), for example, and a system program for the host processing unit 30 to control the position calculation device 1 in an integrated manner. Various programs and data for executing various application processes are stored.
  • FIG. 3 is a functional configuration diagram of the baseband processing circuit unit 22.
  • the baseband processing circuit unit 22 includes a processing unit 100 and a storage unit 200.
  • the processing unit 100 is realized by an arithmetic circuit such as a CPU or a DSP (Digital Signal Processor), for example, and performs overall control of the baseband processing circuit unit 22 based on programs, data, and the like stored in the storage unit 200.
  • the processing unit 100 also functions as a GPS satellite signal acquisition unit 110, an IMES signal acquisition unit 120, a useful condition determination unit 130, a coordinate transformation matrix generation unit 140, an ephemeris calculation unit 150, and a position calculation unit 160.
  • these functional units are only described as one embodiment, and all of these functional units do not necessarily have to be essential components. Of course, functional units other than these may be added as essential components.
  • the GPS satellite signal capturing unit 110 captures GPS satellite signals. That is, the GPS satellite 3 is captured by performing a correlation operation using the replica code of the PRN code assigned to the GPS satellite 3 on the reception signal output from the RF receiving circuit unit 21. Then, the carrier is removed from the captured GPS satellite signal, the navigation message carried in the GPS satellite signal is demodulated, and the ephemeris included in the navigation message is acquired. The ephemeris acquired in advance in an outdoor environment or the like is stored in the storage unit 200 as the ephemeris 232 of the GPS satellite 3.
  • the IMES signal capturing unit 120 captures the IMES signal. That is, similar to the acquisition of the GPS satellite 3 by the GPS satellite signal acquisition unit 110, the PRN code replica code assigned to the IMES transmitter 5 is used for the reception signal output from the RF reception circuit unit 21.
  • the IMES signal is captured by performing a correlation operation. Then, the positioning support information 220 is demodulated and acquired from the captured IMES signal and stored in the storage unit 200.
  • the useful condition determination unit 130 determines whether or not the ephemeris (orbit information) 232 stored in the storage unit 200 satisfies a predetermined useful condition. In the present embodiment, the useful condition determination unit 130 determines whether the useful condition is satisfied based on the validity period of the ephemeris 232.
  • the coordinate transformation matrix generation unit 140 uses the earth attitude parameter (EOP) 222 included in the positioning support information 220, the earth center inertia (ECI) coordinate system defined as the above-described equation (4), and the earth center A coordinate transformation matrix Q with respect to the earth fixed (ECEF) coordinate system is calculated.
  • EOP earth attitude parameter
  • ECI earth center inertia
  • the ephemeris calculation unit 150 calculates the ephemeris 232 of each GPS satellite 3 based on the positioning support information 220 acquired from the IMES transmitter 5. Specifically, using the coordinate transformation matrix Q generated by the coordinate transformation matrix generation unit 140, the satellite position r0 and the satellite velocity v0 of the GPS satellite 3 included in the positioning support information 220 are fixed to the center of the earth (ECEF). Convert from coordinate system to Earth Centered Inertia (ECI) coordinate system.
  • ECEF Centered Inertia
  • an ephemeris 232 that matches the satellite orbit represented by the orbit function r (t) is calculated.
  • the ephemeris 232 is calculated by, for example, a numerical calculation (for example, the least square method) that minimizes the difference between the satellite orbit based on the specified ephemeris parameter value and the satellite orbit represented by the orbit function r (t). Can do. However, it goes without saying that other methods may be used.
  • the position calculation unit 160 calculates the position of the position calculation device 1. Specifically, using the ephemeris 232 and measurement information 233 of each captured satellite stored in the storage unit 200, for example, a known position calculation using a least square method or a Kalman filter is performed, and the position of the position calculation device 1 is detected. And the clock error is calculated.
  • the storage unit 200 is realized by a storage device such as a ROM, a flash ROM, or a RAM, and a system program for the processing unit 100 to control the baseband processing circuit unit 22 in an integrated manner, a program for realizing various functions, Data etc. are memorized. Further, calculation results used as a work area of the processing unit 100 and executed by the processing unit 100 according to various programs are temporarily stored.
  • a baseband processing program 210, positioning support information 220, individual satellite information 230, and calculation result data 240 are stored.
  • the baseband processing program 210 is a program that is read by the processing unit 100 and executed as baseband processing (see FIG. 4).
  • the positioning support information 220 includes satellite-specific information 221 and an earth attitude parameter (EOP) 222.
  • the satellite-specific information 221 is individual information for each GPS satellite 3, and includes satellite number 221A, reference time information 221B, satellite position information 221C, satellite speed information 221D, and satellite clock error information 221E. It is.
  • the individual satellite information 230 is individual information of each GPS satellite 3 and is information generated for each GPS satellite 3. Specifically, a satellite number 231, an ephemeris 232, and measurement information 233 are included.
  • an epoch time toe that determines the valid period of the ephemeris 232 is stored. This corresponds to the storage unit 200 storing the valid period of the orbit information in association with the orbit information.
  • the measurement information 233 includes various amounts (for example, code phase and Doppler frequency) related to the received GPS satellite signal acquired by performing so-called phase search and frequency search.
  • the calculation result data 240 is data in which a calculation result calculated by the position calculation unit 160 performing a position calculation process is stored, and includes a calculated position and a clock error.
  • FIG. 4 is a flowchart illustrating the flow of baseband processing executed by the processing unit 100 according to the baseband processing program 210 stored in the storage unit 200.
  • This baseband process is a process executed when, for example, a position calculation execution instruction operation is performed by the user via the operation unit 31.
  • the processing unit 100 determines a GPS satellite 3 that can be used for position calculation (hereinafter referred to as “positioning usable satellite”). Specifically, for example, when an almanac or long-term predicted ephemeris is already stored in the storage unit 200, a GPS satellite positioned in the sky at a given reference position at the current date and time counted by the clock unit 34 3 is determined using these data, and this is used as a positioning usable satellite.
  • the reference position can be, for example, a calculated position obtained by positioning last time.
  • the useful condition determination unit 130 determines whether or not the ephemeris 232 stored in the storage unit 200 satisfies a predetermined useful condition for each positioning usable satellite (step A3). Specifically, the remaining time until the valid period expires is determined based on the time information toe included in the ephemeris 232 of each positioning usable satellite and the current time. If the valid period has already elapsed or the remaining time is within a predetermined threshold time (for example, within 30 minutes), it is determined that the ephemeris 232 is not useful.
  • a predetermined threshold time for example, within 30 minutes
  • the processing unit 100 determines whether or not the ephemeris 232 that satisfies the useful condition of the positioning usable satellite is stored in the storage unit 200 based on the determination result of Step A3 (Step A5). Specifically, it is determined whether or not the ephemeris 232 stored in the storage unit 200 satisfies the above-described useful conditions for all positioning usable satellites.
  • step A5 If the determination result in step A5 is negative (step A5; No), the IMES signal acquisition unit 120 searches for the IMES signal (step A7). Specifically, using the replica code of the PRN number assigned to the IMES transmitter 5, the correlation calculation with the signal received by the RF receiving circuit unit 21 is performed to determine whether or not the correlation is obtained.
  • step A9 it is determined whether or not the IMES signal has been acquired by searching for the IMES signal. If it is determined that the IMES signal has been captured (step A9; Yes), the processing unit 100 demodulates the positioning support information 220 from the captured IMES signal and stores it in the storage unit 200 (step A11).
  • the positioning support information 220 of all GPS satellites 3 is transmitted from the IMES transmitter 5, the positioning support information 220 of all GPS satellites 3 is demodulated and stored in the storage unit 200. Further, the process of acquiring the IMES signal and acquiring the positioning support information corresponds to the first acquisition process of acquiring the positioning support information from the ground communication device.
  • the coordinate transformation matrix generation unit 140 uses the earth attitude parameter (EOP) 222 included in the positioning support information 220 acquired in step A11, and uses the earth center inertia (ECI) coordinate system and the earth center earth fixed (ECEF) coordinates.
  • EOP earth attitude parameter
  • ECI earth center inertia
  • ECEF earth center earth fixed
  • the ephemeris calculation unit 150 performs an ephemeris calculation process for each GPS satellite 3 (steps A15 to A23).
  • the satellite position r0 and the satellite velocity v0 of the corresponding GPS satellite 3 included in the acquired positioning support information 220 are coordinate-converted using the coordinate conversion matrix Q (step A15).
  • a motion equation for the GPS satellite 3 is generated (step A17), and numerical integration is performed on the motion equation using the satellite position r0 and the satellite velocity v0 after coordinate conversion as initial values. 3 predicted satellite orbits (step A19).
  • the processing unit 100 After performing the ephemeris calculation process for each GPS satellite 3, the processing unit 100 returns to Step A1.
  • step A5 the GPS satellite signal acquisition unit 110 searches for a GPS satellite signal of a positioning usable satellite (step A25). Specifically, a correlation calculation with the signal received by the RF receiving circuit unit 21 is performed using the replica code of the PRN number assigned to the positioning usable satellite, and it is determined whether or not the correlation is obtained.
  • the PRN code assigned to the IMES transmitter 5 and the PRN code assigned to the GPS satellite 3 are switched. In this way, two types of signals are captured. This corresponds to realizing the reception of the signal from the ground communication device in the first acquisition process and the reception of the signal from the positioning satellite in the second acquisition process by switching the spreading code.
  • step A27; No the processing unit 100 determines that the position calculation has failed and ends the baseband processing.
  • the GPS satellite signal acquisition unit 110 starts a demodulation process for demodulating the navigation message from the GPS satellite signal received from the positioning usable satellite (step A29). ).
  • the position calculation unit 160 starts the GPS position calculation process (step A31). Specifically, using the ephemeris 232 stored in the storage unit 200 and the measurement information 233 acquired by capturing the GPS satellite signal, the position of the position calculating device 1 A clock error is calculated and stored in the storage unit 200 as calculation result data 240.
  • the useful ephemeris of the positioning usable satellite is already stored in the storage unit 200 (step A5; Yes). Therefore, the position calculation can be completed promptly without waiting for demodulation of the ephemeris contained in the signal from the positioning usable satellite. Thereby, shortening of initial position calculation time (TTFF) is realizable. Thereafter, the navigation message demodulation process and the position calculation process are continuously executed until the position calculation end operation is performed. When the end operation is performed (step A33; Yes), the baseband process is ended.
  • step A9 If it is determined in step A9 that the IMES signal could not be captured (step A9; No), the processing unit 100 captures a GPS satellite signal from the positioning use satellite (step A35).
  • the fact that the IMES signal cannot be captured means that the position calculation device 1 is likely to be located outdoors, and therefore searches for and captures GPS satellite signals from positioning-enabled satellites. Then, the processing unit 100 proceeds to Step A29.
  • Step A5; No ⁇ Step A9; No the useful ephemeris of the positioning usable satellite is not stored in the storage unit 200. For this reason, position calculation cannot be performed until demodulation of the ephemeris included in the signal from the positioning enabled satellite is completed. Therefore, it takes a certain amount of time to complete the position calculation.
  • Step A9; No ⁇ Step A35 ⁇ Step A29 is the flow of acquiring orbit information by demodulating the signal from the positioning satellite when the first acquisition process for acquiring the positioning support information from the ground communication device fails. This corresponds to executing the second acquisition process.
  • the useful condition determination unit 130 determines whether or not the ephemeris of the GPS satellite 3 stored in the storage unit 200 satisfies a predetermined useful condition.
  • the IMES signal acquisition unit 120 obtains the positioning support information from the IMES transmitter 5 that transmits the positioning support information that is the basis of the ephemeris calculation. Execute the acquisition process.
  • the ephemeris calculation unit 150 calculates the ephemeris parameters using the acquired positioning support information, and updates the ephemeris in the storage unit 200.
  • the position calculation unit 160 calculates a position using the signal from the GPS satellite 3 and the ephemeris stored in the storage unit 200.
  • Position calculation can be started (so-called hot start), and the initial position calculation time (TTFF) can be shortened.
  • positioning support information for all GPS satellites is transmitted from the IMES transmitter 5. Therefore, the position calculation device 1 can acquire not only the current visible satellite positioning support information but also the GPS satellite positioning support information that will become a visible satellite in the future from the IMES transmitter 5. In other words, the ephemeris can be calculated (estimated) indoors in advance and stored in the storage unit for the GPS satellite 3 that can be a visible satellite in the future. As a result, even when the visible satellite changes with time, position calculation can be started promptly.
  • Terrestrial communication apparatus In the above embodiment, the terrestrial communication apparatus has been described as the IMES transmitter 5, but instead of the IMES transmitter 5, a server apparatus having a transmission function inside or outside, a mobile phone, or a data communication device A ground communication device such as a base station may be used. In that case, it is preferable that the ground communication apparatus is configured to transmit by the same transmission method (transmission protocol, transmission frequency, modulation method, etc.) as the GPS satellite signal. When transmitting by a different transmission method, the position calculation device 1 needs to have a reception function corresponding to the transmission method.
  • transmission method transmission protocol, transmission frequency, modulation method, etc.
  • an ephemeris broadcast from a GPS satellite stores a parameter value called a URA (User Range Accuracy) index (hereinafter simply referred to as “URA”) as an index value indicating the reliability of orbit information.
  • URA User Range Accuracy index
  • This URA is represented by a numerical value from “0 to 15”, and the smaller the value, the higher the reliability of the ephemeris as the trajectory information, which is suitable for position calculation. Therefore, it may be determined whether or not the ephemeris satisfies a useful condition by using the URA as a reliability index value of the orbit information and performing a threshold determination on the URA. Specifically, for example, it may be determined as a useful condition that URA is equal to or less than a predetermined threshold (for example, 4).
  • a predetermined threshold for example, 4
  • the useful condition it is more effective to determine whether or not the useful condition is satisfied based on the combination of the validity period of the ephemeris described in the above embodiment and the reliability index value. This is because even if the ephemeris is within the effective period, if the position calculation is performed using the ephemeris with low reliability, the accuracy of the position calculation is lowered. Therefore, for example, it may be determined as a useful condition that the remaining time until the expiration date is longer than a predetermined threshold time (for example, 30 minutes) and the URA value is not more than a predetermined threshold (for example, 4). Good.
  • a predetermined threshold time for example, 30 minutes
  • a predetermined threshold for example, 4
  • the ephemeris stored in the storage unit 200 by the position calculation device 1 is not limited to broadcast ephemeris information broadcast from the GPS satellite 3.
  • a configuration in which a broadcast ephemeris is acquired from a server using a so-called server assist technology is conceivable. Therefore, these ephemeris obtained by server assist may be stored in the storage unit 200, and useful conditions may be determined for these ephemeris. Further, the ephemeris acquired by server assist may be a so-called long-term predicted ephemeris.
  • the position calculation device 1 receives the positioning support information from the IMES transmitter 5 and estimates the ephemeris, the valid period of the ephemeris may be expired. Therefore, the useful condition of the ephemeris is determined based on the effective period of the ephemeris calculated using the positioning support information.
  • the ephemeris is calculated by acquiring the positioning support information again from the IMES transmitter 5. It may be fixed.
  • the ephemeris 232 (orbit information) stored in the storage unit 200 is demodulated by 1) a first ephemeris (first orbit information) calculated from positioning support information and 2) a signal from a GPS satellite.
  • the obtained second ephemeris (second orbit information) is at least one.
  • what is necessary is just to determine whether the ephemeris which satisfy
  • the GNSS base station 6 distributes the broadcast ephemeris to the IMES transmitter 5. However, the GNSS base station 6 generates positioning support information and the IMES transmitter 5. It is good also as a structure delivered to.
  • the IMES transmitter 5 does not generate and transmit the positioning support information based on the broadcast ephemeris distributed from the GNSS base station 6, but based on the breaking calendar or the super breaking bulletin distributed from the precise calendar providing server 8.
  • the IMES transmitter 5 may generate and transmit positioning support information for all GPS satellites 3.
  • the precise calendar providing server 8 can be configured to transmit and provide the IMES transmitter 5 with a super-rapid calendar including a determined value of the position of the GPS satellite 3 and a highly accurate forecast value. Since the ultra-rapid calendar contains the predicted value of the position of the GPS satellite 3, it can be used in real time in principle.
  • the ultra-rapid calendar currently in operation is given as discrete data of the satellite position and the satellite clock error at the sampling time every fixed sampling time interval (for example, every 15 minutes). Therefore, in the positioning support information generation process, the IMES transmitter 5 sets, for example, the latest sample time of the current time as the reference time t0, reads the predicted value of the satellite position at the sample time, and includes it in the positioning support information
  • the satellite position is r0. Further, the distance between the satellite position at the reference time t0 and the satellite position at the previous sample time is calculated, and the satellite velocity v0 at the reference time t0 is calculated from the calculated distance and the sample time interval.
  • the IMES transmitter 5 does not transmit the positioning support information of all the GPS satellites 3, but the GPS satellites 3 (hereinafter referred to as “visible satellites”) that can be observed from the building or facility where the IMES transmitter 5 is installed.
  • the positioning support information may be transmitted.
  • the IMES transmitter 5 acquires a broadcast ephemeris of a visible satellite from the outdoor GPS receiver 7 illustrated in FIG. Then, using the acquired broadcast ephemeris, the positioning support information is generated for the visible satellites in the same manner as in the above-described embodiment, and the positioning support information is generated and transmitted.
  • the system is configured such that the IMES transmitter 5 directly communicates with the GNSS base station 6 to acquire the distribution ephemeris.
  • the IMES transmitter 5 generates positioning support information and supports positioning. It is good also as interposing the delivery server 9 which performs the schedule management of transmission of information.
  • FIG. 5 is a diagram showing an example of the system configuration of the position calculation system 1100 in this case. However, in this drawing, the position calculation device 1 and the GPS satellite 3 are not shown.
  • a plurality of IMES transmitters 5 and a distribution server 9 are communicatively connected via a first network N1, and the distribution server 9 and a plurality of GNSS base stations 6 are connected via a second network N2. It is connected.
  • the distribution server 9 and the first network N1 may be provided for each building or facility where the IMES transmitter 5 is installed, or may be provided for each fixed area, for example.
  • the distribution server 9 acquires the distribution ephemeris from the GNSS base station 6 via the second network N2. Then, using the acquired distribution ephemeris, positioning support information generation processing is performed in the same manner as in the above embodiment to generate positioning support information. Then, the generated positioning support information is transmitted to the IMES transmitter 5 via the first network N1, and the transmission timing and transmission schedule of the positioning support information by the IMES transmitter 5 are controlled.
  • the positioning support information transmitted from the distribution server 9 to the IMES transmitter 5 may be the positioning support information of all GPS satellites 3 or the positioning of visible satellites that can be observed from the building or facility where the IMES transmitter 5 is installed. It may be support information. In the latter case, for example, the location information of the building or facility where the IMES transmitter 5 is installed is stored in the distribution server 9 as a database, and the building where the IMES transmitter 5 is installed based on the location information stored in the database. What is necessary is to determine a visible satellite that can be observed from a facility or the like and generate positioning support information for the visible satellite.
  • IMES transmitter 5 has been described as transmitting positioning support information including the position and velocity of GPS satellite 3, but instead, broadcast ephemeris is transmitted. You may do it.
  • the broadcast ephemeris transmitted by the IMES transmitter 5 can be acquired from the GNSS base station 6 or the distribution server 9.
  • the broadcast ephemeris transmitted from the IMES transmitter 5 may be the broadcast ephemeris of all GPS satellites 3 or the broadcast ephemeris of visible satellites.
  • a submeter-class augmentation signal L1-SAIF Submeter-class Augmentation with Integrity Function
  • L1-SAIF Submeter-class Augmentation with Integrity Function
  • AFF Almanac for First Fix
  • the position calculation device 1 obtains the satellite orbit (orbit function r (t)) of the GPS satellite 3 from the positioning support information, and calculates (estimates) the ephemeris representing this satellite orbit. It was to be.
  • the position calculation apparatus 1 may directly obtain the position of the GPS satellite 3 from the satellite orbit (orbit function r (t)) and perform position calculation using this satellite position. That is, after calculating the predicted satellite orbit (that is, the orbit function r (t) representing the satellite orbit) for each GPS satellite 3, the position of the GPS satellite 3 at the positioning time t is calculated from the predicted orbit. It may be used for position calculation.
  • a known position calculation using a pseudorange may be performed to calculate the position. According to this, it is possible to obtain an effect that it is not necessary to calculate the ephemeris from the predicted trajectory or to acquire the ephemeris by continuously receiving the GPS satellite signal.
  • the positioning support information includes one position information and one speed information of the satellite position r0 and the satellite speed v0 at a certain reference time t0. Position information and speed information at a plurality of reference times may be included.
  • the position calculation apparatus 1 that acquires the ephemeris of the GPS satellite 3 and calculates the position has been described as an example. System), GALILEO, Beidou, and other GNSS satellites may be used.
  • 1 position calculation device 3 GPS satellite, 5 IMES transmitter, 6 GNSS base station, 7 outdoor GPS receiver, 8 precision calendar provision server, 9 distribution server, 10 antenna, 20 satellite signal receiver, 21 RF receiver circuit, 22 baseband processing circuit unit, 30 host processing unit, 31 operation unit, 32 display unit, 33 sound output unit, 34 clock unit, 35 storage unit, 100 processing unit, 200 storage unit, 1000, 1100 position calculation system.

Abstract

The purpose of the present invention is to shorten the time to first fix (TTFF). A position calculating device (1) determines whether orbital information for a GPS satellite (3) stored in memory satisfies prescribed useful conditions. If the determination is negative, positioning assistance information is acquired from an IMES transmitter (5), which is a type of ground communication device that sends the positioning assistance information that is the basis for calculating orbital information. In addition, the orbital information is calculated using the acquired positioning assistance information, the orbital information stored in memory is updated, and the position of the position calculating device (1) is calculated using the signal from the GPS satellite (3) and the orbital information stored in memory.

Description

位置算出装置の制御方法及び位置算出装置Method for controlling position calculation apparatus and position calculation apparatus
 本発明は、位置算出装置の制御方法等に関する。 The present invention relates to a control method for a position calculation device.
 測位用衛星からの測位用信号を利用した位置算出システムとして、GPS(Global Positioning System)が広く知られている。GPSでは、GPS衛星信号に重畳されている軌道情報(エフェメリスやアルマナック)を取得し、衛星の位置を特定した上で、擬似距離に基づいて位置を算出する。 GPS (Global Positioning System) is widely known as a position calculation system using positioning signals from positioning satellites. In GPS, orbit information (ephemeris and almanac) superimposed on a GPS satellite signal is acquired, the position of the satellite is specified, and the position is calculated based on the pseudorange.
 近年では、携帯型電話機やPDA、携帯型ナビゲーション装置、腕時計といった携帯型の電子機器にも位置算出装置が備えられるようになり、カーナビゲーション装置のように屋外で使用されるのみならず、建物内や地下といった様々な場所でも使用されている。しかし、建物内や地下では位置算出装置がGPS衛星信号を全く受信することができないか、受信することが困難であり、位置算出が行えない場合が生ずるという問題があった。 In recent years, portable electronic devices such as portable telephones, PDAs, portable navigation devices, and wristwatches have been equipped with position calculation devices that are not only used outdoors like car navigation devices, but also in buildings. It is also used in various places such as underground and underground. However, there is a problem that the position calculation device cannot receive the GPS satellite signal at all in the building or underground, or it is difficult to receive the GPS satellite signal, and the position calculation cannot be performed.
 そこで、例えば特許文献1には、GPS衛星信号が届かない場所において位置情報を位置算出装置に提供する技術として、屋内送信機を利用した位置情報の提供システムが開示されている。 Therefore, for example, Patent Document 1 discloses a position information providing system using an indoor transmitter as a technique for providing position information to a position calculation device in a place where a GPS satellite signal does not reach.
特開2009-85928号公報JP 2009-85928 A
 確かに、特許文献1の技術によれば、位置算出装置が屋内に存在する場合であっても、屋内送信機から送信される位置情報に基づいて、位置算出装置は自装置の位置を特定することができる。しかし、ここで問題となるのは、位置算出装置が屋内から屋外に出た後に位置算出を行う場合である。 Certainly, according to the technique disclosed in Patent Document 1, even when the position calculation device exists indoors, the position calculation device specifies the position of the own device based on the position information transmitted from the indoor transmitter. be able to. However, the problem here is the case where the position calculation is performed after the position calculation device goes out of the room.
 例えば、ショッピングモールや地下街といった施設では、位置算出装置を携行したユーザーが何時間にも亘って屋内に滞在する場合がある。しかし、GPS衛星から放送されている軌道情報のうち、エフェメリスの有効期間は、現在の衛星運用では最大で4時間である。このため、位置算出装置が屋内に入る前にGPS衛星信号を受信して軌道情報を取得していたとしても、ユーザーが長時間屋内に滞在することによって、その軌道情報が位置算出に使用できなくなる場合がある。 For example, in a facility such as a shopping mall or underground mall, a user carrying a position calculation device may stay indoors for many hours. However, of the orbit information broadcast from the GPS satellite, the effective period of the ephemeris is a maximum of 4 hours in the current satellite operation. For this reason, even if the position calculation device receives the GPS satellite signal and acquires the orbit information before entering the room, the orbit information cannot be used for position calculation when the user stays indoors for a long time. There is a case.
 この場合、軌道情報の有効期限が過ぎているため、屋内から屋外に移動して位置算出を開始する場合は、いわゆるウォームスタートの状態となる(なお、アルマナックさえも保持していない或いは有効期限切れの場合にはコールドスタートとなる)。この状態では、位置算出装置は、屋外に出た後にGPS衛星からエフェメリスを取得しなければ位置算出を行うことができない。しかし、エフェメリスの復調には、1衛星につき少なくとも30秒程度の時間を要するため、どうしても初期位置算出時間(TTFF:Time To First Fix)が増大してしまうという問題があった。 In this case, since the expiration date of the trajectory information has passed, when the position calculation is started by moving from indoors to the outdoors, it becomes a so-called warm start state (note that even the almanac is not held or has expired) A cold start in some cases). In this state, the position calculation device cannot perform position calculation unless it acquires an ephemeris from a GPS satellite after going outdoors. However, demodulation of the ephemeris requires a time of at least about 30 seconds per satellite, which inevitably increases the initial position calculation time (TTFF: Time To First Fix).
 本発明は、上記の課題に鑑みてなされたものであり、その目的とするところは、初期位置算出時間(TTFF)の短縮を図ることにある。 The present invention has been made in view of the above problems, and its object is to shorten the initial position calculation time (TTFF).
 上記の課題を解決するための第1の発明は、位置算出装置の制御方法であって、記憶部に記憶された測位用衛星の軌道情報が所定の有用条件を満たすか否かを判定することと、前記判定の結果が否定判定の場合に、前記軌道情報の算出の基礎となる測位支援情報を送信する地上通信装置から当該測位支援情報を取得する第1の取得処理を実行することと、前記取得された測位支援情報を用いて前記軌道情報を算出して、前記記憶部に記憶された軌道情報を更新することと、前記測位用衛星からの信号と、前記記憶部に記憶された軌道情報とを用いて前記位置算出装置の位置を算出することと、を含む制御方法である。 A first invention for solving the above problem is a control method of a position calculation device, wherein it is determined whether orbit information of a positioning satellite stored in a storage unit satisfies a predetermined useful condition. And, when the result of the determination is a negative determination, executing a first acquisition process of acquiring the positioning support information from the ground communication device that transmits the positioning support information that is the basis of the calculation of the trajectory information; The orbit information is calculated using the obtained positioning support information, the orbit information stored in the storage unit is updated, the signal from the positioning satellite, and the orbit stored in the storage unit. Calculating the position of the position calculating device using information.
 また、他の発明として、測位用衛星の軌道情報を記憶する記憶部と、前記記憶部に記憶された軌道情報が所定の有用条件を満たすか否かを判定する判定部と、前記判定部の判定結果が否定判定の場合に、前記軌道情報の算出の基礎となる測位支援情報を送信する地上通信装置から当該測位支援情報を取得する取得部と、前記取得された測位支援情報を用いて前記軌道情報を算出して、前記記憶部に記憶された軌道情報を更新する算出部と、前記測位用衛星からの信号と、前記記憶部に記憶された軌道情報とを用いて前記位置算出装置の位置を算出する位置算出部と、を備えた位置算出装置を構成することとしてもよい。 As another invention, a storage unit that stores orbit information of a positioning satellite, a determination unit that determines whether orbit information stored in the storage unit satisfies a predetermined useful condition, and When the determination result is negative, the acquisition unit that acquires the positioning support information from the ground communication device that transmits the positioning support information that is the basis of the calculation of the orbit information, and the acquired positioning support information Using the calculation unit that calculates the orbit information and updates the orbit information stored in the storage unit, the signal from the positioning satellite, and the orbit information stored in the storage unit, the position calculation device A position calculation apparatus including a position calculation unit that calculates a position may be configured.
 この第1の発明等によれば、記憶部に記憶された測位用衛星の軌道情報が所定の有用条件を満たさない場合に、地上通信装置から測位支援情報を取得し、これを用いて軌道情報を算出して記憶部の軌道情報を更新する。これにより、測位用衛星からの信号を利用した位置算出を行う前に、有用な軌道情報を記憶部に記憶させておくことが可能となる。そして、測位用衛星からの信号と、記憶部に記憶された軌道情報とを用いて位置算出装置の位置を算出することで、初期位置算出時間を短縮することが可能となる。 According to the first aspect of the invention, when the orbit information of the positioning satellite stored in the storage unit does not satisfy the predetermined useful condition, the positioning support information is acquired from the ground communication device, and the orbit information is used by using this information. Is calculated and the trajectory information in the storage unit is updated. This makes it possible to store useful orbit information in the storage unit before performing position calculation using signals from positioning satellites. Then, the initial position calculation time can be shortened by calculating the position of the position calculation device using the signal from the positioning satellite and the orbit information stored in the storage unit.
 また、第2の発明として、第1の発明の制御方法において、前記軌道情報には、1)前記測位支援情報から算出される第1の軌道情報と、2)前記測位用衛星からの信号を復調することで得られる第2の軌道情報との少なくとも1つが含まれる、制御方法を構成することとしてもよい。 As a second invention, in the control method of the first invention, the orbit information includes 1) first orbit information calculated from the positioning support information, and 2) a signal from the positioning satellite. A control method including at least one of the second orbit information obtained by demodulation may be configured.
 この第2の発明によれば、軌道情報には、1)測位支援情報から算出される第1の軌道情報と、2)測位用衛星からの信号を復調することで得られる第2の軌道情報との少なくとも1つが含まれる。これにより、記憶部に記憶された測位用衛星の軌道情報のうち、測位支援情報から算出される第1の軌道情報や、測位用衛星からの信号を復調することで得られる第2の軌道情報が有用でないと判定した場合に、地上通信装置から測位支援情報を取得することが可能となる。 According to the second aspect of the invention, the orbit information includes 1) first orbit information calculated from positioning support information, and 2) second orbit information obtained by demodulating a signal from a positioning satellite. And at least one of. Thereby, among the orbit information of the positioning satellite stored in the storage unit, the first orbit information calculated from the positioning support information and the second orbit information obtained by demodulating the signal from the positioning satellite. If it is determined that is not useful, positioning support information can be acquired from the ground communication device.
 また、第3の発明として、第1又は第2の発明の制御方法において、前記第1の取得処理が失敗した場合に、前記測位用衛星からの信号を復調することで前記軌道情報を取得する第2の取得処理を実行することをさらに含む、制御方法を構成することとしてもよい。 As a third invention, in the control method of the first or second invention, when the first acquisition process fails, the orbit information is acquired by demodulating a signal from the positioning satellite. It is good also as comprising the control method which further includes performing a 2nd acquisition process.
 この第3の発明によれば、地上通信装置から測位支援情報を取得する第1の取得処理が失敗した場合に、測位用衛星からの信号を復調することで軌道情報を取得する第2の取得処理を実行する。換言すると、第1の取得処理を、第2の取得処理に対して優先して実行する。優先して実行した第1の取得処理が失敗した場合は、屋外にいる可能性があるため、第2の取得処理を実行するのである。 According to the third invention, when the first acquisition process for acquiring the positioning support information from the ground communication device fails, the second acquisition for acquiring the orbit information by demodulating the signal from the positioning satellite. Execute the process. In other words, the first acquisition process is executed with priority over the second acquisition process. If the first acquisition process executed with priority fails, the second acquisition process is executed because there is a possibility of being outdoors.
 また、第4の発明として、第3の発明の制御方法において、前記地上通信装置は、前記測位用衛星とは異なる拡散符号を用いて、前記測位用衛星と同一のスペクトラム拡散方式で前記測位支援情報を送信する装置であり、前記取得することは、前記第1の取得処理における前記地上通信装置からの信号の受信と、前記第2の取得処理における前記測位用衛星からの信号の受信とを、前記拡散符号を切り替えることで実現することを含む、制御方法を構成することとしてもよい。 According to a fourth aspect of the present invention, in the control method of the third aspect, the ground communication device uses the spread code different from that of the positioning satellite, and uses the same spread spectrum method as the positioning satellite to support the positioning. An information transmitting device, wherein the obtaining includes receiving a signal from the ground communication device in the first obtaining process and receiving a signal from the positioning satellite in the second obtaining process. It is also possible to constitute a control method including realizing by switching the spreading code.
 この第4の発明によれば、地上通信装置は、測位用衛星とは異なる拡散符号を用いて、測位用衛星と同一のスペクトラム拡散方式で測位支援情報を送信する装置である。従って、拡散符号を切り替えることで、第1の取得処理における地上通信装置からの信号の受信と、第2の取得処理における測位用衛星からの信号の受信とを実現することができる。位置算出装置にとっては、共通の受信部でもって、地上通信装置からの信号の受信も、測位用衛星からの信号の受信もできる。 According to the fourth aspect of the invention, the terrestrial communication device is a device that transmits positioning support information using the same spread spectrum method as that of the positioning satellite using a spreading code different from that of the positioning satellite. Therefore, by switching the spreading code, it is possible to realize reception of a signal from the ground communication device in the first acquisition process and reception of a signal from the positioning satellite in the second acquisition process. For the position calculation device, it is possible to receive signals from the ground communication device and signals from the positioning satellite with a common receiving unit.
 また、第5の発明として、第1~第4の何れかの発明の制御方法において、前記測位支援情報には、前記測位用衛星の位置と速度の情報及び時刻情報が含まれており、前記軌道情報を算出することは、地球を周回する衛星の運動を表わす運動方程式と、前記測位支援情報に含まれる前記測位用衛星の位置と速度の情報及び時刻情報とを用いて、前記軌道情報を算出することである、制御方法を構成することとしてもよい。 Further, as a fifth invention, in the control method of any one of the first to fourth inventions, the positioning support information includes position and speed information and time information of the positioning satellite, To calculate the orbit information, using the equation of motion representing the movement of the satellite orbiting the earth, the position and velocity information of the positioning satellite included in the positioning support information and the time information, It is good also as comprising the control method which is calculating.
 この第5の発明によれば、測位支援情報には、測位用衛星の位置と速度の情報及び時刻情報が含まれており、地球を周回する衛星の運動を表わす運動方程式と、この測位支援情報に含まれる測位用衛星の位置と速度の情報及び時刻情報とを用いることで、測位用衛星の軌道情報を算出することができる。 According to the fifth aspect of the invention, the positioning support information includes the position and speed information of the positioning satellite and the time information. The equation of motion representing the motion of the satellite orbiting the earth, and the positioning support information. Orbital information of the positioning satellite can be calculated by using the position and velocity information and time information of the positioning satellite included in.
 また、第6の発明として、第1~第5の何れかの発明の制御方法において、前記記憶部には、前記軌道情報と対応付けて当該軌道情報の有効期間が記憶されており、前記判定することは、前記有効期間に基づいて前記有用条件を満たすか否かを判定することを含む、制御方法を構成することとしてもよい。 Further, as a sixth invention, in the control method of any one of the first to fifth inventions, the storage unit stores an effective period of the orbit information in association with the orbit information, and the determination Doing may constitute a control method including determining whether or not the useful condition is satisfied based on the effective period.
 この第6の発明によれば、記憶部には軌道情報と対応付けて当該軌道情報の有効期間が記憶されている。このため、有効期間に基づくことで、軌道情報の有用性を簡単に判定することができる。 According to the sixth aspect of the invention, the effective period of the orbit information is stored in the storage unit in association with the orbit information. Therefore, the usefulness of the trajectory information can be easily determined based on the effective period.
 また、第7の発明として、第6の発明の制御方法において、前記記憶部には、前記軌道情報と対応付けて当該軌道情報の信頼性指標値が対応付けて記憶されており、前記判定することは、前記有効期間と前記信頼性指標値との組み合わせに基づいて前記有用条件を満たすか否かを判定することを含む、制御方法を構成することとしてもよい。 Further, as a seventh invention, in the control method of the sixth invention, the storage unit stores a reliability index value of the orbit information in association with the orbit information and stores the determination. This may constitute a control method including determining whether or not the useful condition is satisfied based on a combination of the valid period and the reliability index value.
 この第7の発明によれば、記憶部には、軌道情報と対応付けて当該軌道情報の信頼性指標値が対応付けて記憶されている。そして、有効期間と信頼性指標値との組み合わせに基づいて有用条件を満たすか否かを判定する。軌道情報の有効期間が切れていなくとも、軌道情報の信頼性が低い場合は、その軌道情報は有用な情報であるとは言えない。このため、有効期間と信頼性指標値との組み合わせに基づくことで、軌道情報の有用性の判定をより適確に行うことが可能となる。 According to the seventh aspect of the invention, the storage unit stores the reliability index value of the orbit information in association with the orbit information. And it is determined whether useful conditions are satisfy | filled based on the combination of an effective period and a reliability parameter | index value. Even if the validity period of the orbit information has not expired, if the reliability of the orbit information is low, the orbit information cannot be said to be useful information. For this reason, based on the combination of the effective period and the reliability index value, it is possible to more accurately determine the usefulness of the trajectory information.
位置算出システムのシステム構成の一例を示す図。The figure which shows an example of the system configuration | structure of a position calculation system. 位置算出装置の機能構成の一例を示す図。The figure which shows an example of a function structure of a position calculation apparatus. ベースバンド処理回路部の機能構成の一例を示す図。The figure which shows an example of a function structure of a baseband process circuit part. ベースバンド処理の流れを示すフローチャート。The flowchart which shows the flow of a baseband process. 位置算出システムの変形例を示す図。The figure which shows the modification of a position calculation system.
 以下、図面を参照して、本発明を適用した好適な実施形態の一例について説明する。本実施形態は、衛星測位システムとしてGPS(Global Positioning System)を適用した実施形態である。但し、本発明を適用可能な形態が以下説明する実施形態に限定されるわけでないことは勿論である。 Hereinafter, an example of a preferred embodiment to which the present invention is applied will be described with reference to the drawings. In this embodiment, a GPS (Global Positioning System) is applied as a satellite positioning system. However, it is needless to say that embodiments to which the present invention is applicable are not limited to the embodiments described below.
 1.システム構成
 図1は、本実施形態における位置算出システム1000のシステム構成の一例を示す図である。
 位置算出システム1000は、位置算出装置1と、GPS衛星3と、IMES(Indoor MEssaging System)送信機5と、GNSS(Global Navigation Satellite System)基地局6と、屋外GPS受信機7と、精密暦提供サーバー8とを有して構成される。IMES送信機5と、GNSS基地局6と、屋外GPS受信機7と、精密暦提供サーバー8とは、ネットワークNを介して互いに接続されている。
1. System Configuration FIG. 1 is a diagram illustrating an example of a system configuration of a position calculation system 1000 according to the present embodiment.
The position calculation system 1000 includes a position calculation device 1, a GPS satellite 3, an IMES (Indoor Messaging System) transmitter 5, a GNSS (Global Navigation Satellite System) base station 6, an outdoor GPS receiver 7, and a precise calendar. And a server 8. The IMES transmitter 5, the GNSS base station 6, the outdoor GPS receiver 7, and the fine calendar providing server 8 are connected to each other via a network N.
 ネットワーク(配信網、通信回線)Nは、例えばインターネットや無線LAN(Local Area Network)等を利用した通信路であり、直接接続のための専用線(専用ケーブル)やイーサネット(登録商標)等によるLANの他、電話通信網やケーブル網や無線LAN等の通信網を含むことができる。また通信方法については有線/無線を問わない。 The network (distribution network, communication line) N is a communication path using, for example, the Internet or a wireless LAN (Local Area Network), and is a LAN using a dedicated line (dedicated cable) or Ethernet (registered trademark) for direct connection. In addition, a communication network such as a telephone communication network, a cable network, and a wireless LAN can be included. The communication method may be wired / wireless.
 GPS衛星3は、測位用衛星の一種であり、アルマナックやエフェメリス等の軌道情報を含む航法メッセージを、測位用信号の一種であるGPS衛星信号に乗せて発信する。GPS衛星信号は、拡散符号の一種であるC/A(Coarse and Acquisition)コードによって、スペクトラム拡散方式として知られるCDMA(Code Division Multiple Access)方式によって変調された1.57542[GHz]の通信信号である。C/Aコードは、コード長1023チップを1PNフレームとする繰返し周期1msの擬似ランダム雑音符号であり、各GPS衛星3に固有のコードである。 The GPS satellite 3 is a kind of positioning satellite, and transmits a navigation message including orbit information such as almanac and ephemeris on a GPS satellite signal which is a kind of positioning signal. The GPS satellite signal is a 1.57542 [GHz] communication signal modulated by a CDMA (Code Division Multiple Access) method known as a spread spectrum method by a C / A (Coarse and Acquisition) code which is a kind of spreading code. is there. The C / A code is a pseudo random noise code having a repetition period of 1 ms with a code length of 1023 chips as one PN frame, and is a code unique to each GPS satellite 3.
 IMES送信機5は、地上通信装置の一種であり、屋内の随所に配置され、GPS測位を支援するための情報である測位支援情報を送信する。図1の例では、建物の各フロアに設置されている。IMES送信機5を配置する施設としては、例えば、ショッピングモールや地下街、空港、映画館、ホテルといった屋内の各種の施設が考えられる。IMES送信機5には、GPS衛星3とは異なるPRNコードが割り当てられており、この割り当てられたPRNコードを用いて、GPS衛星3と同一のスペクトラム拡散方式で測位支援情報を送信する。 The IMES transmitter 5 is a kind of ground communication device, and is arranged in various places in the room, and transmits positioning support information that is information for supporting GPS positioning. In the example of FIG. 1, it is installed on each floor of the building. As the facility where the IMES transmitter 5 is arranged, for example, various indoor facilities such as a shopping mall, an underground mall, an airport, a movie theater, and a hotel are conceivable. A PRN code different from that of the GPS satellite 3 is assigned to the IMES transmitter 5, and positioning support information is transmitted by the same spread spectrum method as that of the GPS satellite 3 using the assigned PRN code.
 本実施形態において、IMES送信機5は、ネットワークNを介してGNSS基地局6から配信されるGPS衛星3のエフェメリス(以下、「配信エフェメリス」と称す。)を取得する。そして、取得した配信エフェメリスを用いて全てのGPS衛星3の測位支援情報を生成する測位支援情報生成処理を行い、GPS衛星信号の信号規格(通信規格)に準拠したIMES信号に測位支援情報を含めて発信する。 In this embodiment, the IMES transmitter 5 acquires the ephemeris of the GPS satellite 3 distributed from the GNSS base station 6 via the network N (hereinafter referred to as “distributed ephemeris”). Then, positioning support information generation processing for generating positioning support information for all GPS satellites 3 is performed using the acquired distribution ephemeris, and the positioning support information is included in the IMES signal compliant with the GPS satellite signal standard (communication standard). To send.
 IMES送信機5から送信される測位支援情報は、GPS衛星3の軌道情報の算出の基礎となる情報であり、本実施形態では、各GPS衛星3の衛星位置速度情報と、地球姿勢パラメーター(Earth Orientation Parameter:EOP)とを含んでいる。 The positioning support information transmitted from the IMES transmitter 5 is information serving as a basis for calculating the orbit information of the GPS satellite 3, and in this embodiment, the satellite position speed information of each GPS satellite 3 and the earth attitude parameter (Earth Orientation Parameter: EOP).
 衛星位置速度情報は、GPS衛星3それぞれの、ある基準時刻t0における衛星位置r0及び衛星速度v0と、クロック誤差とを含んでいる。また、地球姿勢情報である地球姿勢パラメーターは、UT1-UTCと、日長(Length Of Day:LOD)と、X極運動と、X極運動速度と、Y極運動と、Y極運動速度とを含んでいる。 The satellite position speed information includes the satellite position r0 and the satellite speed v0 at a certain reference time t0 of each GPS satellite 3 and a clock error. The Earth attitude parameters, which are the Earth attitude information, are UT1-UTC, day length (Length Of Day: LOD), X-pole motion, X-pole motion speed, Y-pole motion, and Y-pole motion speed. Contains.
 IMES送信機5は、GNSS基地局6から配信エフェメリスを取得すると、測位支援情報生成処理を行う。最初に、基準時刻t0を設定する。基準時刻t0は、例えば、配信エフェメリスを取得した時刻としてもよいし、当該配信エフェメリスの有効期間の始期の時刻としてもよい。そして、配信エフェメリスに含まれる衛星軌道パラメーターの値を用いて基準時刻t0における衛星位置r0及び衛星速度v0を算出し、これらの情報と、クロック誤差の情報と、地球姿勢パラメーターEOPの情報とを纏めることで、測位支援情報を生成する。 When the IMES transmitter 5 acquires the distribution ephemeris from the GNSS base station 6, the IMES transmitter 5 performs positioning support information generation processing. First, a reference time t0 is set. The reference time t0 may be, for example, the time when the distribution ephemeris is acquired, or may be the start time of the effective period of the distribution ephemeris. Then, the satellite position r0 and the satellite velocity v0 at the reference time t0 are calculated using the values of the satellite orbit parameters included in the distribution ephemeris, and these information, clock error information, and earth attitude parameter EOP information are collected. Thus, positioning support information is generated.
 GNSS基地局6は、例えば世界各地に設置され、GPS衛星3を含む複数種類のGNSS衛星から衛星信号を受信し、測位に必要なデータを取得して配信する。本実施形態では、GNSS基地局6は、定期的にGPS衛星3からGPS衛星信号を受信し、受信したGPS衛星信号からブロードキャストエフェメリス(放送暦)を取得する。そして、取得したブロードキャストエフェメリスを配信エフェメリスとして、ネットワークNを介してIMES送信機5に配信する。 The GNSS base station 6 is installed, for example, in various parts of the world, receives satellite signals from a plurality of types of GNSS satellites including the GPS satellite 3, and acquires and distributes data necessary for positioning. In the present embodiment, the GNSS base station 6 periodically receives a GPS satellite signal from the GPS satellite 3, and acquires a broadcast ephemeris (broadcast calendar) from the received GPS satellite signal. Then, the acquired broadcast ephemeris is distributed as a distribution ephemeris to the IMES transmitter 5 via the network N.
 屋外GPS受信機7は、例えばIMES送信機5が設置された建物の屋上に配置されるGPS受信機であり、地表平面座標においてIMES送信機5の位置から所定の近傍条件(例えば1km以内など)を満たす位置といった、GPS衛星3の天空配置がほぼ同一と言える位置に設置されている。そして、屋外GPS受信機7は、GPS衛星3から受信したGPS衛星信号を復調することで航法メッセージを取得する。そして、取得した航法メッセージから得られるエフェメリスを、ネットワークNを介してIMES送信機5に送信する。 The outdoor GPS receiver 7 is, for example, a GPS receiver disposed on the roof of a building where the IMES transmitter 5 is installed, and a predetermined vicinity condition (for example, within 1 km) from the position of the IMES transmitter 5 in the ground plane coordinates. The GPS satellites 3 are installed at positions where the sky arrangement of the GPS satellites 3 can be said to be substantially the same, such as a position that satisfies The outdoor GPS receiver 7 then acquires a navigation message by demodulating the GPS satellite signal received from the GPS satellite 3. Then, the ephemeris obtained from the acquired navigation message is transmitted to the IMES transmitter 5 via the network N.
 精密暦提供サーバー8は、高精度のGPS暦である精密暦を提供するサーバーである。精密暦提供サーバー8は、例えばGPS衛星3の観測やデータ解析を行って高精度のGPS衛星の観測データを配信することを目的として設立された組織や団体等に設置されるサーバーやサーバーシステムである。本明細書では、精密暦提供サーバー8が、精密暦の一種である速報暦や超速報暦を、ネットワークNを介してIMES送信機5に送信することとして説明する。 The precision calendar providing server 8 is a server that provides a precision calendar that is a high-precision GPS calendar. The precision calendar providing server 8 is a server or server system installed in an organization or organization established for the purpose of, for example, observing the GPS satellite 3 or analyzing the data and distributing the observation data of the high-precision GPS satellite. is there. In the present specification, the precision calendar providing server 8 will be described as transmitting a breaking calendar or a super breaking calendar, which is a kind of the precision calendar, to the IMES transmitter 5 via the network N.
 本実施形態では、IMES送信機5がGNSS基地局6から全てのGPS衛星3に係るブロードキャストエフェメリスを取得し、これを用いて全てのGPS衛星3の測位支援情報を生成・送信することとして説明する。この場合、位置算出装置1は、屋内においてIMES送信機5から全てのGPS衛星3の測位支援情報を取得する。そして、これを用いて全てのGPS衛星3のエフェメリスを算出して、記憶部に記憶されたエフェメリスを更新する。そして、GPS衛星3からの信号を受信可能となった場合に、このGPS衛星3からの信号と、記憶部に記憶されたエフェメリスとを用いて、自装置の位置を算出する。 In this embodiment, the IMES transmitter 5 acquires broadcast ephemeris related to all GPS satellites 3 from the GNSS base station 6, and uses this to generate and transmit positioning support information for all GPS satellites 3. . In this case, the position calculation device 1 acquires the positioning support information of all the GPS satellites 3 from the IMES transmitter 5 indoors. And the ephemeris of all the GPS satellites 3 is calculated using this, and the ephemeris memorize | stored in the memory | storage part is updated. When the signal from the GPS satellite 3 can be received, the position of the own device is calculated using the signal from the GPS satellite 3 and the ephemeris stored in the storage unit.
 2.エフェメリスの算出(推定)の原理
 位置算出装置1が、IMES送信機5から取得した測位支援情報に基づいてGPS衛星3のエフェメリスを算出(推定)する原理について説明する。測位支援情報には、各GPS衛星3の衛星位置速度情報(位置及び速度の情報)と、地球姿勢パラメーター(EOP)とが含まれている。
2. Principle of Ephemeris Calculation (Estimation) The principle of the position calculation device 1 calculating (estimating) the ephemeris of the GPS satellite 3 based on the positioning support information acquired from the IMES transmitter 5 will be described. The positioning support information includes satellite position speed information (position and speed information) of each GPS satellite 3 and an earth attitude parameter (EOP).
 先ず、GPS衛星3について、次式(1)の運動方程式が成立する。
Figure JPOXMLDOC01-appb-M000001
 上式(1)において、mはGPS衛星3の質量、FはGPS衛星3に作用する力、rは時刻tにおけるGPS衛星3の位置、である。また、aは、GPS衛星3に作用する加速力であり、次式(2)で与えられる。
Figure JPOXMLDOC01-appb-M000002
 上式(2)において、agは重力加速度、amoonは月の引力、asunは太陽の引力、asrgは太陽輻射圧、である。すなわち、式(1)と式(2)により、宇宙空間における地球を周回する衛星の運動を表わす運動方程式が決まる。
First, the equation of motion of the following equation (1) is established for the GPS satellite 3.
Figure JPOXMLDOC01-appb-M000001
In the above formula (1), m is the mass of the GPS satellite 3, F is the force acting on the GPS satellite 3, and r is the position of the GPS satellite 3 at time t. Further, a is an acceleration force acting on the GPS satellite 3, and is given by the following equation (2).
Figure JPOXMLDOC01-appb-M000002
In the above equation (2), a g is gravitational acceleration, a moon is lunar attraction, a sun is solar attraction, and a srg is solar radiation pressure. That is, equation (1) and equation (2) determine the equation of motion representing the motion of the satellite orbiting the earth in outer space.
 そして、式(1)の運動方程式について、時刻t0における衛星位置r(t0)=r0、及び、衛星速度v(t0)=v0、を初期値とした数値積分を行うことで、時刻tにおけるGPS衛星3の衛星位置r(t)、すなわち衛星軌道を示す軌道関数が、次式(3)のように求められる。
Figure JPOXMLDOC01-appb-M000003
 ここで与える初期値を、測位支援情報に含まれる、基準時刻t0におけるGPS衛星3の衛星位置r0及び衛星速度v0とする。衛星軌道が求められると、この衛星軌道に適合するエフェメリスを算出することができる。
For the equation of motion of equation (1), GPS integration at time t is performed by performing numerical integration with satellite position r (t0) = r0 at time t0 and satellite velocity v (t0) = v0 as initial values. The satellite position r (t) of the satellite 3, that is, the orbit function indicating the satellite orbit is obtained as the following equation (3).
Figure JPOXMLDOC01-appb-M000003
The initial values given here are the satellite position r0 and the satellite velocity v0 of the GPS satellite 3 at the reference time t0, which are included in the positioning support information. When a satellite orbit is obtained, an ephemeris that matches the satellite orbit can be calculated.
 なお、位置算出装置1は、上記の原理により、GPS衛星3から放送されているブロードキャストエフェメリスと有効期間の長さが等しいエフェメリスを推定することもできるし、ブロードキャストエフェメリスよりも有効期間の長いエフェメリス(以下、「長期予測フェメリス」と称す。)を推定することもできる。 The position calculation device 1 can also estimate an ephemeris having a valid period equal to the broadcast ephemeris broadcast from the GPS satellite 3 based on the above principle, or an ephemeris having a longer valid period than the broadcast ephemeris ( (Hereinafter referred to as “long-term prediction femeris”).
 ところで、衛星の運動を表す上記の運動方程式(式(1))は地球中心を基準とする慣性座標系である地球中心慣性(Earth Centered Inertial:ECI)座標系において定義
される。一方、位置算出装置1において算出される位置や、IMES送信機5が発信する測位支援情報に含まれるGPS衛星3の位置及び速度は、地球中心を基準とし、地球に固定した座標系である地球中心地球固定(Earth Centered Earth Fixed:ECEF)座標系
において定義される。
By the way, the above equation of motion (Equation (1)) representing the motion of the satellite is defined in the Earth Centered Inertial (ECI) coordinate system which is an inertial coordinate system based on the earth center. On the other hand, the position calculated by the position calculation device 1 and the position and velocity of the GPS satellite 3 included in the positioning support information transmitted by the IMES transmitter 5 are based on the earth center, which is a coordinate system fixed to the earth. Defined in the Earth Centered Earth Fixed (ECEF) coordinate system.
 このため、衛星軌道の推定に際しては、地球中心慣性(ECI)座標系と、地球中心地球固定(ECEF)座標系との間の座標変換が必要である。地球中心慣性(ECI)座標系と、地球中心地球固定(ECEF)座標系との座標変換行列Qは、公知のように、次式(4)で与えられる。
Figure JPOXMLDOC01-appb-M000004
 式(4)において、Aは極運動の回転行列、Bは恒星時の回転行列、Cは章動の回転行列、Dは歳差の回転行列、を表す。これらの行列A,B,C,Dは、時刻tと、測位支援情報に含まれる地球姿勢パラメーター(EOP)とによって決まる。換言すると、地球姿勢パラメーターによってこれらの行列A,B,C,Dが示され、座標変換行列Qが決まるとも言える。
For this reason, when estimating the satellite orbit, coordinate conversion between the Earth Center Inertia (ECI) coordinate system and the Earth Center Earth Fixed (ECEF) coordinate system is required. As is well known, the coordinate transformation matrix Q between the earth center inertia (ECI) coordinate system and the earth center earth fixed (ECEF) coordinate system is given by the following equation (4).
Figure JPOXMLDOC01-appb-M000004
In Equation (4), A represents a polar motion rotation matrix, B represents a stellar rotation matrix, C represents a nutation rotation matrix, and D represents a precession rotation matrix. These matrices A, B, C, and D are determined by time t and the earth attitude parameter (EOP) included in the positioning support information. In other words, it can be said that these matrixes A, B, C, and D are indicated by the earth attitude parameter, and the coordinate transformation matrix Q is determined.
 3.位置算出装置の構成
 図2は、位置算出装置1の機能構成の一例を示すブロック図である。
 位置算出装置1は、アンテナ10と、衛星信号受信部20と、ホスト処理部30と、操作部31と、表示部32と、音出力部33と、時計部34と、記憶部35とを備えて構成される。
3. Configuration of Position Calculation Device FIG. 2 is a block diagram illustrating an example of a functional configuration of the position calculation device 1.
The position calculation device 1 includes an antenna 10, a satellite signal receiving unit 20, a host processing unit 30, an operation unit 31, a display unit 32, a sound output unit 33, a clock unit 34, and a storage unit 35. Configured.
 アンテナ10は、GPS衛星3から発信されているGPS衛星信号や、IMES送信機5から発信されているIMES信号を含むRF(Radio Frequency)信号を受信するアンテナである。 The antenna 10 is an antenna that receives a GPS satellite signal transmitted from the GPS satellite 3 and an RF (Radio Frequency) signal including the IMES signal transmitted from the IMES transmitter 5.
 衛星信号受信部20は、RF受信回路部21と、ベースバンド処理回路部22とを有し、例えば、アンテナ10で受信されたIMES信号から測位支援情報を復調したり、アンテナ10で受信されたGPS衛星信号から航法メッセージを復調したりするなどの処理を行う。また、測位支援情報を用いてエフェメリスを算出し、当該エフェメリスから求まる衛星位置に基づいて、擬似距離を利用した公知の位置計算を行って位置算出装置1の位置を算出する。なお、RF受信回路部21とベースバンド処理回路部22とは、それぞれ別のLSI(Large Scale Integration)として製造することも、1チップとして製造することも可能である。 The satellite signal receiving unit 20 includes an RF receiving circuit unit 21 and a baseband processing circuit unit 22. For example, the satellite signal receiving unit 20 demodulates the positioning support information from the IMES signal received by the antenna 10, or is received by the antenna 10. Performs processing such as demodulating navigation messages from GPS satellite signals. Further, the ephemeris is calculated using the positioning support information, and the position of the position calculation device 1 is calculated by performing a known position calculation using a pseudorange based on the satellite position obtained from the ephemeris. The RF receiving circuit unit 21 and the baseband processing circuit unit 22 can be manufactured as separate LSIs (Large Scale Integration) or as a single chip.
 RF受信回路部21は、RF信号の受信回路である。回路構成としては、例えば、アンテナ10にて受信されたRF信号をA/D変換器でデジタル信号に変換し、デジタル信号を処理する受信回路としてもよいし、アンテナ10にて受信されたRF信号をアナログ信号のまま信号処理し、最終的にA/D変換することでデジタル信号をベースバンド処理回路部22に出力する構成としてもよい。 The RF receiving circuit unit 21 is an RF signal receiving circuit. As a circuit configuration, for example, an RF signal received by the antenna 10 may be converted into a digital signal by an A / D converter to process the digital signal, or an RF signal received by the antenna 10 may be used. The digital signal may be output to the baseband processing circuit unit 22 by subjecting the signal to analog signal processing and finally A / D conversion.
 後者の場合には、例えば、次のようにRF受信回路部21を構成することができる。すなわち、所定の発振信号を分周或いは逓倍することで、RF信号乗算用の発振信号を生成する。そして、生成した発振信号を、アンテナ10から出力されたRF信号に乗算することで、RF信号を中間周波数の信号(以下、IF(Intermediate Frequency)信号)にダウンコンバートし、IF信号を増幅等した後、A/D変換器でデジタル信号に変換してベースバンド処理回路部22に出力する。 In the latter case, for example, the RF receiving circuit unit 21 can be configured as follows. That is, an oscillation signal for RF signal multiplication is generated by dividing or multiplying a predetermined oscillation signal. Then, by multiplying the generated oscillation signal by the RF signal output from the antenna 10, the RF signal is down-converted to an intermediate frequency signal (hereinafter referred to as IF (Intermediate Frequency) signal), and the IF signal is amplified. Thereafter, the signal is converted into a digital signal by an A / D converter and output to the baseband processing circuit unit 22.
 ベースバンド処理回路部22は、RF受信回路部21にて受信された信号に対してキャリア除去や相関処理等を行って、GPS衛星信号やIMES信号を捕捉する。本実施形態において、ベースバンド処理回路部22は、記憶部200に記憶されたGPS衛星3のエフェメリス232が所定の有用条件を満たすか否かを判定する。そして、その判定結果が否定判定の場合に、IMES送信機5から測位支援情報220を取得し、当該測位支援情報220を用いてエフェメリスを算出して、記憶部200に記憶されたエフェメリス232を更新する。そして、GPS衛星3からの信号と、記憶部200に記憶されたエフェメリス232とを用いて位置算出装置1の位置(位置座標)や時計誤差(クロックバイアス)を算出する。 The baseband processing circuit unit 22 performs carrier removal, correlation processing, and the like on the signal received by the RF receiving circuit unit 21 to capture a GPS satellite signal and an IMES signal. In the present embodiment, the baseband processing circuit unit 22 determines whether or not the ephemeris 232 of the GPS satellite 3 stored in the storage unit 200 satisfies a predetermined useful condition. If the determination result is negative, the positioning support information 220 is acquired from the IMES transmitter 5, the ephemeris is calculated using the positioning support information 220, and the ephemeris 232 stored in the storage unit 200 is updated. To do. Then, using the signal from the GPS satellite 3 and the ephemeris 232 stored in the storage unit 200, the position (position coordinates) and clock error (clock bias) of the position calculation device 1 are calculated.
 ホスト処理部30は、例えば、CPU(Central Processing Unit)等の演算装置で実現され、記憶部35に記憶されているシステムプログラム等の各種プログラムに従って、位置算出装置1の各部を統括的に制御する。例えば、ベースバンド処理回路部22から取得した位置座標をもとに、表示部32に現在位置を指し示した地図を表示させたり、その位置座標を各種のアプリケーション処理に利用したりする。 The host processing unit 30 is realized by an arithmetic device such as a CPU (Central Processing Unit), for example, and comprehensively controls each unit of the position calculation device 1 according to various programs such as a system program stored in the storage unit 35. . For example, based on the position coordinates acquired from the baseband processing circuit unit 22, a map indicating the current position is displayed on the display unit 32, or the position coordinates are used for various application processes.
 操作部31は、例えばタッチパネルやボタンスイッチ等の入力装置であり、なされた操作に応じた操作信号を、ホスト処理部30に出力する。この操作部31の操作により、位置算出要求等の各種指示入力がなされる。 The operation unit 31 is an input device such as a touch panel or a button switch, and outputs an operation signal corresponding to the performed operation to the host processing unit 30. By operating the operation unit 31, various instructions such as a position calculation request are input.
 表示部32は、例えばLCD等の表示装置であり、ホスト処理部30から入力される表示信号に基づく各種表示を行う。音出力部33は、例えばスピーカーなどの音出力装置であり、ホスト処理部30から入力される音声信号に基づく各種音出力を行う。時計部34は、内部時計であり、水晶発振器等の発振回路を備えて構成される。 The display unit 32 is a display device such as an LCD, and performs various displays based on a display signal input from the host processing unit 30. The sound output unit 33 is a sound output device such as a speaker, for example, and outputs various sounds based on an audio signal input from the host processing unit 30. The clock unit 34 is an internal clock and includes an oscillation circuit such as a crystal oscillator.
 記憶部35は、例えばROM(Read Only Memory)やフラッシュROM、RAM(Random Access Memory)等の記憶装置で実現され、ホスト処理部30が位置算出装置1を統括的に制御するためのシステムプログラムや、各種アプリケーション処理を実行するための各種プログラムやデータ等を記憶する。 The storage unit 35 is implemented by a storage device such as a ROM (Read Only Memory), a flash ROM, or a RAM (Random Access Memory), for example, and a system program for the host processing unit 30 to control the position calculation device 1 in an integrated manner. Various programs and data for executing various application processes are stored.
 図3は、ベースバンド処理回路部22の機能構成図である。ベースバンド処理回路部22は、処理部100と、記憶部200とを有して構成される。 FIG. 3 is a functional configuration diagram of the baseband processing circuit unit 22. The baseband processing circuit unit 22 includes a processing unit 100 and a storage unit 200.
 処理部100は、例えばCPUやDSP(Digital Signal Processor)等の演算回路で実現され、記憶部200に記憶されたプログラムやデータ等に基づいて、ベースバンド処理回路部22の全体制御を行う。また、処理部100は、GPS衛星信号捕捉部110と、IMES信号捕捉部120と、有用条件判定部130と、座標変換行列生成部140と、エフェメリス算出部150と、位置算出部160とを機能部として有する。但し、これらの機能部は、一実施例として記載したに過ぎず、必ずしもこれら全ての機能部を必須構成要素としなければならないわけではない。また、これら以外の機能部を必須構成要素として追加してもよいことは勿論である。 The processing unit 100 is realized by an arithmetic circuit such as a CPU or a DSP (Digital Signal Processor), for example, and performs overall control of the baseband processing circuit unit 22 based on programs, data, and the like stored in the storage unit 200. The processing unit 100 also functions as a GPS satellite signal acquisition unit 110, an IMES signal acquisition unit 120, a useful condition determination unit 130, a coordinate transformation matrix generation unit 140, an ephemeris calculation unit 150, and a position calculation unit 160. Have as part. However, these functional units are only described as one embodiment, and all of these functional units do not necessarily have to be essential components. Of course, functional units other than these may be added as essential components.
 GPS衛星信号捕捉部110は、GPS衛星信号の捕捉を行う。すなわち、RF受信回路部21から出力されている受信信号に対して、GPS衛星3に割り当てられたPRNコードのレプリカコードを用いた相関演算を行うことで、当該GPS衛星3を捕捉する。そして、捕捉したGPS衛星信号に対するキャリア除去を行い、当該GPS衛星信号に搬送されている航法メッセージの復調を行い、航法メッセージに含まれるエフェメリスを取得する。屋外環境等において予め取得されたエフェメリスは、当該GPS衛星3のエフェメリス232として記憶部200に記憶される。 The GPS satellite signal capturing unit 110 captures GPS satellite signals. That is, the GPS satellite 3 is captured by performing a correlation operation using the replica code of the PRN code assigned to the GPS satellite 3 on the reception signal output from the RF receiving circuit unit 21. Then, the carrier is removed from the captured GPS satellite signal, the navigation message carried in the GPS satellite signal is demodulated, and the ephemeris included in the navigation message is acquired. The ephemeris acquired in advance in an outdoor environment or the like is stored in the storage unit 200 as the ephemeris 232 of the GPS satellite 3.
 IMES信号捕捉部120は、IMES信号の捕捉を行う。すなわち、GPS衛星信号捕捉部110によるGPS衛星3の捕捉と同様に、RF受信回路部21から出力されている受信信号に対して、IMES送信機5に割り当てられたPRNコードのレプリカコードを用いた相関演算を行うことで、IMES信号を捕捉する。そして、捕捉したIMES信号から測位支援情報220を復調・取得して、記憶部200に記憶させる。 The IMES signal capturing unit 120 captures the IMES signal. That is, similar to the acquisition of the GPS satellite 3 by the GPS satellite signal acquisition unit 110, the PRN code replica code assigned to the IMES transmitter 5 is used for the reception signal output from the RF reception circuit unit 21. The IMES signal is captured by performing a correlation operation. Then, the positioning support information 220 is demodulated and acquired from the captured IMES signal and stored in the storage unit 200.
 有用条件判定部130は、記憶部200に記憶されたエフェメリス(軌道情報)232が所定の有用条件を満たすか否かを判定する。本実施形態では、有用条件判定部130は、エフェメリス232の有効期間に基づいて有用条件を満たすか否かを判定する。 The useful condition determination unit 130 determines whether or not the ephemeris (orbit information) 232 stored in the storage unit 200 satisfies a predetermined useful condition. In the present embodiment, the useful condition determination unit 130 determines whether the useful condition is satisfied based on the validity period of the ephemeris 232.
 座標変換行列生成部140は、測位支援情報220に含まれる地球姿勢パラメーター(EOP)222を用いて、前述した式(4)のように定義される地球中心慣性(ECI)座標系と、地球中心地球固定(ECEF)座標系との座標変換行列Qを算出する。 The coordinate transformation matrix generation unit 140 uses the earth attitude parameter (EOP) 222 included in the positioning support information 220, the earth center inertia (ECI) coordinate system defined as the above-described equation (4), and the earth center A coordinate transformation matrix Q with respect to the earth fixed (ECEF) coordinate system is calculated.
 エフェメリス算出部150は、IMES送信機5から取得した測位支援情報220をもとに、各GPS衛星3のエフェメリス232を算出する。具体的には、測位支援情報220に含まれるGPS衛星3の衛星位置r0及び衛星速度v0を、座標変換行列生成部140によって生成された座標変換行列Qを用いて、地球中心地球固定(ECEF)座標系から地球中心慣性(ECI)座標系に変換する。 The ephemeris calculation unit 150 calculates the ephemeris 232 of each GPS satellite 3 based on the positioning support information 220 acquired from the IMES transmitter 5. Specifically, using the coordinate transformation matrix Q generated by the coordinate transformation matrix generation unit 140, the satellite position r0 and the satellite velocity v0 of the GPS satellite 3 included in the positioning support information 220 are fixed to the center of the earth (ECEF). Convert from coordinate system to Earth Centered Inertia (ECI) coordinate system.
 次いで、前述した式(3)の軌道関数r(t)に対して、座標変換後の衛星位置r0及び衛星速度v0を初期値とした数値積分を行って、衛星軌道を表す軌道関数r(t)を求める。そして、この軌道関数r(t)で表される衛星軌道に適合するエフェメリス232を算出する。エフェメリス232の算出は、例えば、規定のエフェメリスのパラメーター値に基づく衛星軌道と、軌道関数r(t)で表わされる衛星軌道との差を最小化させる数値計算(例えば、最小二乗法)によって求めることができる。但し、これ以外の方法であってもよいことは勿論である。 Next, numerical integration is performed on the orbit function r (t) of Equation (3) described above using the satellite position r0 and the satellite velocity v0 after coordinate conversion as initial values to obtain an orbit function r (t ) Then, an ephemeris 232 that matches the satellite orbit represented by the orbit function r (t) is calculated. The ephemeris 232 is calculated by, for example, a numerical calculation (for example, the least square method) that minimizes the difference between the satellite orbit based on the specified ephemeris parameter value and the satellite orbit represented by the orbit function r (t). Can do. However, it goes without saying that other methods may be used.
 位置算出部160は、位置算出装置1の位置を算出する。具体的には、記憶部200に記憶されている各捕捉衛星のエフェメリス232とメジャメント情報233とを用いて、例えば最小二乗法やカルマンフィルタを用いた公知の位置計算を行って位置算出装置1の位置及び時計誤差を算出する。 The position calculation unit 160 calculates the position of the position calculation device 1. Specifically, using the ephemeris 232 and measurement information 233 of each captured satellite stored in the storage unit 200, for example, a known position calculation using a least square method or a Kalman filter is performed, and the position of the position calculation device 1 is detected. And the clock error is calculated.
 記憶部200は、ROMやフラッシュROM、RAM等の記憶装置で実現され、処理部100がベースバンド処理回路部22を統合的に制御するためのシステムプログラムや、各種機能を実現するためのプログラムやデータ等を記憶している。また、処理部100の作業領域として用いられ、処理部100が各種プログラムに従って実行した演算結果が一時的に格納される。本実施形態では、ベースバンド処理プログラム210と、測位支援情報220と、個別衛星情報230と、算出結果データ240とが記憶される。 The storage unit 200 is realized by a storage device such as a ROM, a flash ROM, or a RAM, and a system program for the processing unit 100 to control the baseband processing circuit unit 22 in an integrated manner, a program for realizing various functions, Data etc. are memorized. Further, calculation results used as a work area of the processing unit 100 and executed by the processing unit 100 according to various programs are temporarily stored. In the present embodiment, a baseband processing program 210, positioning support information 220, individual satellite information 230, and calculation result data 240 are stored.
 ベースバンド処理プログラム210は、処理部100によって読み出され、ベースバンド処理(図4参照)として実行されるプログラムである。 The baseband processing program 210 is a program that is read by the processing unit 100 and executed as baseband processing (see FIG. 4).
 測位支援情報220には、衛星別情報221と地球姿勢パラメーター(EOP)222とが含まれる。衛星別情報221は、各GPS衛星3それぞれについての個別の情報であり、衛星番号221Aと、基準時刻情報221Bと、衛星位置情報221Cと、衛星速度情報221Dと、衛星クロック誤差情報221Eとが含まれる。 The positioning support information 220 includes satellite-specific information 221 and an earth attitude parameter (EOP) 222. The satellite-specific information 221 is individual information for each GPS satellite 3, and includes satellite number 221A, reference time information 221B, satellite position information 221C, satellite speed information 221D, and satellite clock error information 221E. It is.
 個別衛星情報230は、各GPS衛星3の個別情報であり、GPS衛星3毎に生成される情報である。具体的には、衛星番号231と、エフェメリス232と、メジャメント情報233とが含まれる。 The individual satellite information 230 is individual information of each GPS satellite 3 and is information generated for each GPS satellite 3. Specifically, a satellite number 231, an ephemeris 232, and measurement information 233 are included.
 エフェメリス232には、衛星軌道パラメーターの他、当該エフェメリス232の有効期間を定めるエポック時刻toeが記憶されている。これは、記憶部200に、軌道情報と対応付けて当該軌道情報の有効期間が記憶されていることに相当する。
 メジャメント情報233は、いわゆる位相サーチ及び周波数サーチを行うことで取得した受信したGPS衛星信号に関する諸量(例えばコード位相やドップラー周波数)が含まれる。
In the ephemeris 232, in addition to the satellite orbit parameters, an epoch time toe that determines the valid period of the ephemeris 232 is stored. This corresponds to the storage unit 200 storing the valid period of the orbit information in association with the orbit information.
The measurement information 233 includes various amounts (for example, code phase and Doppler frequency) related to the received GPS satellite signal acquired by performing so-called phase search and frequency search.
 算出結果データ240は、位置算出部160が位置算出処理を行って算出した算出結果が記憶されたデータであり、算出した位置や時計誤差がこれに含まれる。 The calculation result data 240 is data in which a calculation result calculated by the position calculation unit 160 performing a position calculation process is stored, and includes a calculated position and a clock error.
 4.処理の流れ
 図4は、処理部100が、記憶部200に記憶されているベースバンド処理プログラム210に従って実行するベースバンド処理の流れを説明するフローチャートである。このベースバンド処理は、例えば操作部31を介してユーザーによって位置算出の実行指示操作がなされた場合に実行される処理である。
4). Processing Flow FIG. 4 is a flowchart illustrating the flow of baseband processing executed by the processing unit 100 according to the baseband processing program 210 stored in the storage unit 200. This baseband process is a process executed when, for example, a position calculation execution instruction operation is performed by the user via the operation unit 31.
 先ず、処理部100は、位置算出に使用可能なGPS衛星3(以下、「測位使用可能衛星」と称す。)を判定する。具体的には、例えば、記憶部200にアルマナックや長期予測エフェメリスが既に記憶されている場合には、時計部34で計時されている現在日時において、所与の基準位置の天空に位置するGPS衛星3を、これらのデータを用いて判定して、これを測位使用可能衛星とする。基準位置は、例えば前回最後に測位して求めた算出位置とすることができる。 First, the processing unit 100 determines a GPS satellite 3 that can be used for position calculation (hereinafter referred to as “positioning usable satellite”). Specifically, for example, when an almanac or long-term predicted ephemeris is already stored in the storage unit 200, a GPS satellite positioned in the sky at a given reference position at the current date and time counted by the clock unit 34 3 is determined using these data, and this is used as a positioning usable satellite. The reference position can be, for example, a calculated position obtained by positioning last time.
 次いで、有用条件判定部130は、各測位使用可能衛星それぞれについて、記憶部200に記憶されているエフェメリス232が所定の有用条件を満たすか否かを判定する(ステップA3)。具体的には、各測位使用可能衛星のエフェメリス232に含まれる時刻情報toeと現在時刻とに基づいて有効期間が切れるまでの残り時間を判定する。そして、既に有効期間が経過しているか、残り時間が所定の閾値時間以内(例えば30分以内)である場合には、当該エフェメリス232は有用ではないと判定する。 Next, the useful condition determination unit 130 determines whether or not the ephemeris 232 stored in the storage unit 200 satisfies a predetermined useful condition for each positioning usable satellite (step A3). Specifically, the remaining time until the valid period expires is determined based on the time information toe included in the ephemeris 232 of each positioning usable satellite and the current time. If the valid period has already elapsed or the remaining time is within a predetermined threshold time (for example, within 30 minutes), it is determined that the ephemeris 232 is not useful.
 次いで、処理部100は、ステップA3の判定結果に基づき、測位使用可能衛星の有用条件を満たすエフェメリス232が記憶部200に記憶されているか否かを判定する(ステップA5)。具体的には、全ての測位使用可能衛星について、記憶部200に記憶されているエフェメリス232が上記の有用条件を満たすか否かを判定する。 Next, the processing unit 100 determines whether or not the ephemeris 232 that satisfies the useful condition of the positioning usable satellite is stored in the storage unit 200 based on the determination result of Step A3 (Step A5). Specifically, it is determined whether or not the ephemeris 232 stored in the storage unit 200 satisfies the above-described useful conditions for all positioning usable satellites.
 ステップA5の判定結果が否定判定である場合は(ステップA5;No)、IMES信号捕捉部120がIMES信号をサーチする(ステップA7)。具体的には、IMES送信機5に割り当てられたPRN番号のレプリカコードを用いて、RF受信回路部21で受信された信号との相関演算を行い、相関がとれたか否かを判定する。 If the determination result in step A5 is negative (step A5; No), the IMES signal acquisition unit 120 searches for the IMES signal (step A7). Specifically, using the replica code of the PRN number assigned to the IMES transmitter 5, the correlation calculation with the signal received by the RF receiving circuit unit 21 is performed to determine whether or not the correlation is obtained.
 次いで、IMES信号のサーチによってIMES信号を捕捉できたか否かを判定する(ステップA9)。IMES信号を捕捉できたと判定したならば(ステップA9;Yes)、処理部100は、捕捉したIMES信号から測位支援情報220を復調し、記憶部200に記憶させる(ステップA11)。 Next, it is determined whether or not the IMES signal has been acquired by searching for the IMES signal (step A9). If it is determined that the IMES signal has been captured (step A9; Yes), the processing unit 100 demodulates the positioning support information 220 from the captured IMES signal and stores it in the storage unit 200 (step A11).
 本実施形態では全てのGPS衛星3の測位支援情報220がIMES送信機5から送信されるため、全てのGPS衛星3の測位支援情報220を復調して記憶部200に記憶させることになる。また、IMES信号を捕捉して測位支援情報を取得する処理は、地上通信装置から測位支援情報を取得する第1の取得処理に相当する。 In this embodiment, since the positioning support information 220 of all GPS satellites 3 is transmitted from the IMES transmitter 5, the positioning support information 220 of all GPS satellites 3 is demodulated and stored in the storage unit 200. Further, the process of acquiring the IMES signal and acquiring the positioning support information corresponds to the first acquisition process of acquiring the positioning support information from the ground communication device.
 その後、座標変換行列生成部140が、ステップA11で取得した測位支援情報220に含まれる地球姿勢パラメーター(EOP)222を用いて、地球中心慣性(ECI)座標系と地球中心地球固定(ECEF)座標系との座標変換行列Qを生成する(ステップA13)。 Thereafter, the coordinate transformation matrix generation unit 140 uses the earth attitude parameter (EOP) 222 included in the positioning support information 220 acquired in step A11, and uses the earth center inertia (ECI) coordinate system and the earth center earth fixed (ECEF) coordinates. A coordinate transformation matrix Q with the system is generated (step A13).
 次いで、エフェメリス算出部150が、各GPS衛星3それぞれを対象としたエフェメリス算出処理を行う(ステップA15~A23)。エフェメリス算出処理では、最初に、取得された測位支援情報220に含まれる、該当するGPS衛星3の衛星位置r0及び衛星速度v0を、座標変換行列Qを用いて座標変換する(ステップA15)。 Next, the ephemeris calculation unit 150 performs an ephemeris calculation process for each GPS satellite 3 (steps A15 to A23). In the ephemeris calculation process, first, the satellite position r0 and the satellite velocity v0 of the corresponding GPS satellite 3 included in the acquired positioning support information 220 are coordinate-converted using the coordinate conversion matrix Q (step A15).
 次いで、当該GPS衛星3についての運動方程式を生成し(ステップA17)、この運動方程式に対して座標変換後の衛星位置r0及び衛星速度v0を初期値とした数値積分を行うことで、当該GPS衛星3の予測される衛星軌道を予測する(ステップA19)。 Next, a motion equation for the GPS satellite 3 is generated (step A17), and numerical integration is performed on the motion equation using the satellite position r0 and the satellite velocity v0 after coordinate conversion as initial values. 3 predicted satellite orbits (step A19).
 そして、予測した衛星軌道に基づいてエフェメリスのパラメーターを求めることでエフェメリスを算出し(ステップA21)、記憶部200に記憶されたエフェメリス232を更新する(ステップA23)。各GPS衛星3についてエフェメリス算出処理を行った後、処理部100は、ステップA1に戻る。 Then, the ephemeris is calculated by obtaining the ephemeris parameters based on the predicted satellite orbit (step A21), and the ephemeris 232 stored in the storage unit 200 is updated (step A23). After performing the ephemeris calculation process for each GPS satellite 3, the processing unit 100 returns to Step A1.
 一方、ステップA5の判定結果が肯定判定であった場合は(ステップA5;Yes)、GPS衛星信号捕捉部110が、測位使用可能衛星のGPS衛星信号をサーチする(ステップA25)。具体的には、測位使用可能衛星に割り当てられたPRN番号のレプリカコードを用いて、RF受信回路部21で受信された信号との相関演算を行い、相関がとれたか否かを判定する。 On the other hand, if the determination result of step A5 is affirmative (step A5; Yes), the GPS satellite signal acquisition unit 110 searches for a GPS satellite signal of a positioning usable satellite (step A25). Specifically, a correlation calculation with the signal received by the RF receiving circuit unit 21 is performed using the replica code of the PRN number assigned to the positioning usable satellite, and it is determined whether or not the correlation is obtained.
 上記のように、IMES信号のサーチ(ステップA7)と、GPS衛星信号のサーチ(ステップA25)では、IMES送信機5に割り当てられたPRNコードと、GPS衛星3に割り当てられたPRNコードとを切り替えることで、2種類の信号の捕捉を実現している。これは、第1の取得処理における地上通信装置からの信号の受信と、第2の取得処理における測位用衛星からの信号の受信とを、拡散符号を切り替えることで実現することに相当する。 As described above, in the IMES signal search (step A7) and the GPS satellite signal search (step A25), the PRN code assigned to the IMES transmitter 5 and the PRN code assigned to the GPS satellite 3 are switched. In this way, two types of signals are captured. This corresponds to realizing the reception of the signal from the ground communication device in the first acquisition process and the reception of the signal from the positioning satellite in the second acquisition process by switching the spreading code.
 GPS衛星信号のサーチによってGPS衛星信号を捕捉できなかった場合は(ステップA27;No)、処理部100は、位置算出に失敗したと判定し、ベースバンド処理を終了する。 If the GPS satellite signal cannot be acquired by searching for the GPS satellite signal (step A27; No), the processing unit 100 determines that the position calculation has failed and ends the baseband processing.
 一方、GPS衛星信号を捕捉できた場合は(ステップA27;Yes)、GPS衛星信号捕捉部110は、測位使用可能衛星から受信したGPS衛星信号から航法メッセージを復調する復調処理を開始する(ステップA29)。 On the other hand, when the GPS satellite signal can be acquired (step A27; Yes), the GPS satellite signal acquisition unit 110 starts a demodulation process for demodulating the navigation message from the GPS satellite signal received from the positioning usable satellite (step A29). ).
 次いで、位置算出部160が、GPS位置算出処理を開始する(ステップA31)。具体的には、記憶部200に記憶されているエフェメリス232と、GPS衛星信号を捕捉することで取得したメジャメント情報233とを用いて、従来公知の位置計算を行って位置算出装置1の位置及び時計誤差を算出し、算出結果データ240として記憶部200に記憶させる。 Next, the position calculation unit 160 starts the GPS position calculation process (step A31). Specifically, using the ephemeris 232 stored in the storage unit 200 and the measurement information 233 acquired by capturing the GPS satellite signal, the position of the position calculating device 1 A clock error is calculated and stored in the storage unit 200 as calculation result data 240.
 この場合は、測位使用可能衛星の有用なエフェメリスが既に記憶部200に記憶されている状態である(ステップA5;Yes)。このため、測位使用可能衛星からの信号に含まれるエフェメリスの復調を待たずとも、速やかに位置算出を完了させることができる。これにより、初期位置算出時間(TTFF)の短縮が実現できる。以降、位置算出の終了操作がなされるまで航法メッセージの復調処理及び位置算出処理を継続して実行し、終了操作がなされた場合には(ステップA33;Yes)、ベースバンド処理を終了する。 In this case, the useful ephemeris of the positioning usable satellite is already stored in the storage unit 200 (step A5; Yes). Therefore, the position calculation can be completed promptly without waiting for demodulation of the ephemeris contained in the signal from the positioning usable satellite. Thereby, shortening of initial position calculation time (TTFF) is realizable. Thereafter, the navigation message demodulation process and the position calculation process are continuously executed until the position calculation end operation is performed. When the end operation is performed (step A33; Yes), the baseband process is ended.
 ステップA9においてIMES信号を捕捉できなかったと判定した場合は(ステップA9;No)、処理部100は、測位使用衛星からのGPS衛星信号を捕捉する(ステップA35)。IMES信号を捕捉できないということは、位置算出装置1は屋外に位置している可能性が高いため、測位使用可能衛星からのGPS衛星信号をサーチして捕捉する。
そして、処理部100は、ステップA29へと移行する。
If it is determined in step A9 that the IMES signal could not be captured (step A9; No), the processing unit 100 captures a GPS satellite signal from the positioning use satellite (step A35). The fact that the IMES signal cannot be captured means that the position calculation device 1 is likely to be located outdoors, and therefore searches for and captures GPS satellite signals from positioning-enabled satellites.
Then, the processing unit 100 proceeds to Step A29.
 この場合(ステップA5;No→ステップA9;No)は、測位使用可能衛星の有用なエフェメリスが記憶部200に記憶されていない状態である。このため、測位使用可能衛星からの信号に含まれるエフェメリスの復調が完了するまで位置算出を行うことができない。従って、位置算出が完了するまでにはある程度の時間を要することになる。 In this case (Step A5; No → Step A9; No), the useful ephemeris of the positioning usable satellite is not stored in the storage unit 200. For this reason, position calculation cannot be performed until demodulation of the ephemeris included in the signal from the positioning enabled satellite is completed. Therefore, it takes a certain amount of time to complete the position calculation.
 ステップA9;No→ステップA35→ステップA29の流れは、地上通信装置から測位支援情報を取得する第1の取得処理が失敗した場合に、測位用衛星からの信号を復調することで軌道情報を取得する第2の取得処理を実行することに相当する。 Step A9; No → Step A35 → Step A29 is the flow of acquiring orbit information by demodulating the signal from the positioning satellite when the first acquisition process for acquiring the positioning support information from the ground communication device fails. This corresponds to executing the second acquisition process.
 5.作用効果
 本実施形態によれば、位置算出装置1において、有用条件判定部130は、記憶部200に記憶されたGPS衛星3のエフェメリスが所定の有用条件を満たすか否かを判定する。有用条件判定部130の判定結果が否定判定の場合は、IMES信号捕捉部120が、エフェメリスの算出の基礎となる測位支援情報を送信するIMES送信機5から当該測位支援情報を取得する第1の取得処理を実行する。そして、エフェメリス算出部150は、取得された測位支援情報を用いてエフェメリスのパラメーターを算出して、記憶部200のエフェメリスを更新する。そして、位置算出部160は、GPS衛星3からの信号と、記憶部200に記憶されたエフェメリスとを用いて位置を算出する。
5. Effects According to the present embodiment, in the position calculation device 1, the useful condition determination unit 130 determines whether or not the ephemeris of the GPS satellite 3 stored in the storage unit 200 satisfies a predetermined useful condition. When the determination result of the useful condition determination unit 130 is negative, the IMES signal acquisition unit 120 obtains the positioning support information from the IMES transmitter 5 that transmits the positioning support information that is the basis of the ephemeris calculation. Execute the acquisition process. Then, the ephemeris calculation unit 150 calculates the ephemeris parameters using the acquired positioning support information, and updates the ephemeris in the storage unit 200. Then, the position calculation unit 160 calculates a position using the signal from the GPS satellite 3 and the ephemeris stored in the storage unit 200.
 これにより、GPS衛星3からの信号を利用した位置算出を行う前に、あらかじめ有用なエフェメリスを算出して記憶部200に記憶させておくことが可能となる。そして、GPS衛星3からの信号と、記憶部200に記憶されたエフェメリスとを用いて位置算出装置1の位置を算出することで、位置算出装置1が屋内から屋外に移動した場合にホット条件で位置算出を開始することが可能となり(いわゆるホットスタート)、初期位置算出時間(TTFF)の短縮を実現することができる。 This makes it possible to calculate a useful ephemeris and store it in the storage unit 200 before calculating the position using the signal from the GPS satellite 3. Then, by calculating the position of the position calculation device 1 using the signal from the GPS satellite 3 and the ephemeris stored in the storage unit 200, when the position calculation device 1 moves from the indoor to the outdoor, Position calculation can be started (so-called hot start), and the initial position calculation time (TTFF) can be shortened.
 また、本実施形態では、IMES送信機5から全てのGPS衛星の測位支援情報が送信される。このため、位置算出装置1は、現在の可視衛星の測位支援情報のみならず、将来可視衛星となるGPS衛星の測位支援情報をもIMES送信機5から取得することができる。つまり、将来可視衛星となり得るGPS衛星3についても、あらかじめ屋内においてエフェメリスを算出(推定)して記憶部に記憶させておくことができる。これにより、時間経過に伴い可視衛星が移り変わった場合であっても、速やかに位置算出を開始することが可能となる。 In this embodiment, positioning support information for all GPS satellites is transmitted from the IMES transmitter 5. Therefore, the position calculation device 1 can acquire not only the current visible satellite positioning support information but also the GPS satellite positioning support information that will become a visible satellite in the future from the IMES transmitter 5. In other words, the ephemeris can be calculated (estimated) indoors in advance and stored in the storage unit for the GPS satellite 3 that can be a visible satellite in the future. As a result, even when the visible satellite changes with time, position calculation can be started promptly.
 6.変形例
 本発明を適用可能な実施例は、上記の実施例に限定されることなく、本発明の趣旨を逸脱しない範囲で適宜変更可能であることは勿論である。以下、変形例について説明する。なお、上記実施形態と同一の構成については同一の符号を付して再度の説明を省略する。
6). Modifications Embodiments to which the present invention can be applied are not limited to the above-described embodiments, and can be changed as appropriate without departing from the spirit of the present invention. Hereinafter, modified examples will be described. In addition, about the structure same as the said embodiment, the same code | symbol is attached | subjected and description for the second time is abbreviate | omitted.
 6-1.地上通信装置
 上記の実施形態では、地上通信装置をIMES送信機5として説明したが、IMES送信機5の代わりに、内部或いは外部に送信機能を備えたサーバー装置や、携帯電話やデータ通信用の基地局等の地上通信装置としてもよい。その場合、地上通信装置は、GPS衛星信号と同一の送信方式(送信プロトコルや送信周波数、変調方式など)で送信するように構成すれば好適である。異なる送信方式で送信する場合には、位置算出装置1に、当該送信方式に対応した受信機能を具備させる必要がある。
6-1. Terrestrial communication apparatus In the above embodiment, the terrestrial communication apparatus has been described as the IMES transmitter 5, but instead of the IMES transmitter 5, a server apparatus having a transmission function inside or outside, a mobile phone, or a data communication device A ground communication device such as a base station may be used. In that case, it is preferable that the ground communication apparatus is configured to transmit by the same transmission method (transmission protocol, transmission frequency, modulation method, etc.) as the GPS satellite signal. When transmitting by a different transmission method, the position calculation device 1 needs to have a reception function corresponding to the transmission method.
 6-2.軌道情報の有用条件の判定
 上記の実施形態では、位置算出装置1の記憶部200に記憶されているエフェメリスの有効期間に基づいて当該エフェメリスが有用条件を満たすか否かを判定したが、有用条件を判定するための判断基準は何も有効期間に限られるわけではない。
6-2. Determination of useful condition of trajectory information In the above embodiment, it is determined whether or not the ephemeris satisfies the useful condition based on the effective period of the ephemeris stored in the storage unit 200 of the position calculation device 1. The judgment criteria for judging whether are not limited to the valid period.
 例えば、GPS衛星から放送されるエフェメリスには、軌道情報の信頼性を示す指標値としてURA(User Range Accuracy)インデックス(以下、簡略的に「URA」と称す。)と呼ばれるパラメーター値が格納されている。このURAは「0~15」までの数値で表され、値が小さいほど軌道情報としてのエフェメリスの信頼性が高く、位置算出に適している。そこで、このURAを軌道情報の信頼性指標値とし、このURAに対する閾値判定を行うことで、エフェメリスが有用条件を満たすか否かを判定してもよい。具体的には、例えば、URAが所定の閾値(例えば4)以下であることを有用条件として定めておいてもよい。 For example, an ephemeris broadcast from a GPS satellite stores a parameter value called a URA (User Range Accuracy) index (hereinafter simply referred to as “URA”) as an index value indicating the reliability of orbit information. Yes. This URA is represented by a numerical value from “0 to 15”, and the smaller the value, the higher the reliability of the ephemeris as the trajectory information, which is suitable for position calculation. Therefore, it may be determined whether or not the ephemeris satisfies a useful condition by using the URA as a reliability index value of the orbit information and performing a threshold determination on the URA. Specifically, for example, it may be determined as a useful condition that URA is equal to or less than a predetermined threshold (for example, 4).
 この場合、上記の実施形態で説明したエフェメリスの有効期間と信頼性指標値との組み合わせに基づいて有用条件を満たすか否かの判定を行うようにすると、より効果的である。有効期間内のエフェメリスであったとしても、信頼性の低いエフェメリスを用いて位置算出を行うと、位置算出の正確性が低下するためである。そこで、例えば、有効期限までの残り時間が所定の閾値時間(例えば30分)よりも長く、且つ、URAの値が所定の閾値(例えば4)以下であることを有用条件として定めておいてもよい。 In this case, it is more effective to determine whether or not the useful condition is satisfied based on the combination of the validity period of the ephemeris described in the above embodiment and the reliability index value. This is because even if the ephemeris is within the effective period, if the position calculation is performed using the ephemeris with low reliability, the accuracy of the position calculation is lowered. Therefore, for example, it may be determined as a useful condition that the remaining time until the expiration date is longer than a predetermined threshold time (for example, 30 minutes) and the URA value is not more than a predetermined threshold (for example, 4). Good.
 また、位置算出装置1が記憶部200に記憶させておくエフェメリスは、何もGPS衛星3から放送されているブロードキャストエフェメリスの情報に限られるわけではない。いわゆるサーバーアシストの技術を利用して、サーバーからブロードキャストエフェメリスを取得する構成が考えられる。そこで、サーバーアシストによって取得したこれらのエフェメリスを記憶部200に記憶させておき、これらのエフェメリスを対象として有用条件を判定するようにしてもよい。また、サーバーアシストによって取得するエフェメリスは、いわゆる長期予測エフェメリスであってもよい。 Also, the ephemeris stored in the storage unit 200 by the position calculation device 1 is not limited to broadcast ephemeris information broadcast from the GPS satellite 3. A configuration in which a broadcast ephemeris is acquired from a server using a so-called server assist technology is conceivable. Therefore, these ephemeris obtained by server assist may be stored in the storage unit 200, and useful conditions may be determined for these ephemeris. Further, the ephemeris acquired by server assist may be a so-called long-term predicted ephemeris.
 また、位置算出装置1がIMES送信機5から測位支援情報を受信してエフェメリスを推定した後、当該エフェメリスの有効期間が切れてしまう場合も考えられる。そこで、測位支援情報を用いて算出したエフェメリスの有効期間に基づいて当該エフェメリスの有用条件を判定し、否定判定された場合に、IMES送信機5から測位支援情報を再度取得してエフェメリスを算出し直すこととしてもよい。 Also, after the position calculation device 1 receives the positioning support information from the IMES transmitter 5 and estimates the ephemeris, the valid period of the ephemeris may be expired. Therefore, the useful condition of the ephemeris is determined based on the effective period of the ephemeris calculated using the positioning support information. When the negative determination is made, the ephemeris is calculated by acquiring the positioning support information again from the IMES transmitter 5. It may be fixed.
 つまり、記憶部200に記憶するエフェメリス232(軌道情報)を、1)測位支援情報から算出される第1のエフェメリス(第1の軌道情報)と、2)GPS衛星からの信号を復調することで得られる第2のエフェメリス(第2の軌道情報)との少なくとも1つとする。そして、この2種類のエフェメリスの何れか或いは両方を対象として、図4のステップA3,A5において、有用条件を満たすエフェメリスが記憶部200に記憶されているか否かを判定すればよい。 That is, the ephemeris 232 (orbit information) stored in the storage unit 200 is demodulated by 1) a first ephemeris (first orbit information) calculated from positioning support information and 2) a signal from a GPS satellite. The obtained second ephemeris (second orbit information) is at least one. And what is necessary is just to determine whether the ephemeris which satisfy | fills useful conditions is memorize | stored in the memory | storage part 200 in step A3, A5 of FIG.
 6-3.測位支援情報の生成・送信
 上記の実施形態では、GNSS基地局6がブロードキャストエフェメリスをIMES送信機5に配信することとして説明したが、GNSS基地局6が測位支援情報を生成してIMES送信機5に配信する構成としてもよい。
6-3. Generation / Transmission of Positioning Support Information In the above embodiment, it has been described that the GNSS base station 6 distributes the broadcast ephemeris to the IMES transmitter 5. However, the GNSS base station 6 generates positioning support information and the IMES transmitter 5. It is good also as a structure delivered to.
 また、GNSS基地局6から配信されるブロードキャストエフェメリスに基づいてIMES送信機5が測位支援情報を生成・送信するのではなく、精密暦提供サーバー8から配信される速報暦や超速報暦に基づいてIMES送信機5が全てのGPS衛星3の測位支援情報を生成・送信することとしてもよい。 Further, the IMES transmitter 5 does not generate and transmit the positioning support information based on the broadcast ephemeris distributed from the GNSS base station 6, but based on the breaking calendar or the super breaking bulletin distributed from the precise calendar providing server 8. The IMES transmitter 5 may generate and transmit positioning support information for all GPS satellites 3.
 例えば、精密暦提供サーバー8から、GPS衛星3の位置の決定値及び高精度の予報値を含む超速報暦をIMES送信機5に送信・提供するように構成することが可能である。超速報暦にはGPS衛星3の位置の予報値が含まれているため、原理的にリアルタイムでの利用が可能である。 For example, the precise calendar providing server 8 can be configured to transmit and provide the IMES transmitter 5 with a super-rapid calendar including a determined value of the position of the GPS satellite 3 and a highly accurate forecast value. Since the ultra-rapid calendar contains the predicted value of the position of the GPS satellite 3, it can be used in real time in principle.
 ここで、現在運用されている超速報暦は、一定のサンプル時間間隔毎(例えば15分毎)のサンプル時刻における衛星位置や衛星クロック誤差の離散的なデータとして与えられる。そこで、IMES送信機5は、測位支援情報生成処理において、例えば現在の時刻の直近のサンプル時刻を基準時刻t0として設定し、当該サンプル時刻における衛星位置の予報値を読み出して、測位支援情報に含める衛星位置r0とする。また、基準時刻t0の衛星位置と1つ前のサンプル時刻における衛星位置との間の距離を算出し、算出した距離と、サンプル時間間隔とから、基準時刻t0における衛星速度v0を算出する。 Here, the ultra-rapid calendar currently in operation is given as discrete data of the satellite position and the satellite clock error at the sampling time every fixed sampling time interval (for example, every 15 minutes). Therefore, in the positioning support information generation process, the IMES transmitter 5 sets, for example, the latest sample time of the current time as the reference time t0, reads the predicted value of the satellite position at the sample time, and includes it in the positioning support information The satellite position is r0. Further, the distance between the satellite position at the reference time t0 and the satellite position at the previous sample time is calculated, and the satellite velocity v0 at the reference time t0 is calculated from the calculated distance and the sample time interval.
 また、IMES送信機5が、全てのGPS衛星3の測位支援情報を送信するのではなく、IMES送信機5が設置されている建物や施設等から観測可能なGPS衛星3(以下、「可視衛星」と称す。)の測位支援情報を送信することとしてもよい。この場合、IMES送信機5は、例えば図1に示す屋外GPS受信機7からネットワークNを介して可視衛星のブロードキャストエフェメリスを取得する。そして、取得したブロードキャストエフェメリスを用いて、可視衛星について上記の実施形態と同様に測位支援情報生成処理を行って測位支援情報を生成し、これを送信するようにすればよい。 Further, the IMES transmitter 5 does not transmit the positioning support information of all the GPS satellites 3, but the GPS satellites 3 (hereinafter referred to as “visible satellites”) that can be observed from the building or facility where the IMES transmitter 5 is installed. The positioning support information may be transmitted. In this case, the IMES transmitter 5 acquires a broadcast ephemeris of a visible satellite from the outdoor GPS receiver 7 illustrated in FIG. Then, using the acquired broadcast ephemeris, the positioning support information is generated for the visible satellites in the same manner as in the above-described embodiment, and the positioning support information is generated and transmitted.
 また、上記の実施形態では、IMES送信機5がGNSS基地局6と直接通信を行って配信エフェメリスを取得するようにシステムを構成したが、IMES送信機5による測位支援情報の生成や、測位支援情報の送信のスケジュール管理を実行する配信サーバー9を介在させることとしてもよい。 In the above embodiment, the system is configured such that the IMES transmitter 5 directly communicates with the GNSS base station 6 to acquire the distribution ephemeris. However, the IMES transmitter 5 generates positioning support information and supports positioning. It is good also as interposing the delivery server 9 which performs the schedule management of transmission of information.
 図5は、この場合における位置算出システム1100のシステム構成の一例を示す図である。但し、この図では位置算出装置1及びGPS衛星3については図示を省略している。位置算出システム1100では、複数のIMES送信機5と配信サーバー9とが第1のネットワークN1を介して通信接続され、配信サーバー9と複数のGNSS基地局6とが第2のネットワークN2を介して接続されている。配信サーバー9及び第1のネットワークN1は、IMES送信機5が設置される建物や施設毎に設けることとしてもよいし、例えば一定の区域毎に設けることとしてもよい。 FIG. 5 is a diagram showing an example of the system configuration of the position calculation system 1100 in this case. However, in this drawing, the position calculation device 1 and the GPS satellite 3 are not shown. In the position calculation system 1100, a plurality of IMES transmitters 5 and a distribution server 9 are communicatively connected via a first network N1, and the distribution server 9 and a plurality of GNSS base stations 6 are connected via a second network N2. It is connected. The distribution server 9 and the first network N1 may be provided for each building or facility where the IMES transmitter 5 is installed, or may be provided for each fixed area, for example.
 配信サーバー9は、第2のネットワークN2を介してGNSS基地局6から配信エフェメリスを取得する。そして、取得した配信エフェメリスを用いて上記の実施形態と同様に測位支援情報生成処理を行って測位支援情報を生成する。そして、生成した測位支援情報を第1のネットワークN1を介してIMES送信機5に送信するとともに、IMES送信機5による測位支援情報の送信タイミングや送信スケジュールを制御する。 The distribution server 9 acquires the distribution ephemeris from the GNSS base station 6 via the second network N2. Then, using the acquired distribution ephemeris, positioning support information generation processing is performed in the same manner as in the above embodiment to generate positioning support information. Then, the generated positioning support information is transmitted to the IMES transmitter 5 via the first network N1, and the transmission timing and transmission schedule of the positioning support information by the IMES transmitter 5 are controlled.
 配信サーバー9がIMES送信機5に送信する測位支援情報は、全てのGPS衛星3の測位支援情報としてもよいし、IMES送信機5が設置された建物や施設等から観測可能な可視衛星の測位支援情報としてもよい。後者の場合は、例えばIMES送信機5が設置された建物や施設等の位置情報を配信サーバー9にデータベース化しておき、このデータベース化された位置情報に基づいてIMES送信機5が設置された建物や施設等から観測可能な可視衛星を判定して、当該可視衛星の測位支援情報を生成するようにすればよい。 The positioning support information transmitted from the distribution server 9 to the IMES transmitter 5 may be the positioning support information of all GPS satellites 3 or the positioning of visible satellites that can be observed from the building or facility where the IMES transmitter 5 is installed. It may be support information. In the latter case, for example, the location information of the building or facility where the IMES transmitter 5 is installed is stored in the distribution server 9 as a database, and the building where the IMES transmitter 5 is installed based on the location information stored in the database. What is necessary is to determine a visible satellite that can be observed from a facility or the like and generate positioning support information for the visible satellite.
 6-4.IMES送信機からのエフェメリスの提供
 上記の実施形態では、IMES送信機5が、GPS衛星3の位置及び速度を含む測位支援情報を送信することとして説明したが、その代わりに、ブロードキャストエフェメリスを送信するようにしてもよい。IMES送信機5が送信するブロードキャストエフェメリスは、GNSS基地局6や配信サーバー9から取得することができる。
6-4. Providing Ephemeris from IMES Transmitter In the above embodiment, IMES transmitter 5 has been described as transmitting positioning support information including the position and velocity of GPS satellite 3, but instead, broadcast ephemeris is transmitted. You may do it. The broadcast ephemeris transmitted by the IMES transmitter 5 can be acquired from the GNSS base station 6 or the distribution server 9.
 また、この場合において、IMES送信機5から送信するブロードキャストエフェメリスは、全てのGPS衛星3のブロードキャストエフェメリスとしてもよいし、可視衛星のブロードキャストエフェメリスとしてもよい。 In this case, the broadcast ephemeris transmitted from the IMES transmitter 5 may be the broadcast ephemeris of all GPS satellites 3 or the broadcast ephemeris of visible satellites.
 また、日本の衛星測位システムにおける人工衛星である準天頂衛星からは、サブメーター級補強信号であるL1-SAIF(Submeter-class Augmentation with Integrity Function)信号が送信されている。現状のL1-SAIF信号で配信している情報の1つにAFF(Almanac for First Fix)がある。そこで、例えばIMES送信機5からAFFを送信させるようにすることも可能である。 Also, a submeter-class augmentation signal L1-SAIF (Submeter-class Augmentation with Integrity Function) signal is transmitted from the quasi-zenith satellite, which is an artificial satellite in the Japanese satellite positioning system. One of the information distributed by the current L1-SAIF signal is AFF (Almanac for First Fix). Therefore, for example, the AFF can be transmitted from the IMES transmitter 5.
 6-5.GPS衛星の位置算出
 上記の実施形態では、位置算出装置1が、測位支援情報からGPS衛星3の衛星軌道(軌道関数r(t))を求め、この衛星軌道を表すエフェメリスを算出(推定)することにした。しかし、位置算出装置1が、衛星軌道(軌道関数r(t))からGPS衛星3の位置を直接求め、この衛星位置を用いて位置算出を行うことにしてもよい。つまり、各GPS衛星3について、予測される衛星軌道(すなわち、衛星軌道を表す軌道関数r(t))を算出した後、この予測軌道から、測位時刻tにおける当該GPS衛星3の位置を算出して位置計算に用いることとしてもよい。
6-5. Position calculation of GPS satellite In the above embodiment, the position calculation device 1 obtains the satellite orbit (orbit function r (t)) of the GPS satellite 3 from the positioning support information, and calculates (estimates) the ephemeris representing this satellite orbit. It was to be. However, the position calculation apparatus 1 may directly obtain the position of the GPS satellite 3 from the satellite orbit (orbit function r (t)) and perform position calculation using this satellite position. That is, after calculating the predicted satellite orbit (that is, the orbit function r (t) representing the satellite orbit) for each GPS satellite 3, the position of the GPS satellite 3 at the positioning time t is calculated from the predicted orbit. It may be used for position calculation.
 そして、このようにして算出した衛星位置を用いて、例えば擬似距離を利用した公知の位置計算を行って位置を算出することとしてもよい。これによれば、予測軌道からエフェメリスを算出したり、GPS衛星信号を継続的に受信してエフェメリスを取得したりする必要が無くなるという効果が得られる。 Then, using the satellite position calculated in this way, for example, a known position calculation using a pseudorange may be performed to calculate the position. According to this, it is possible to obtain an effect that it is not necessary to calculate the ephemeris from the predicted trajectory or to acquire the ephemeris by continuously receiving the GPS satellite signal.
 6-6.測位支援情報のデータ内容
 上記の実施形態では、ある基準時刻t0における衛星位置r0及び衛星速度v0という1つの位置情報と1つの速度情報とが測位支援情報に含まれる例を挙げて説明したが、複数の基準時刻における位置情報及び速度情報を含んでいてもよい。
6-6. Data content of positioning support information In the above embodiment, the positioning support information includes one position information and one speed information of the satellite position r0 and the satellite speed v0 at a certain reference time t0. Position information and speed information at a plurality of reference times may be included.
 6-7.衛星測位システム
 また、上記の実施形態では、GPS衛星3のエフェメリスを取得して位置算出を行う位置算出装置1を例に挙げて説明したが、WAAS(Wide Area Augmentation System)、GLONASS(GLObal NAvigation Satellite System)、GALILEO、Beidou等のGNSS衛星を用いた衛星測位システムとしてもよい。
6-7. In the above-described embodiment, the position calculation apparatus 1 that acquires the ephemeris of the GPS satellite 3 and calculates the position has been described as an example. System), GALILEO, Beidou, and other GNSS satellites may be used.
 1 位置算出装置、3 GPS衛星、5 IMES送信機、6 GNSS基地局、7 屋外GPS受信機、8 精密暦提供サーバー、9 配信サーバー、10 アンテナ、20 衛星信号受信部、21 RF受信回路部、22 ベースバンド処理回路部、30 ホスト処理部、31 操作部、32 表示部、33 音出力部、34 時計部、35 記憶部、100 処理部、200 記憶部、1000、1100 位置算出システム。 1 position calculation device, 3 GPS satellite, 5 IMES transmitter, 6 GNSS base station, 7 outdoor GPS receiver, 8 precision calendar provision server, 9 distribution server, 10 antenna, 20 satellite signal receiver, 21 RF receiver circuit, 22 baseband processing circuit unit, 30 host processing unit, 31 operation unit, 32 display unit, 33 sound output unit, 34 clock unit, 35 storage unit, 100 processing unit, 200 storage unit, 1000, 1100 position calculation system.

Claims (8)

  1.  位置算出装置の制御方法であって、
     記憶部に記憶された測位用衛星の軌道情報が所定の有用条件を満たすか否かを判定することと、
     前記判定の結果が否定判定の場合に、前記軌道情報の算出の基礎となる測位支援情報を送信する地上通信装置から当該測位支援情報を取得する第1の取得処理を実行することと、
     前記取得された測位支援情報を用いて前記軌道情報を算出して、前記記憶部に記憶された軌道情報を更新することと、
     前記測位用衛星からの信号と、前記記憶部に記憶された軌道情報とを用いて前記位置算出装置の位置を算出することと、
     を含む制御方法。
    A control method for a position calculating device, comprising:
    Determining whether or not the positioning satellite orbit information stored in the storage unit satisfies a predetermined useful condition;
    Executing a first acquisition process for acquiring the positioning support information from the ground communication device that transmits the positioning support information that is the basis of the calculation of the trajectory information when the determination result is negative;
    Calculating the trajectory information using the acquired positioning support information, and updating the trajectory information stored in the storage unit;
    Calculating the position of the position calculating device using a signal from the positioning satellite and orbit information stored in the storage unit;
    Control method.
  2.  前記軌道情報には、1)前記測位支援情報から算出される第1の軌道情報と、2)前記測位用衛星からの信号を復調することで得られる第2の軌道情報との少なくとも1つが含まれる、
     請求項1に記載の制御方法。
    The orbit information includes at least one of 1) first orbit information calculated from the positioning support information and 2) second orbit information obtained by demodulating a signal from the positioning satellite. The
    The control method according to claim 1.
  3.  前記第1の取得処理が失敗した場合に、前記測位用衛星からの信号を復調することで前記軌道情報を取得する第2の取得処理を実行することをさらに含む、
     請求項1又は2に記載の制御方法。
    Further comprising executing a second acquisition process for acquiring the orbit information by demodulating a signal from the positioning satellite when the first acquisition process fails.
    The control method according to claim 1 or 2.
  4.  前記地上通信装置は、前記測位用衛星とは異なる拡散符号を用いて、前記測位用衛星と同一のスペクトラム拡散方式で前記測位支援情報を送信する装置であり、
     前記取得することは、前記第1の取得処理における前記地上通信装置からの信号の受信と、前記第2の取得処理における前記測位用衛星からの信号の受信とを、前記拡散符号を切り替えることで実現することを含む、
     請求項3に記載の制御方法。
    The ground communication device is a device that transmits the positioning support information in the same spread spectrum method as the positioning satellite using a spreading code different from the positioning satellite,
    The acquisition is performed by switching the spreading code between reception of a signal from the ground communication device in the first acquisition process and reception of a signal from the positioning satellite in the second acquisition process. Including realizing,
    The control method according to claim 3.
  5.  前記測位支援情報には、前記測位用衛星の位置と速度の情報及び時刻情報が含まれており、
     前記軌道情報を算出することは、地球を周回する衛星の運動を表わす運動方程式と、前記測位支援情報に含まれる前記測位用衛星の位置と速度の情報及び時刻情報とを用いて、前記軌道情報を算出することである、
     請求項1~4の何れか一項に記載の制御方法。
    The positioning support information includes position and speed information and time information of the positioning satellite,
    The orbit information is calculated using the equation of motion representing the motion of the satellite orbiting the earth, the position and velocity information of the positioning satellite included in the positioning support information, and the time information. Is to calculate
    The control method according to any one of claims 1 to 4.
  6.  前記記憶部には、前記軌道情報と対応付けて当該軌道情報の有効期間が記憶されており、
     前記判定することは、前記有効期間に基づいて前記有用条件を満たすか否かを判定することを含む、
     請求項1~5の何れか一項に記載の制御方法。
    The storage unit stores an effective period of the trajectory information in association with the trajectory information,
    The determining includes determining whether the useful condition is satisfied based on the validity period.
    The control method according to any one of claims 1 to 5.
  7.  前記記憶部には、前記軌道情報と対応付けて当該軌道情報の信頼性指標値が対応付けて記憶されており、
     前記判定することは、前記有効期間と前記信頼性指標値との組み合わせに基づいて前記有用条件を満たすか否かを判定することを含む、
     請求項6に記載の制御方法。
    In the storage unit, a reliability index value of the trajectory information is stored in association with the trajectory information,
    The determining includes determining whether the useful condition is satisfied based on a combination of the validity period and the reliability index value.
    The control method according to claim 6.
  8.  測位用衛星の軌道情報を記憶する記憶部と、
     前記記憶部に記憶された軌道情報が所定の有用条件を満たすか否かを判定する判定部と、
     前記判定部の判定結果が否定判定の場合に、前記軌道情報の算出の基礎となる測位支援情報を送信する地上通信装置から当該測位支援情報を取得する取得部と、
     前記取得された測位支援情報を用いて前記軌道情報を算出して、前記記憶部に記憶された軌道情報を更新する算出部と、
     前記測位用衛星からの信号と、前記記憶部に記憶された軌道情報とを用いて前記位置算出装置の位置を算出する位置算出部と、
     を備えた位置算出装置。
    A storage unit for storing orbit information of positioning satellites;
    A determination unit that determines whether or not the trajectory information stored in the storage unit satisfies a predetermined useful condition;
    When the determination result of the determination unit is a negative determination, an acquisition unit that acquires the positioning support information from the ground communication device that transmits the positioning support information that is the basis of the calculation of the trajectory information;
    A calculation unit that calculates the trajectory information using the obtained positioning support information and updates the trajectory information stored in the storage unit;
    A position calculation unit that calculates a position of the position calculation device using a signal from the positioning satellite and orbit information stored in the storage unit;
    A position calculation device comprising:
PCT/JP2013/006003 2012-11-30 2013-10-08 Control method for position calculating device and position calculating device WO2014083745A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012262424A JP2014109442A (en) 2012-11-30 2012-11-30 Control method for position calculation device and position calculation device
JP2012-262424 2012-11-30

Publications (1)

Publication Number Publication Date
WO2014083745A1 true WO2014083745A1 (en) 2014-06-05

Family

ID=50827410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/006003 WO2014083745A1 (en) 2012-11-30 2013-10-08 Control method for position calculating device and position calculating device

Country Status (2)

Country Link
JP (1) JP2014109442A (en)
WO (1) WO2014083745A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023023665A1 (en) * 2021-08-20 2023-02-23 Qualcomm Incorporated Ephemeris information signaling
CN116609813A (en) * 2023-05-17 2023-08-18 北京星网宇达科技股份有限公司 Satellite orbit position determining system, method, equipment and storage medium

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019060624A (en) 2017-09-25 2019-04-18 カシオ計算機株式会社 Satellite radio wave receiver, electronic timepiece, positioning control method and program
WO2021020306A1 (en) * 2019-07-29 2021-02-04 京セラ株式会社 Traffic communication system, base station, mobile station, and vehicle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001208498A (en) * 2000-01-26 2001-08-03 Mitsubishi Electric Corp Airframe guiding system
JP2011047922A (en) * 2009-08-25 2011-03-10 Media Tek Inc Method and device for using gnss satellite trajectory extension information
JP2012145342A (en) * 2011-01-07 2012-08-02 Furuno Electric Co Ltd Message data receiving method, message data receiving program, message data receiving device, gnss signal receiving method, gnss signal receiving program, gnss signal receiving device, and mobile terminal

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1031061A (en) * 1996-07-16 1998-02-03 Matsushita Electric Ind Co Ltd Position detecting device
JP2005069767A (en) * 2003-08-21 2005-03-17 Fujitsu Ltd Gps orbital data providing system
JP5685828B2 (en) * 2010-03-31 2015-03-18 富士通株式会社 Portable portable terminal, positioning program and positioning system for portable portable terminal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001208498A (en) * 2000-01-26 2001-08-03 Mitsubishi Electric Corp Airframe guiding system
JP2011047922A (en) * 2009-08-25 2011-03-10 Media Tek Inc Method and device for using gnss satellite trajectory extension information
JP2012145342A (en) * 2011-01-07 2012-08-02 Furuno Electric Co Ltd Message data receiving method, message data receiving program, message data receiving device, gnss signal receiving method, gnss signal receiving program, gnss signal receiving device, and mobile terminal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023023665A1 (en) * 2021-08-20 2023-02-23 Qualcomm Incorporated Ephemeris information signaling
CN116609813A (en) * 2023-05-17 2023-08-18 北京星网宇达科技股份有限公司 Satellite orbit position determining system, method, equipment and storage medium
CN116609813B (en) * 2023-05-17 2024-04-02 北京星网宇达科技股份有限公司 Satellite orbit position determining system, method, equipment and storage medium

Also Published As

Publication number Publication date
JP2014109442A (en) 2014-06-12

Similar Documents

Publication Publication Date Title
US8255160B2 (en) Integrated mobile terminal navigation
KR100964933B1 (en) Method and apparatus for using long term satellite tracking data in a remote receiver
US7564406B2 (en) Method and apparatus in standalone positioning without broadcast ephemeris
EP1851564B1 (en) Method and apparatus for enhanced autonomous gps
CN110488328B (en) Message receiving and sending method and system for low-orbit satellite navigation enhancement platform
US20150070211A1 (en) Method, System and Device for Position Determination with Predicted Ephemeris
US20080270026A1 (en) Method and apparatus in positioning without broadcast ephemeris
US8164518B2 (en) Method and system for a GNSS receiver with self-assisted ephemeris extensions
US8446315B2 (en) Method for providing satellite orbit ephemeris, server, and positioning system
US20120166081A1 (en) Position calculation method and position calculation system
US20050225483A1 (en) Method and apparatus for adjusting acquisition assistance data received by a mobile receiver from a server
JP2007017185A (en) System and method for transmitting positioning signal
WO2014083745A1 (en) Control method for position calculating device and position calculating device
US8259011B2 (en) Long term compact satellite models
JP2010127672A (en) Position calculating method and position calculating device
US20110193741A1 (en) Satellite signal tracking method, position calculating method, and position calculating device
CN110927746B (en) Positioning system, virtual station control device, and virtual satellite station control method
JP5302902B2 (en) Method and system for capturing GPS signals and quickly determining the location of a user receiver
US20100019959A1 (en) Satellite orbital data compression method, satellite orbital data providing method, satellite orbital data expansion method, server, and positioning apparatus
WO2014020818A1 (en) Position calculation method and position calculator
JP2014215146A (en) Position calculation method and position calculation device
JP6152663B2 (en) Method for controlling position calculation apparatus and position calculation apparatus
JP2011164088A (en) Method for tracking satellite signal, method for calculating position, device for tracking satellite signal and device for calculating position
JP5267478B2 (en) Satellite signal tracking method and position calculation apparatus
US20160174037A1 (en) Autonomous in-device gnss augmentation system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13857722

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13857722

Country of ref document: EP

Kind code of ref document: A1