CN103162894A - Capacitive pressure sensor - Google Patents
Capacitive pressure sensor Download PDFInfo
- Publication number
- CN103162894A CN103162894A CN201310010851XA CN201310010851A CN103162894A CN 103162894 A CN103162894 A CN 103162894A CN 201310010851X A CN201310010851X A CN 201310010851XA CN 201310010851 A CN201310010851 A CN 201310010851A CN 103162894 A CN103162894 A CN 103162894A
- Authority
- CN
- China
- Prior art keywords
- circular
- capacitive pressure
- round
- pressure sensor
- membrane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000009413 insulation Methods 0.000 claims abstract 3
- 239000012528 membrane Substances 0.000 claims description 42
- 239000000463 material Substances 0.000 claims description 16
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 12
- 229920005591 polysilicon Polymers 0.000 claims description 12
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 239000010703 silicon Substances 0.000 claims description 4
- 238000005259 measurement Methods 0.000 abstract description 19
- 230000035945 sensitivity Effects 0.000 abstract description 9
- 238000000034 method Methods 0.000 abstract description 4
- 238000004377 microelectronic Methods 0.000 abstract description 2
- 230000009471 action Effects 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
Images
Landscapes
- Measuring Fluid Pressure (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种电容压力传感器,属于微电子技术领域。The invention relates to a capacitive pressure sensor, which belongs to the technical field of microelectronics.
背景技术Background technique
电容压力传感器具有直流特性稳定、漂移小、功耗低和温度系数小等优点,在压力、角速度、加速度等测量方面得到广泛应用。Capacitive pressure sensors have the advantages of stable DC characteristics, small drift, low power consumption, and small temperature coefficient, and are widely used in the measurement of pressure, angular velocity, and acceleration.
为了提高电容压力传感器的灵敏度和线性度,尚永红、Haojie Lv等对不同电容传感器的结构进行了研究和报道。在先前的工作中,主要通过改变极板结构、形状等实现电容传感器特性的改善。例如:尚永红等利用岛膜结构代替平膜结构,能提高电容压力传感器的线性度,但是,降低了传感器节点的灵敏度。HaojieLv等通过对平行板电容压力传感器下极板刻蚀薄的凹槽,形成凹槽结构的电容压力传感器,其扩大了电容变化量测力的范围,但是,其线性度较差,不利于后续接口电路的设计。陈志刚等通过分析圆形和方形膜的形变特性,提出利用圆形膜层对电容压力传感器的结构进行优化,能提高其灵敏度。In order to improve the sensitivity and linearity of capacitive pressure sensors, Shang Yonghong, Haojie Lv et al. studied and reported the structures of different capacitive sensors. In the previous work, the improvement of the characteristics of the capacitive sensor was mainly achieved by changing the structure and shape of the plate. For example: Shang Yonghong et al. used the island membrane structure instead of the flat membrane structure, which can improve the linearity of the capacitive pressure sensor, but reduces the sensitivity of the sensor node. HaojieLv et al etched a thin groove on the lower plate of the parallel plate capacitive pressure sensor to form a capacitive pressure sensor with a groove structure, which expanded the range of capacitance change measurement force, but its linearity is poor, which is not conducive to subsequent Interface circuit design. Chen Zhigang et al. analyzed the deformation characteristics of circular and square membranes, and proposed that the use of circular membranes to optimize the structure of capacitive pressure sensors can improve their sensitivity.
但是,在先前设计的电容压力传感器中,始终存在测量范围、测量灵敏度和线性度之间的不平衡问题。However, in previously designed capacitive pressure sensors, there has always been an imbalance between measurement range, measurement sensitivity, and linearity.
发明内容Contents of the invention
本发明的目的是为了提出一种电容压力传感器。The object of the present invention is to propose a capacitive pressure sensor.
本发明的目的是通过以下技术方案实现的。The purpose of the present invention is achieved through the following technical solutions.
本发明的一种电容压力传感器,包括上级板、下级板6和圆形侧壁3;A capacitive pressure sensor of the present invention comprises an upper board, a
所述的上级板包括圆形岛1和圆形膜2,圆形岛1为一圆柱体,圆形膜2也为一圆柱体;圆形岛1位于圆形膜2的上方,圆形岛1和圆形膜2粘结固定连接;The upper plate includes a circular island 1 and a
所述的下级板6为一中心带有圆形凹槽5的长方体,且下级板6的表面有一层绝缘层4;The
所述的圆形岛1的半径大于圆形凹槽5的半径;The radius of the circular island 1 is greater than the radius of the circular groove 5;
所述的上级板和下级板6之间通过圆形侧壁3粘结固定连接。The upper-level board and the lower-
所述的圆形岛1的厚度大于圆形膜2厚度,圆形岛1材料为多晶硅,圆形膜2厚度为0.3-1μm,圆形膜2的材料为多晶硅;The thickness of the circular island 1 is greater than the thickness of the
所述的圆形凹槽5的深度为0.55μm;The depth of the circular groove 5 is 0.55 μm;
所述的绝缘层4为氮氧化硅材料,位于凹槽5内的绝缘层4的厚度为0.2μm;其作用是防止上级板和下级板6短路;The
所述的圆形侧壁3的材料为多晶硅,壁厚为1μm,高为0.5μm。The material of the
所述的下级板6为硅材料,其厚度为5μm,长为150μm,宽为150μm。The
有益效果Beneficial effect
本发明的电容压力传感器具有高的灵敏度、线性度和较大的测量范围。其缓解了传统电容压力传感器中测量范围、测量灵敏度和线性度之间的矛盾问题。The capacitive pressure sensor of the invention has high sensitivity, linearity and large measurement range. It alleviates the conflicting problems among measurement range, measurement sensitivity and linearity in traditional capacitive pressure sensors.
附图说明Description of drawings
图1为本发明的电容压力传感器的尺寸结构示意图;Fig. 1 is the dimension structure schematic diagram of capacitive pressure sensor of the present invention;
图2为本发明的电容压力传感器的结构示意图;Fig. 2 is the structural representation of capacitive pressure sensor of the present invention;
图3为本发明的电容压力传感器电容量随压力变化关系图;Fig. 3 is the capacitive capacity of the capacitive pressure sensor of the present invention varies with pressure;
具体实施方式Detailed ways
一种电容压力传感器,包括上级板、下级板6和圆形侧壁3;A capacitive pressure sensor comprising an upper plate, a
所述的上级板包括圆形岛1和圆形膜2,圆形岛1为一圆柱体,圆形膜2也为一圆柱体;圆形岛1位于圆形膜2的上方,圆形岛1和圆形膜2粘结固定连接;The upper plate includes a circular island 1 and a
所述的下级板6为一中心带有圆形凹圆5的长方体,且下级板6的表面有一层绝缘层4;The
所述的上级板和下级板6之间通过圆形侧壁3粘结固定连接。The upper-level board and the lower-
所述的圆形岛1的厚度为0.5μm,圆形岛1的半径为50μm,圆形岛1材料为多晶硅,圆形膜2厚度为0.4μm,圆形膜2的材料为多晶硅;圆形膜2的半径为65μm;The thickness of the circular island 1 is 0.5 μm, the radius of the circular island 1 is 50 μm, the material of the circular island 1 is polysilicon, the thickness of the
所述的圆形凹圆5的深度为0.55μm,半径为40μm;The circular concave circle 5 has a depth of 0.55 μm and a radius of 40 μm;
所述的绝缘层4为氮氧化硅材料,位于圆形凹圆5内的绝缘层4的厚度为0.2μm;其作用是防止上级板和下级板6短路;The
所述的圆形侧壁3的材料为多晶硅,壁厚为1μm,高为0.5μm。The material of the
所述的上极板的气压与中心挠度ω0的关系为:The relationship between the air pressure of the upper pole plate and the central deflection ω0 is:
式中,p为上极板所加的气压,E为杨氏模量,h为圆形膜2厚度,Ap和Bp为刚度调整系数,其表达式为:In the formula, p is the air pressure applied by the upper plate, E is Young's modulus, h is the thickness of the
式中,R为圆形膜2的半径,r为圆形岛1的半径。根据(3)式,通过设计不同的圆形岛1的半径,能优化气压与中心挠度ω0的线性度,进而能提高电容-压力变化线性度;In the formula, R is the radius of the
所述的圆形膜2的半径与圆形侧壁3的半径相同;The radius of the
在无外界气压作用时,上述的压力传感器的电容值C用下式表示:When there is no external air pressure, the capacitance value C of the above-mentioned pressure sensor is expressed by the following formula:
上式中,ε0为真空的介电常数,εi为绝缘层4的介电常数,εa为空气的介电常数,d为绝缘层4的厚度,r1为圆形侧壁3的内半径,r2为圆形凹圆5的半径,g1为圆形侧壁3的高,g2为圆形凹园5的深度。In the above formula, ε 0 is the dielectric constant of vacuum, ε i is the dielectric constant of the
当外界气压作用在上极板上表面时,压力传感器的电容值表示为:When the external air pressure acts on the upper surface of the upper plate, the capacitance value of the pressure sensor is expressed as:
上式中,ω(r,p)为圆形膜2上任意半径r处的挠度。从(4)(5)式中,可以看出,通过增加圆形凹圆5,其深度g2,扩大了圆形膜2挠度的空间,有利于增大测量的范围。In the above formula, ω(r, p) is the deflection at any radius r on the
工作过程为:The working process is:
首先,外界大气压作用在圆形岛1的上表面,在大气压作用下,圆形膜2的位置下移;随圆形膜2的位置下移,上级板和下级板之间的距离减小,按照(5)式,传感器电容量增大。First, the external atmospheric pressure acts on the upper surface of the circular island 1, and under the action of the atmospheric pressure, the position of the
其次,不同外界大气压作用下,圆形膜2下移的位置不同,上级板和下级板之间的距离不同,传感器的电容量不同。Secondly, under the action of different external atmospheric pressures, the downward movement position of the
最后,根据传感器不同的电容量,可以测定作用在圆形岛1上的大气压,实现电容压力传感器对压力的测量。Finally, according to the different capacitances of the sensors, the atmospheric pressure acting on the circular island 1 can be measured to realize the measurement of the pressure by the capacitance pressure sensor.
下面结合附图对本发明的具体实施方式做进一步详细说明。The specific implementation manner of the present invention will be described in further detail below in conjunction with the accompanying drawings.
实施例Example
如图1和图2所示,一种电容压力传感器,包括上级板、下级板6和圆形侧壁3;As shown in Figures 1 and 2, a capacitive pressure sensor includes an upper board, a
所述的上级板包括圆形岛1和圆形膜2,圆形岛1为一圆柱体,圆形膜2也为一圆柱体;圆形岛1位于圆形膜2的上方,圆形岛1和圆形膜2粘结固定连接;The upper plate includes a circular island 1 and a
所述的下级板6为一中心带有圆形凹圆5的长方体,且下级板6的表面有一层绝缘层4;The
所述的上级板和下级板6之间通过圆形侧壁3粘结固定连接。The upper-level board and the lower-
所述的圆形岛1的厚度为2μm,圆形岛1的半径为50μm,圆形岛1材料为多晶硅,圆形膜2厚度为0.5μm,圆形膜2的材料为多晶硅;圆形膜2的半径为65μm;The thickness of the circular island 1 is 2 μm, the radius of the circular island 1 is 50 μm, the material of the circular island 1 is polysilicon, the thickness of the
所述的圆形凹圆5的深度为0.55μm,半径为40μm;The circular concave circle 5 has a depth of 0.55 μm and a radius of 40 μm;
所述的绝缘层4为氮氧化硅材料,位于圆形凹圆5内的绝缘层4的厚度为0.2μm;其作用是防止上级板和下级板6短路;The insulating
所述的圆形侧壁3的材料为多晶硅,壁厚为1μm,高为0.5μm。The material of the
所述的上极板的气压与中心挠度ω0的关系为:The relationship between the air pressure of the upper pole plate and the central deflection ω0 is:
式中,p为上极板所加的气压,E为杨氏模量,h为圆形膜2厚度,Ap和Bp为刚度调整系数,其表达式为:In the formula, p is the air pressure applied by the upper plate, E is Young's modulus, h is the thickness of the
式中,R为圆形膜2的半径,r为圆形岛1的半径。根据(3)式,通过设计不同的圆形岛1的半径,能优化压力与中心挠度ω0的线性度,进而能提高电容-压力变化线性度;In the formula, R is the radius of the
所述的圆形膜2的半径与圆形侧壁3的半径相同;The radius of the
在无外界大气压作用时,上述的压力传感器的电容值C用下式表示:When there is no external atmospheric pressure, the capacitance value C of the above-mentioned pressure sensor is expressed by the following formula:
上式中,ε0为真空的介电常数,εi为绝缘层4的介电常数,εa为空腔内空气的介电常数,d为绝缘层4的厚度,r1为圆形侧壁3的内半径,r2为圆形凹圆5的半径,g1为圆形侧壁3的高,g2为圆形凹园5的深度。In the above formula, ε0 is the dielectric constant of vacuum, εi is the dielectric constant of the insulating
当外界大气压作用在圆形岛1上时,压力传感器的电容值表示为:When the external atmospheric pressure acts on the circular island 1, the capacitance value of the pressure sensor is expressed as:
上式中,ω(r,p)为圆形膜2上任意半径r处的挠度。从(5)式中,可以看出,通过增加圆形凹圆5,扩大了圆形膜2挠度的空间,其有利于增大测量的范围。In the above formula, ω(r, p) is the deflection at any radius r on the
工作过程为:The working process is:
首先,外界大气压作用在圆形岛1的上表面,在大气压作用下,圆形膜2的位置下移;随圆形膜2的位置下移,上级板和下级板之间的距离减小,按照(5)式,传感器电容量增大。First, the external atmospheric pressure acts on the upper surface of the circular island 1, and under the action of the atmospheric pressure, the position of the
其次,不同外界大气压作用下,圆形膜2下移的位置不同,上级板和下级板之间的距离不同,传感器的电容量不同。Secondly, under the action of different external atmospheric pressures, the downward movement position of the
最后,根据传感器不同的电容量,可以测定作用在圆形岛1上的大气压,实现电容压力传感器对压力的测量。Finally, according to the different capacitances of the sensors, the atmospheric pressure acting on the circular island 1 can be measured to realize the measurement of the pressure by the capacitance pressure sensor.
将所述的电容压力传感器,利用ANSYS软件进行了实验分析。在外加压力从25kPa到225kPa范围内,得到如图3所示的结果曲线图。图3所示的结果曲线图分为两个区域(I,II)。其中,II区对应的测量范围从85kPa到215kPa,测量灵敏度为0.0019pF/kPa,线性度为0.9941。The capacitive pressure sensor was analyzed experimentally using ANSYS software. In the range of applied pressure from 25kPa to 225kPa, the result graph shown in Figure 3 is obtained. The resulting graph shown in Figure 3 is divided into two regions (I, II). Among them, the measurement range corresponding to Zone II is from 85kPa to 215kPa, the measurement sensitivity is 0.0019pF/kPa, and the linearity is 0.9941.
为此,所述的电容压力传感器具有高的测量灵敏度、线性度和较大的测量范围。For this reason, the capacitive pressure sensor has high measurement sensitivity, linearity and large measurement range.
图3所示的结果曲线图的II区,为所述的电容压力传感器的线性测量区。Zone II of the result graph shown in FIG. 3 is the linear measurement zone of the capacitive pressure sensor.
本发明的电容压力传感器,具体参数为圆形岛厚度为0.5μm,半径为50μm;圆形膜厚度为0.4μm,半径为65μm;圆形凹圆深度为0.55μm,半径为45μm;圆形侧壁高为0.3μm;绝缘层厚度为0.2μm。当作用在上极板的气压为100kPa时,所述电容压力传感器的电容量为0.6232pF。The specific parameters of the capacitive pressure sensor of the present invention are that the thickness of the circular island is 0.5 μm, and the radius is 50 μm; the thickness of the circular membrane is 0.4 μm, and the radius is 65 μm; the depth of the circular concave circle is 0.55 μm, and the radius is 45 μm; the circular side The wall height is 0.3 μm; the insulating layer thickness is 0.2 μm. When the air pressure acting on the upper plate is 100kPa, the capacitance of the capacitive pressure sensor is 0.6232pF.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310010851XA CN103162894A (en) | 2013-01-14 | 2013-01-14 | Capacitive pressure sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310010851XA CN103162894A (en) | 2013-01-14 | 2013-01-14 | Capacitive pressure sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103162894A true CN103162894A (en) | 2013-06-19 |
Family
ID=48586166
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310010851XA Pending CN103162894A (en) | 2013-01-14 | 2013-01-14 | Capacitive pressure sensor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103162894A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109632181A (en) * | 2018-12-20 | 2019-04-16 | 兰州空间技术物理研究所 | A kind of MEMS capacitor thin film vacuum gauge |
CN110510572A (en) * | 2019-08-30 | 2019-11-29 | 西安电子科技大学 | A capacitive pressure sensor and manufacturing method thereof |
CN113221420A (en) * | 2021-05-17 | 2021-08-06 | 杨荣森 | Sensor capacitance error evaluation method based on ANSYS software |
CN114323357A (en) * | 2021-11-23 | 2022-04-12 | 四川大学 | Spiral Capacitive Pressure Sensor |
CN117213668A (en) * | 2023-09-19 | 2023-12-12 | 湖南大学 | Ceramic capacitive pressure sensor and manufacturing method thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1172547A (en) * | 1994-11-22 | 1998-02-04 | 卡斯西部储备大学 | Capacitive absolute pressure sensor and method of manufacturing the same |
JP2001050841A (en) * | 1999-08-04 | 2001-02-23 | Fujikura Ltd | Semiconductor pressure sensor and fabrication thereof |
CN2450651Y (en) * | 2000-11-23 | 2001-09-26 | 大连理工大学 | Double cup capacitance pressure sensor |
JP2003287468A (en) * | 2002-03-28 | 2003-10-10 | Nitta Ind Corp | Capacitance type sensor |
US20070215964A1 (en) * | 2006-02-28 | 2007-09-20 | Butrus Khuri-Yakub | Capacitive micromachined ultrasonic transducer (CMUT) with varying thickness membrane |
CN202562689U (en) * | 2012-05-11 | 2012-11-28 | 沈阳仪表科学研究院 | Novel silicon capacitive pressure sensor |
-
2013
- 2013-01-14 CN CN201310010851XA patent/CN103162894A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1172547A (en) * | 1994-11-22 | 1998-02-04 | 卡斯西部储备大学 | Capacitive absolute pressure sensor and method of manufacturing the same |
JP2001050841A (en) * | 1999-08-04 | 2001-02-23 | Fujikura Ltd | Semiconductor pressure sensor and fabrication thereof |
CN2450651Y (en) * | 2000-11-23 | 2001-09-26 | 大连理工大学 | Double cup capacitance pressure sensor |
JP2003287468A (en) * | 2002-03-28 | 2003-10-10 | Nitta Ind Corp | Capacitance type sensor |
US20070215964A1 (en) * | 2006-02-28 | 2007-09-20 | Butrus Khuri-Yakub | Capacitive micromachined ultrasonic transducer (CMUT) with varying thickness membrane |
CN202562689U (en) * | 2012-05-11 | 2012-11-28 | 沈阳仪表科学研究院 | Novel silicon capacitive pressure sensor |
Non-Patent Citations (2)
Title |
---|
尚永红等: "非接触式电容压力传感器敏感元件的设计及性能分析", 《传感技术学报》 * |
郭强: "基于单晶硅的电容式压力传感器的设计与检测", 《中国优秀硕士学位论文全文数据库 信息科技辑》 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109632181A (en) * | 2018-12-20 | 2019-04-16 | 兰州空间技术物理研究所 | A kind of MEMS capacitor thin film vacuum gauge |
CN110510572A (en) * | 2019-08-30 | 2019-11-29 | 西安电子科技大学 | A capacitive pressure sensor and manufacturing method thereof |
CN110510572B (en) * | 2019-08-30 | 2022-06-10 | 西安电子科技大学 | A capacitive pressure sensor and method of making the same |
CN113221420A (en) * | 2021-05-17 | 2021-08-06 | 杨荣森 | Sensor capacitance error evaluation method based on ANSYS software |
CN114323357A (en) * | 2021-11-23 | 2022-04-12 | 四川大学 | Spiral Capacitive Pressure Sensor |
CN117213668A (en) * | 2023-09-19 | 2023-12-12 | 湖南大学 | Ceramic capacitive pressure sensor and manufacturing method thereof |
CN117213668B (en) * | 2023-09-19 | 2024-07-19 | 湖南大学 | Ceramic capacitive pressure sensor and manufacturing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100807193B1 (en) | Method of manufacturing capacitive pressure sensor and capacitive pressure sensor manufactured thereby | |
CN101858929B (en) | Capacitive micro-acceleration sensor with symmetrically combined elastic beam structure and production method thereof | |
CN104515640B (en) | Capacitive MEMS (micro-electromechanical system) pressure sensor | |
CN102809450B (en) | Silicon micro resonant type pressure sensor and manufacturing method thereof | |
CN100492016C (en) | Micromechanical capacitive acceleration sensor and manufacturing method | |
CN102759637B (en) | MEMS (micro electro mechanical system) triaxial acceleration transducer and manufacture method thereof | |
CN102620878B (en) | Capacitive micromachining ultrasonic sensor and preparation and application methods thereof | |
CN103162894A (en) | Capacitive pressure sensor | |
CN206164826U (en) | Sensitive membrane and MEMS microphone | |
CN106918420A (en) | A kind of pair of Graphene resonance beam type pressure sensor | |
CN101881785A (en) | Four-fold beam variable-area differential capacitance structure micro-acceleration sensor and preparation method | |
CN103983395B (en) | A kind of micropressure sensor and preparation thereof and detection method | |
CN102620864B (en) | Capactive micro-machined ultrasonic transducer (CMUT)-based super-low range pressure sensor and preparation method thereof | |
CN104062044A (en) | Micro mechanical differential capacitive pressure gauge | |
CN102928623B (en) | Micro-acceleration transducer capable of avoiding parasitic capacitance structure, and manufacturing method thereof | |
Zhao et al. | Fabrication of capacitive micromachined ultrasonic transducers with low-temperature direct wafer-Bonding technology | |
CN106908626A (en) | A kind of capacitance microaccelerator sensitive structure | |
CN105067178A (en) | Differential-capacitive MEMS pressure sensor and manufacturing method thereof | |
CN104502003A (en) | Silica glass mosaic structure micromachine differential capacitance type pressure gauge | |
CN102169038A (en) | Side wall protection method for MEMS (Micro Electronic Mechanical System) silicon capacitive pressure transducer with sandwich structure | |
CN113218544B (en) | Micro pressure sensor chip with stress concentration structure and preparation method thereof | |
CN103837290B (en) | High-precision capacitance pressure transducer, | |
CN107389230A (en) | A kind of wide-range high-precision collection membrane capacitance formula pressure sensor in pairs and preparation method | |
CN103234669B (en) | Pressure sensor utilizing electrostatic negative stiffness and production method of pressure sensor | |
CN103293338B (en) | The sensing element of capacitance acceleration transducer, method for making and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C05 | Deemed withdrawal (patent law before 1993) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20130619 |