CN103184717A - 一种ac-20沥青混合料的设计方法 - Google Patents

一种ac-20沥青混合料的设计方法 Download PDF

Info

Publication number
CN103184717A
CN103184717A CN2013100485332A CN201310048533A CN103184717A CN 103184717 A CN103184717 A CN 103184717A CN 2013100485332 A CN2013100485332 A CN 2013100485332A CN 201310048533 A CN201310048533 A CN 201310048533A CN 103184717 A CN103184717 A CN 103184717A
Authority
CN
China
Prior art keywords
oac
test specimen
bituminous mixture
bitumen aggregate
mix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013100485332A
Other languages
English (en)
Other versions
CN103184717B (zh
Inventor
蒋应军
李宁方
薛金顺
张宜伟
徐晓兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changan University
Original Assignee
Changan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changan University filed Critical Changan University
Priority to CN201310048533.2A priority Critical patent/CN103184717B/zh
Publication of CN103184717A publication Critical patent/CN103184717A/zh
Application granted granted Critical
Publication of CN103184717B publication Critical patent/CN103184717B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Road Paving Structures (AREA)

Abstract

本发明公开了一种AC-20沥青混合料的设计方法,采用垂直振动法设计,包括原材料选择及测试、矿料级配的设计、最佳油石比的确定和性能的检验等步骤,经试验验证表明,该方法所设计的沥青混合料,路用性能好、沥青用量少且操作简便,并可节约沥青8%~10%。

Description

一种AC-20沥青混合料的设计方法
技术领域
本发明属于交通土建工程应用技术领域,涉及一种AC-20沥青混合料VVTM设计方法,该设计方法可减少沥青用量,提高沥青混合料的路用性能,且操作简便,适合大规模推广应用。 
背景技术
目前AC-20沥青混合料的设计方法主要有马歇尔法、GTM法、Hveem法。GTM法所采用的设备昂贵不利于推广采用;Hveem法设计结果与现场关联度较差。目前马歇尔法仍是大多数国家进行沥青混合料设计的主要方法。 
我国AC-20沥青混合料普遍采用《公路沥青路面施工技术规范》(JTG F40-2004)(简称JTG F40-2004)中的马歇尔设计法,其步骤如下: 
(1)根据JTG F40-2004技术要求,选择原材料; 
(2)AC-20沥青混合料的级配范围符合表1的要求; 
表1:AC-20沥青混合料矿料级配范围 
筛孔尺寸(mm) 26.5 19 16 13.2 9.5 4.75 2.36 1.18 0.6 0.3 0.15 0.075
通过率(%) 100 90~100 78~92 62~80 50~72 26~56 16~44 12~33 8~24 5~17 4~13 3~7
(3)以预估的油石比为中值,按一定间隔(通常为0.3%~0.5%)等间距的向两侧扩展,取5个或5个以上不同的油石比分别成型马歇尔试件; 
(4)测定马歇尔试件的密度,并计算试件的空隙率、沥青饱和度、矿料间隙率等体积参数;采用马歇尔试验仪,测其马歇尔稳定度与流值; 
(5)以油石比为横坐标,以马歇尔试验的各项指标为纵坐标,将试验结果点入图中,连成圆滑的曲线;取密度最大值、稳定度最大值、规定空隙率范围的中值、规定饱和度范围的中值对应的油石比a1、a2、a3、a4,求取平均值作为OAC1;以各项指标均符合JTG F40-2004中AC-20沥青混合料马歇尔试验技术标准要求(不含VMA)的油石比范围OACmin~OACmax中值作为OAC2;取OAC1与OAC2的平均值作为最佳油石比OAC; 
(6)根据最佳油石比OAC制作车辙板和马歇尔试件,按照《公路工程沥青及沥青混合料试验规程》(JTG E20-2011)(以下简称JTG E20-2011)进行路用性能检验:包 括车辙试验、浸水马歇尔试验和冻融劈裂试验;不符合要求的沥青混合料,必须更换材料或重新进行配合比设计。 
马歇尔设计方法具有以下局限性: 
(1)马歇尔设计法的成型方式不能准确模拟车轮对路面的压实作用。击实功与交通量大小之间没有内在联系,成型试件密度无法反映通车多年后路面密度,其试件物理力学性能与实际路面不符; 
(2)马歇尔设计法已不适应现代交通发展需要。现行马歇尔法设计沥青混合料的各项技术标准均是根据20世纪80年代初的交通量提出的,而目前干线公路的交通状况已发生了显著的变化,呈现“大流量、重轴载”特点,显然马歇尔法提出的各项技术标准已不能满足现行交通对路面性能的要求。 
发明内容
针对上述现有技术存在的缺陷或不足,本发明的目的在于,提供一种AC-20沥青混合料的设计方法,该方法设计的AC-20沥青混合料性能好、沥青用量少且操作简便。 
为了实现上述任务,本发明采取如下的技术解决方案: 
一种AC-20沥青混合料的设计方法,其特征在于,该方法采用垂直振动法设计,具体按照以下步骤进行: 
1)原材料选择及测试 
从工程实际使用的材料中取代表性样品,对其技术指标进行测试; 
2)矿料级配的设计 
根据工程级配设计范围和各组成材料筛分试验资料,计算符合要求级配范围的各组成材料用量比例; 
3)最佳油石比的确定 
A、垂直振动试件的制作 
根据工程经验预估油石比Pa,并采用垂直振动分别制作油石比为Pa、Pa±(0.3~0.5)、Pa±(0.6~1.0)的5组试件;垂直振动试件成型步骤如下: 
(1)用蘸有少许黄油的棉纱擦拭内径100mm×高度180mm的试模内侧及垫块,并置于100℃烘箱中加热1h; 
(2)根据粘度曲线确定沥青混合料的拌和温度、压实温度,并按JTG E20-2011规定将沥青加热至混合料拌合温度; 
(3)根据工程经验预估压实后沥青混合料密度ρf,则一个试件质量为 M=ρf×π×52×6.35。根据各规格集料比例和试件质量M,预估一个试件所需的各规格集料的用量Mk,(k=1,2,3,4,5),所述M1、M2、M3、M4、M5和M6分别代表19~26.5mm、9.5~19mm、4.75~9.5mm、2.36~4.75mm、机制砂和矿粉的质量; 
(4)称取一份各规格集料的用量为Mk×(1.1~1.2),(k=1,2,3,4,5),并将其拌合均匀;称取一份矿粉的用量为M6×(1.1~1.2);分别置于规定拌和温度的烘箱中加热4~5h; 
(5)从烘箱中取出步骤(4)中的混合料置于预热至规定拌和温度的沥青混合料拌和锅内,并用小铲适当拌和; 
(6)从烘箱中取出加热好的沥青,称取所需的沥青质量mi,加入步骤(5)中的沥青混合料拌和锅内,开动拌和锅拌和90s;其中: 
m i = ( 1.1 ~ 1.2 ) × Σ k = 1 6 M k [ 3.3 + 0.5 ( i - 1 ) ] % , i是指第i组油石比,i=1,2,3,4,5; 
(7)从烘箱中取出已加热好的矿粉,加入步骤(6)中沥青混合料拌和锅内,再次开动拌和锅拌和90s; 
(8)从沥青混合料拌和锅中取出已拌和好的沥青混合料,并称取1个试件所需混合料用量,放入预热至100℃的金属盘中; 
(9)从烘箱中取出预热至100℃的试模和垫块,并用蘸有少许黄油的棉纱擦拭试模内侧、垫块及振动锤底面。将垫块装入试模内并垫入一张吸油性小的圆形纸片,要求垫块底部平整。然后将沥青混合料均匀装入试模中,沥青混合料用大螺丝刀沿周边插捣15~20次、中间10~15次。插捣后将沥青混合料表面整平成凸圆弧面; 
(10)插入温度计至装好的沥青混合料中心附近,测定沥青混合料温度是否符合JTG E20-2011要求的压实温度; 
(11)待混合料达到要求的压实温度后,在装好的混合料顶面垫一张吸油性小的圆纸,然后将试模连同垫块固定到振动压实仪上,放下振动锤使其与沥青混合料接触,开启振动压实仪振动压实60±5s。 
振动压实仪参数配置为振动频率:37±2Hz、名义振幅:1.4±0.2mm、上车系统重量1.2±0.2kN、下车系统重量1.8±0.2kN; 
(12)振动压实结束后,将试模连同垫块从振动压实仪上取下,取掉试件顶面的圆形纸片,量取试件高度。试件标准高度为63.5±1.3mm。如不符合标准高度要求时, 试件作废,并按公式①调整试件混合料质量,并按步骤(8)~(12)重新制备试件直到高度符合标准要求为止; 
Figure BDA00002826565400041
(13)将装有成型试件的试模连同垫块冷却至室温,脱出试件,并取掉试件底面的圆形纸片; 
(14)重复步骤(7)~(13)制作6个试件; 
(15)按步骤(6)~(14)制作第i组油石比的VVTM试件。 
B、垂直振动试件物理力学指标的测试 
测试不同油石比的垂直振动试件的毛体积密度ρf、马歇尔稳定度MS和流值FL,计算其空隙率VV、矿料间隙率VMA、沥青饱和度VFA等物理力学指标。 
C、油石比与物理力学指标关系图的绘制 
根据沥青混合料垂直振动试件物理力学指标测试结果,以油石比为横坐标,以毛体积密度、空隙率、饱和度、稳定度、流值为纵坐标,将试验结果绘制成油石比与各项指标的关系曲线。 
D、确定最佳油石比 
(1)OAC1的确定 
根据油石比与各项指标的关系曲线图,取密度最大值、稳定度最大值、规定空隙率范围的中值、规定饱和度范围的中值所对应的油石比为a1、a2、a3、a4,求取平均值作为最佳油石比初始值OAC1,见公式②; 
OAC1=(a1+a2+a3+a4)/4② 
(2)OAC2的确定 
根据垂直振动法(VVTM)设计技术标准(见表2),以各项指标均符合表2中垂直振动法(VVTM)设计技术标准要求(不含VMA)的油石比范围OACmin~OACmax中值作为最佳油石比初始值OAC2,见公式③; 
OAC2=(OACmin+OACmax)/2③ 
表2:AC-20沥青混合料垂直振动法(VVTM)设计技术标准 
试件尺(mm) VV(%) VFA(%) VMA(%) MS(kN) FL(mm)
Φ101×h63.5 2.5~4.0 70~80 ≥11 ≥12.5 1.5~4
(3)最佳油石比OAC的确定 
取OAC1与OAC2的平均值作为沥青混合料的最佳油石比OAC,见公式④; 
OAC=(OAC1+OAC2)/2④ 
4)性能的检验 
对上述确定的配合比按JTG E20-2011要求进行高温稳定性能、低温抗裂性能和水稳定性能的检验。 
采用本发明设计的AC-20沥青混合料,经试验验证表明,其路用性能好,并可节约沥青8%~10%。 
附图说明
图1为油石比~密度关系曲线图; 
图2为油石比~马歇尔稳定度关系曲线图; 
图3为油石比~空隙率关系曲线图; 
图4为油石比~沥青饱和度关系曲线图; 
图5为油石比公共范围图。 
下面结合附图和实施例对本发明进一步详细描述。 
具体实施方式
参见图1、2、3、4和图5,本实施例给出一种AC-20沥青混合料VVTM设计方法,采用垂直振动法(VVTM)设计,具体按照以下步骤进行:1、原材料选择及测试 
采用新疆克拉玛依A级70#沥青,山西柳林的石灰岩碎石、机制砂、矿粉。其技术性质试验结果见表3~表6。 
表3:沥青技术性质 
表4:粗集料的技术性质 
Figure BDA00002826565400052
Figure BDA00002826565400061
表5:细集料的技术性质 
表观密度(g/cm3 坚固性(%) 含泥量(%) 砂当量(%) 亚甲蓝值(g/kg) 棱角性(s)
2.720 7.0 7.2 72.0 10.1 33.0
表6:矿粉技术性质 
表观密度(g/cm3 含水量(%) 亲水系数 加热安定性
2.687 0.5 0.83 加热前后没有明显变化
经检测,原材料各项技术指标均满足JTG F40-2004技术要求。 
2、矿料级配的设计 
矿质混合料级配要求见表7,计算符合要求级配范围的各组成材料用量比例见表8。 
表7:矿料级配范围要求 
Figure BDA00002826565400062
表8:各规格集料的用量比例 
集料尺寸(mm) 19~26.5 9.5~19 4.75~9.5 2.36~4.75 机制砂 矿粉
百分比(%) 7 33 18 8 30.5 3.5
3、最佳油石比的确定 
3.1试件的制作 
根据工程经验预估油石比Pa=4.3%,采用VVTM分别制作油石比为3.3%、3.8%、4.3%、4.8%和5.3%的5组混合料试件,每组试件6个。步骤如下: 
(1)用蘸有少许黄油的棉纱擦拭试模内侧及垫块,并置于100℃烘箱中加热1h 备用,所述试模内径100mm×高度180mm,垫块厚度为40mm、直径为150mm; 
(2)根据粘度曲线确定该沥青混合料的拌和温度为160℃~175℃、压实温度为140℃~170℃,按JTG E20-2011规定将沥青用加热至170℃; 
(3)根据工程经验预估压实后沥青混合料密度ρf=2.50g/cm3,则一个试件质量为M=ρf×π×52×6.35=1246g。根据各规格集料比例,预估一个试件所需的各规格集料用量为Mk,(k=1,2,3,4,5,6),所述M1、M2、M3、M4、M5和M6分别代表19~26.5mm、9.5~19mm、4.75~9.5mm、2.36~4.75、机制砂和矿粉的质量; 
(4)称取一份各规格的集料用量为1.1Mk,(k=1,2,3,4,5),见表9,并拌合均匀;称取一份矿粉的用量为1.1M6,见表9;分别置于大于拌和温度的烘箱中加热4~5h; 
表9:各组成材料用量 
集料尺寸(mm) 19~26.5 9.5~19 4.75~9.5 2.36~4.75 机制砂 矿粉
质量(g) 100 472 257 115 436 50
(5)从烘箱中取出步骤(4)中加热好的混合料置于预热至175℃沥青混合料拌和锅中,并用小铲适当拌和; 
(6)从烘箱中取出已加热好的沥青,称取所需的沥青质量m1,加入步骤(5)中的沥青混合料拌和锅内,开动拌和锅拌和90s;i是指第i组油石比,i=1,2,3,4,5; 
(7)从烘箱中取出已加热好的矿粉50g,加入步骤(6)中沥青混合料拌和锅内,再次开动拌和锅拌和90s; 
(8)从沥青混合料拌和锅中取出已拌和好的沥青混合料,并称取1个试件所需混合料用量mj1(约1380g),放入预热至100℃的金属盘中; 
(9)从烘箱中取出预热至100℃的试模和垫块,并用蘸有少许黄油的棉纱擦拭试模、垫块及振动锤底面。然后将垫块装入试模内并垫入一张吸油性小的圆形纸片,要求垫块底部平整。然后将沥青混合料均匀装入试模中,沥青混合料均用大螺丝刀沿周边插捣15次、中间10次。插捣后将沥青混合料表面整平成凸圆弧面; 
(10)插入温度计至装好的沥青混合料中心附近,测定沥青混合料温度145℃,符合JTG E20-2011要求的压实温度; 
(11)在装好的混合料顶面垫一张吸油性小的圆纸,然后将试模连同垫块固定到 振动压实仪上,放下振动锤使其与沥青混合料接触,开启振动压实仪振动压实60s。振动压实仪参数配置为振动频率37±2Hz、名义振幅1.4±0.2mm、上车系统重量1.2±0.2kN、下车系统重量1.8±0.2kN; 
(12)振动压实结束后,将试模连同垫块从振动压实仪上取下,立即取掉试件顶面的圆纸片,用游标卡尺量取高度65.2mm,不符合试件标准高度为63.5±1.3mm的要求;根据公式①重新调整一个试件所需的沥青混合料用量为mj2: 
m j 2 = 63.5 × 1380 65.2 = 1344
按步骤(8)~步骤(12)成型试件,量取试件高度为63.5mm,符合试件标准高度为63.5±1.3mm的要求; 
(13)将装有成型试件的试模连同垫块冷却至室温,脱出试件,并取掉试件底面的圆形纸片; 
(14)重复步骤(7)~步骤(13)制作6个试件; 
(15)按步骤(6)~步骤(14)制作第i组油石比的试件。 
3.2试件物理力学指标的测试 
测试不同油石比的VVTM试件的毛体积密度ρf、马歇尔稳定度MS和流值FL,计算其空隙率VV、矿料间隙率VMA、沥青饱和度VFA,试验结果见表10。 
表10:AC-20沥青混合料VVTM试件物理-力学指标 
试件组号 Pa(%) ρf(g/cm3 VV(%) VMA(%) VFA(%) MS(%) FL(mm)
1 3.3 2.444 5.0 12.6 60.5 19.05 2.14
2 3.8 2.475 3.1 11.9 74.1 24.92 2.47
3 4.3 2.484 2.3 12.3 81.4 26.35 3.3
4 4.8 2.475 1.9 13.0 85.3 24.37 3.63
5 5.3 2.456 1.8 13.9 86.8 18.48 3.80
技术指标 - - 2.5~4.0 ≥11.0 70~80 ≥12.5 1.5~4
3.3油石比与物理力学指标关系图的绘制 
根据表10沥青混合料VVTM试件物理力学指标测试结果,以油石比为横坐标,以毛体积密度、空隙率、饱和度、稳定度、流值为纵坐标,将试验结果绘制成油石比与各项指标的关系曲线,如图1~图5。 
3.4OAC1的确定 
由图1可知,密度最大值对应的油石比a1=4.30%; 
由图2可知,马歇尔稳定度最大值对应的油石比a2=4.25%; 
由图3可知,规定空隙率范围中值对应的油石比a3=3.74%; 
由图4可知,规定饱和度范围中值对应的油石比a4=3.83% 
最佳油石比初始值OAC1: 
OAC 1 = a 1 + a 2 + a 3 + a 4 4 = 4.30 % + 4.25 % + 3.74 % + 3.83 % 4 = 4.03 %
3.5OAC2的确定 
由图5可知,油石比的公共范围为: 
OACmin=3.45% 
OACmax=3.95% 
最佳油石比初始值OAC2: 
OAC2=(OACmin+OACmax)/2=(3.45%+3.95%)/2=3.70% 
3.6最佳油石比OAC的确定 
根据公式④计算佳油石比OAC 
OAC=(OAC1+OAC2)/2=(4.03%+3.70%)/2=3.87% 
4沥青混合料性能的检验 
按步骤3.6确定的最佳油石比3.87%制作车辙板试件和VVTM试件,测试其动稳定度为5943次/mm、残留稳定度为91.5%、残留强度比为89.2%、破坏强度为13.92MPa,均满足工程要求。 
以上内容是结合具体的实施方式对本发明所作的进一步详细说明,本发明不限于该实施例,对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单的推演或替换,都应当视为属于本发明的保护范围。 

Claims (1)

1.一种AC-20沥青混合料的设计方法,其特征在于,该方法采用垂直振动法设计,具体按照以下步骤进行:
1)原材料选择及测试
从工程实际使用的材料中取代表性样品,对其技术指标进行测试;
2)矿料级配的设计
根据工程级配设计范围和各组成材料筛分试验资料,计算符合要求级配范围的各组成材料用量比例;
3)最佳油石比的确定
A、垂直振动试件的制作
根据工程经验预估油石比Pa,并采用垂直振动法分别制作油石比为Pa、Pa±(0.3~0.5)、Pa±(0.6~1.0)的5组试件;垂直振动试件成型步骤如下:
(1)用蘸有少许黄油的棉纱擦拭内径100mm×高度180mm的试模内侧及垫块,并置于100℃烘箱中加热1h;
(2)根据粘度曲线确定沥青混合料的拌和温度、压实温度,并按《公路工程沥青及沥青混合料试验规程》(JTG E20-2011)(简称“JTG E20-2011”)规定将沥青加热至混合料拌合温度;
(3)根据工程经验预估压实后沥青混合料密度ρf,则一个试件质量为M=ρf×π×52×6.35;根据各规格集料比例和试件质量M,预估一个试件所需的各规格集料的用量Mk,(k=1,2,3,4,5),所述M1、M2、M3、M4、M5和M6分别代表19~26.5mm、9.5~19mm、4.75~9.5mm、2.36~4.75mm、机制砂和矿粉的质量;
(4)称取一份各规格集料的用量为Mk×(1.1~1.2),(k=1,2,3,4,5),并将其拌合均匀;称取一份矿粉的用量为M6×(1.1~1.2);分别置于规定拌和温度的烘箱中加热4~5h;
(5)从烘箱中取出步骤(4)中的混合料置于预热至规定拌和温度的沥青混合料拌和锅内,并适当拌和;
(6)从烘箱中取出加热好的沥青,称取所需的沥青质量mi,加入步骤(5)中的沥青混合料拌和锅内,开动拌和锅拌和90s;其中: m i = ( 1.1 ~ 1.2 ) × Σ k = 1 6 M k [ 3.3 + 0.5 ( i - 1 ) ] % , i是指第i组油石比,i=1,2,3,4,5;
(7)从烘箱中取出已加热好的矿粉,加入步骤(6)中沥青混合料拌和锅内,再次开动拌和锅拌和90s;
(8)从沥青混合料拌和锅中取出已拌和好的沥青混合料,并称取1个试件所需混合料用量,放入预热至100℃的金属盘中;
(9)从烘箱中取出预热至100℃的试模和垫块,并用蘸有少许黄油的棉纱擦拭试模内侧、垫块及振动锤底面;将垫块装入试模内并垫入一张吸油性小的圆形纸片,要求垫块底部平整;然后将沥青混合料均匀装入试模中,沥青混合料沿周边插捣15~20次、中间10~15次,插捣后将沥青混合料表面整平成凸圆弧面;
(10)插入温度计至装好的沥青混合料中心附近,测定沥青混合料温度是否符合JTG E20-2011要求的压实温度;
(11)待混合料达到要求的压实温度后,在装好的混合料顶面垫一张吸油性小的圆纸,然后将试模连同垫块固定到振动压实仪上,放下振动锤使其与沥青混合料接触,开启振动压实仪振动压实60±5s;
振动压实仪参数配置为:振动频率:37±2Hz、名义振幅:1.4±0.2mm、上车系统重量:1.2±0.2kN、下车系统重量:1.8±0.2kN;
(12)振动压实结束后,将试模连同垫块从振动压实仪上取下,取掉试件顶面的圆形纸片,量取试件高度;试件标准高度为63.5±1.3mm,如不符合标准高度要求时,试件作废,并按公式①调整试件混合料质量,并按步骤(8)~(12)重新制备试件直到高度符合标准要求为止;
Figure FDA00002826565300022
(13)将装有成型试件的试模连同垫块冷却至室温,脱出试件,并取掉试件底面的圆形纸片;
(14)重复步骤(7)~(13)制作6个试件;
(15)按步骤(6)~(14)制作第i组油石比的垂直振动试件;
B、垂直振动试件物理力学指标的测试
测试不同油石比的试件的毛体积密度ρf、马歇尔稳定度MS和流值FL,计算其空隙率VV、矿料间隙率VMA、沥青饱和度VFA等物理力学指标;
C、油石比与物理力学指标关系图的绘制
根据沥青混合料垂直振动试件物理力学指标测试结果,以油石比为横坐标,以毛体积密度、空隙率、饱和度、稳定度、流值为纵坐标,将试验结果绘制成油石比与各项指标的关系曲线;
D、最佳油石比的确定
(1)OAC1的确定
根据油石比与各项指标的关系曲线图,取密度最大值、稳定度最大值、规定空隙率范围的中值、规定饱和度范围的中值所对应的油石比为a1、a2、a3、a4,求取平均值作为最佳油石比初始值OAC1,见公式②;
OAC1=(a1+a2+a3+a4)/4               ②
(2)OAC2的确定
根据垂直振动设计技术标准,以各项指标均符合技术标准要求的油石比范围OACmin~OACmax中值,按以下公式③求取作为最佳油石比初始值OAC2
OAC2=(OACmin+OACmax)/2                                 ③
(3)最佳油石比OAC的确定
取OAC1与OAC2的平均值,按以下公式④求取作为沥青混合料的最佳油石比OAC;
OAC=(OAC1+OAC2)/2                          ④
4)性能的检验
对上述确定的配合比按《公路工程沥青及沥青混合料试验规程》(JTGE20-2011)要求进行高温稳定性能、低温抗裂性能和水稳定性能的检验。
CN201310048533.2A 2013-02-06 2013-02-06 一种ac-20沥青混合料的设计方法 Expired - Fee Related CN103184717B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310048533.2A CN103184717B (zh) 2013-02-06 2013-02-06 一种ac-20沥青混合料的设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310048533.2A CN103184717B (zh) 2013-02-06 2013-02-06 一种ac-20沥青混合料的设计方法

Publications (2)

Publication Number Publication Date
CN103184717A true CN103184717A (zh) 2013-07-03
CN103184717B CN103184717B (zh) 2016-03-09

Family

ID=48676144

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310048533.2A Expired - Fee Related CN103184717B (zh) 2013-02-06 2013-02-06 一种ac-20沥青混合料的设计方法

Country Status (1)

Country Link
CN (1) CN103184717B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103787618A (zh) * 2014-01-24 2014-05-14 长安大学 一种基于振动成型的微沥青碎石裂缝消散层及其成型方法
CN104358201A (zh) * 2014-11-07 2015-02-18 长安大学 一种沥青稳定再生集料层的设计方法
CN104594160A (zh) * 2014-12-22 2015-05-06 长安大学 一种沥青混合料生产配合比与目标配合比归一化设计方法
CN106316220A (zh) * 2016-08-22 2017-01-11 山西省交通科学研究院 一种适用于半柔性沥青路面的母体沥青混合料级配
CN106522066A (zh) * 2016-09-12 2017-03-22 王昱海 高密实沥青混凝土路面配制方法及其配合比
CN112279559A (zh) * 2020-11-27 2021-01-29 广西路建工程集团有限公司 牡蛎壳粉淡化海砂ac-20沥青混合料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60152561A (ja) * 1984-01-19 1985-08-10 Nichireki Chem Ind Co Ltd アスフアルト成形物
JP2003119712A (ja) * 2001-10-17 2003-04-23 Chem Grouting Co Ltd 舗装路
CN101407398A (zh) * 2008-11-04 2009-04-15 刘廷国 沥青路面深层微表处功能层及其施工方法
CN102745947A (zh) * 2012-08-07 2012-10-24 甘肃土木工程科学研究院 一种改性沥青混合料
JP5086917B2 (ja) * 2008-06-26 2012-11-28 姫路市 アスファルト舗装路の補修方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60152561A (ja) * 1984-01-19 1985-08-10 Nichireki Chem Ind Co Ltd アスフアルト成形物
JP2003119712A (ja) * 2001-10-17 2003-04-23 Chem Grouting Co Ltd 舗装路
JP5086917B2 (ja) * 2008-06-26 2012-11-28 姫路市 アスファルト舗装路の補修方法
CN101407398A (zh) * 2008-11-04 2009-04-15 刘廷国 沥青路面深层微表处功能层及其施工方法
CN102745947A (zh) * 2012-08-07 2012-10-24 甘肃土木工程科学研究院 一种改性沥青混合料

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
中交公路科学研究所: "《JTG-F40-2004公路沥青路面施工技术规范》", 30 November 2004, article "JTG-F40-2004公路沥青路面施工技术规范", pages: 31-34,36-37,75-85 *
交通部公路科学研究所: "《JTJ 052-2000公路工程沥青及沥青混合料试验规程》", 15 June 2000, article "JTJ 052-2000公路工程沥青及沥青混合料试验规程", pages: 240-251 *
朱强: "《基于ATB-30沥青混合料振动成型方法研究》", 《中国优秀硕士学位论文全文数据库工程科学Ⅱ辑》, no. 4, 15 April 2012 (2012-04-15) *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103787618A (zh) * 2014-01-24 2014-05-14 长安大学 一种基于振动成型的微沥青碎石裂缝消散层及其成型方法
CN104358201A (zh) * 2014-11-07 2015-02-18 长安大学 一种沥青稳定再生集料层的设计方法
CN104358201B (zh) * 2014-11-07 2017-12-26 长安大学 一种沥青稳定再生集料层的设计方法
CN104594160A (zh) * 2014-12-22 2015-05-06 长安大学 一种沥青混合料生产配合比与目标配合比归一化设计方法
CN104594160B (zh) * 2014-12-22 2016-09-14 长安大学 一种沥青混合料生产配合比与目标配合比归一化设计方法
CN106316220A (zh) * 2016-08-22 2017-01-11 山西省交通科学研究院 一种适用于半柔性沥青路面的母体沥青混合料级配
CN106522066A (zh) * 2016-09-12 2017-03-22 王昱海 高密实沥青混凝土路面配制方法及其配合比
CN112279559A (zh) * 2020-11-27 2021-01-29 广西路建工程集团有限公司 牡蛎壳粉淡化海砂ac-20沥青混合料及其制备方法

Also Published As

Publication number Publication date
CN103184717B (zh) 2016-03-09

Similar Documents

Publication Publication Date Title
CN103184717A (zh) 一种ac-20沥青混合料的设计方法
CN101832994B (zh) 低碳沥青及低碳沥青混合料性能的测定方法
Subramani Experimental investigations on coir fibre reinforced bituminous mixes
CN103526664B (zh) 一种适用于重载交通路面的沥青混合料配合比的确定方法
CN102503244A (zh) 骨架嵌挤型粗粒式高模量沥青混凝土组成及其确定方法
CN101653967A (zh) 基于振动试验法的抗裂型水泥稳定碎石配合比设计方法
CN107679352A (zh) 一种基于结构功能需求的沥青路面承重层材料设计方法
CN103122603A (zh) Atb-30沥青混合料的设计方法
CN110194612A (zh) 一种保障低温性能的再生沥青混凝土材料及其设计方法
CN103134712A (zh) 适于集料公称最大粒径<26.5mm沥青混合料试件的垂直振动成型方法
CN103526665A (zh) 一种准确的乳化沥青冷再生混合料的制备方法
CN105893688A (zh) 一种基于性能的排水型沥青稳定碎石配合比设计方法
CN111170678A (zh) 一种聚氨酯为结合料的浇筑式混凝土及其制备方法
CN103147374A (zh) 一种ac-13沥青混合料的设计方法
Coree et al. A laboratory investigation into the effects of aggregate-related factors of critical VMA in asphalt paving mixtures.
CN110255978B (zh) 一种基于性能需求的组装式沥青混合料配合比确定方法
CN103864352A (zh) 一种耐久性高模量热再生混合料、配制方法及应用
CN103334363A (zh) 一种atb-25沥青混合料的设计方法
Shukla et al. Design and evaluation of mechanical properties of cement grouted bituminous mixes (CGBM)
CN103485255B (zh) 一种微表处混合料配合比的优化设计方法
CN102279254B (zh) 一种大跨径钢桥面无病害环氧沥青混合料配方的研究方法
CN103833267A (zh) 一种易施工的耐久性高强热再生沥青混合料、配制方法及应用
CN103174075A (zh) Ac-25沥青混合料的设计方法
CN106498825A (zh) 一种应用于融雪道路的导热sma改性沥青混合料配合比设计优化方法
CN103352406A (zh) 一种ac-16沥青混合料的设计方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
CB03 Change of inventor or designer information

Inventor after: Jiang Yingjun

Inventor after: Li Mingjie

Inventor after: Luo Jinquan

Inventor after: Li Wanwan

Inventor after: Yang Guangya

Inventor after: Yang Chenguang

Inventor after: Wang Hui

Inventor before: Jiang Yingjun

Inventor before: Li Ningfang

Inventor before: Xue Jinshun

Inventor before: Zhang Yiwei

Inventor before: Xu Xiaobing

COR Change of bibliographic data
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160309

CF01 Termination of patent right due to non-payment of annual fee