CN103158876B - 一种飞机发动机外壳 - Google Patents

一种飞机发动机外壳 Download PDF

Info

Publication number
CN103158876B
CN103158876B CN201310065119.2A CN201310065119A CN103158876B CN 103158876 B CN103158876 B CN 103158876B CN 201310065119 A CN201310065119 A CN 201310065119A CN 103158876 B CN103158876 B CN 103158876B
Authority
CN
China
Prior art keywords
fiber
hours
oxide
zirconia
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310065119.2A
Other languages
English (en)
Other versions
CN103158876A (zh
Inventor
狄睿
狄春保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LIYANG TECHNOLOGY DEVELOPMENT CENTER
Original Assignee
LIYANG TECHNOLOGY DEVELOPMENT CENTER
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LIYANG TECHNOLOGY DEVELOPMENT CENTER filed Critical LIYANG TECHNOLOGY DEVELOPMENT CENTER
Priority to CN201310065119.2A priority Critical patent/CN103158876B/zh
Publication of CN103158876A publication Critical patent/CN103158876A/zh
Application granted granted Critical
Publication of CN103158876B publication Critical patent/CN103158876B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

本发明提供一种用于飞机发动机的包容机舱,呈圆筒状,包括夹层结构,其使用金属、纤维和陶瓷层状复合材料制成,具有至少一个金属层/纤维层/陶瓷层构成的夹层结构,金属层采用铝、镁、钛或者相应的合金材料,纤维层采用氮化硅、碳化硅或者二氧化锆纤维,所述陶瓷层包括氧化锆、氧化镁、氧化钙、氧化钇和氧化铈。本发明的包容机舱硬度高、韧性好、质量轻,具有很好的抗冲击性能,可广泛的应用于航空发动机。

Description

一种飞机发动机外壳
技术领域
本发明涉及一种用于飞机发动机的包容机舱外壳,尤其涉及一种具有夹层结构的包容机舱。
背景技术
当前,大型商业喷气飞机通常都采用了大推力涡轮风扇航空发动机,该类型的涡轮风扇航空发动机都使用了大尺寸的风扇叶片,最大的风扇叶片直径可达3m,工作时风扇叶尖处的切线速度超过450m/s,未来涡轮风扇航空发动机的发展,涡轮风扇叶尖的切线速度会更高。高速运转的叶片受外物撞击损伤或高频率振动疲劳等的影响,不可避免地会出现叶片断裂故障。断裂叶片具有很高的能量,如果叶片击穿发动机机舱,由于飞机的油箱与发动机紧挨在一起,会引发油箱爆炸造成灾难性事故。因此,航空发动机的设计和制造,必须考虑发动机短舱的包容能力。目前的防护装甲一般都是双层设计:外层由较硬的材料构成,通常为陶瓷;而内层则为柔性材料,如铝或者kevlar纤维。陶瓷材料通常经过复合硬化表面处理,即在陶瓷表面涂一定量的树脂玻璃纤维或者kevlar材料来提高其抗冲击性,装甲结构中外层氧化铝陶瓷内层kevlar纤维是常见的组合。现有的航空发动机包容机舱有如下三种,第一种是由高强度合金钢制成的圆环形结构,钢铁材料的强度和韧性都很好,这种机匣防护效果较好,但是材料的密度高,不符合航空部件轻质化的要求;第二种是由锂合金、镁合金、铝合金和钛合金等轻金属材料制成,这类轻金属材料强度和韧性差,虽然密度小,但是防护效果不佳;第三种是在锂合金、镁合金、铝合金和钛合金等轻金属材料制成的圆环上缠绕玻璃纤维、kevlar纤维和碳纤维等高强度纤维,使用环氧树脂和聚酰亚胺等高分子树脂材料为粘结剂固化后形成的纤维缠绕复合材料包容机匣,这种机匣具有重量轻、防护效果好的特点,是大推力涡轮风扇发动机风扇叶片包容机匣的首选。树脂为基的复合材料的使用温度有很大的局限。在长时间使用的条件下,环氧树脂一般不超过200℃,正在发展的聚酞亚胺的也不超过300℃~350℃。即使在较低的温度下,树脂基的弹性模量和强度也不高,在大的负荷应力下容易开裂。特别是单向复合材料的层间强度决定于基体,而树脂基的强度低。虽然可以通过纤维交叉排列来改善偏轴方向的性能,但又会使轴向性能削弱,致使复合材料的特点得不到充分发挥。
发明内容
为了克服上述缺点和弊端,本发明提供一种用于飞机发动机的包容机舱,呈圆筒状,包括夹层结构,其使用金属、纤维和陶瓷层状复合材料制成,具有至少一个金属层/纤维层/陶瓷层构成的夹层结构,其特征在于金属层采用铝、镁、钛或者相应的合金材料,纤维层采用氮化硅、碳化硅或者二氧化锆纤维,所述陶瓷层包括重量比100:6:4:2:1或100:8:3:4:1的氧化锆、氧化镁、氧化钙、氧化钇和氧化铈。
优选地,所述氧化锆陶瓷材料采用重量比100:6:4:2:1的氧化锆、氧化镁、氧化钙、氧化钇和氧化铈,加入与前述多种成分总重等重的蒸馏水,在球磨机中球磨5个小时,然后干燥、造粒、成型,于1600-1750摄氏度的温度下、33MPa压力下烧结1.8小时,总升温时间为8小时;再以220舒适度每小时的速度冷却至1200摄氏度热处理3.5小时,然后自然冷却至室温,再将试样升温至1460摄氏度热处理1.6小时,而后再次自然冷却至室温即可。
优选地,所述氧化锆陶瓷材料采用重量比100:8:3:4:1的氧化锆、氧化镁、氧化钙、氧化钇和氧化铈,加入与前述多种成分总重等重的蒸馏水,在球磨机中球磨5.5个小时,然后干燥、造粒、成型,于1600-1700摄氏度的温度下、33MPa压力下烧结2.0小时,总升温时间为9小时;再以230摄氏度每小时的速度冷却至1250摄氏度热处理4.0小时,然后自然冷却至室温,再将试样升温至1480摄氏度热处理1.5小时,而后再次自然冷却至室温即可。
优选地,所述机舱从内到外依次为金属层、纤维层、陶瓷层、纤维层、陶瓷层,纤维材料多层缠绕,多层之间纤维方向交错设置,纤维可以是整块也可以由多块纤维拼缝焊接而成;金属圆筒可以是一个整体也可以由多块圆弧拼缝焊接而成;陶瓷圆筒可以是一个整体也可以由多块圆弧拼缝焊接而成。圆筒的外径2000mm~4000mm,金属层的厚度1.5mm~5mm,内层陶瓷层的厚度10mm~20mm,外层陶瓷的厚度5mm~10mm。
优选地,所述机舱从内到外依次为金属层、纤维层、陶瓷层、纤维层、金属层,纤维材料多层缠绕,多层之间纤维方向交错设置,纤维可以是整块也可以由多块纤维拼缝焊接而成;金属圆筒可以是一个整体也可以由多块圆弧拼缝焊接而成;陶瓷圆筒可以是一个整体也可以由多块圆弧拼缝焊接而成。圆筒的外径2000mm~4000mm,内层金属层的厚度2.5mm~6mm,陶瓷层的厚度15mm~25mm,外层金属层的厚度0.5mm~1.0mm。
由于本发明中采用了高韧性、多孔氧化锆陶瓷材料,根据本发明的包容机舱具有非常优异的抗冲击性能,同时具有低密度性。而且本发明中采用氮化硅、碳化硅或者二氧化锆纤维,消除了树脂纤维不适应高温的缺点。
具体实施方式
本发明中的发动机包容机舱具有夹层结构,其使用金属、纤维和陶瓷层状复合材料制成,具有至少一个金属层/纤维层/陶瓷层构成的夹层结构。其中的金属层例如采用铝、镁、钛或者相应的合金材料,纤维层采用氮化硅、碳化硅或者二氧化锆纤维,所述陶瓷材料是一种高韧性多孔的氧化锆陶瓷。
所述氧化锆陶瓷材料采用重量比100:6:4:2:1的氧化锆、氧化镁、氧化钙、氧化钇和氧化铈,加入与前述多种成分总重等重的蒸馏水,在球磨机中球磨5个小时,然后干燥、造粒、成型,于1600-1750摄氏度的温度下烧结1.8小时,总升温时间为8小时;再以220舒适度每小时的速度冷却至1200摄氏度热处理3.5小时,然后自然冷却至室温,再将试样升温至1460摄氏度热处理1.6小时,而后再次自然冷却至室温即可。
在另一个实施例中,所述氧化锆陶瓷材料采用重量比100:8:3:4:1的氧化锆、氧化镁、氧化钙、氧化钇和氧化铈,加入与前述多种成分总重等重的蒸馏水,在球磨机中球磨5.5个小时,然后干燥、造粒、成型,于1600-1700摄氏度的温度下烧结2.0小时,总升温时间为9小时;再以230摄氏度每小时的速度冷却至1250摄氏度热处理4.0小时,然后自然冷却至室温,再将试样升温至1480摄氏度热处理1.5小时,而后再次自然冷却至室温即可。
所述夹层结构是在700℃~1750℃温度下,通过活性铸接工艺、粉末烧结工艺或活性金属钎焊工艺将金属层、纤维层和陶瓷层焊接在一起。本发明中所述的活性金属钎焊工艺的一种方式为:将活性金属钎焊材料均匀涂刷在要结合的金属层和陶瓷层表面,并将它们放置在一起,先在烘箱中将有机溶剂烘干,然后放置在真空电炉中,慢速升温到800℃~850℃,保温15~20分钟,随炉冷却,即可获得结合良好的纤维增强的金属/陶瓷层状复合材料结构。本发明中所述的活性铸接工艺是指在高温下,通过所述物理或化学方法减小金属熔体的表面张力,使其能够在陶瓷表面湿润并凝固,从而使金属和陶瓷焊接在一起。
本发明所述的粉末烧结工艺的一种方式是:将粉末烧结材料均匀涂刷在要结合的金属层、纤维层和陶瓷层表面,并将它们放置在一起,先在烘箱中将有机溶剂烘干,然后放置在真空电炉中,升温到1650℃~1750℃,保温150分钟,随炉冷却,即可获得结合良好的纤维增强金属/陶瓷层状复合材料防护板。
在一个实施例中,通过活性金属钎焊工艺、活性铸接工艺和粉末烧结工艺制造的一种圆筒层状复合结构,从内到外依次为金属层、纤维层、陶瓷层,纤维材料可以是单层缠绕也可以是多层缠绕,如果多层缠绕,优选地多层之间纤维方向交错设置,纤维可以是整块也可以由多块纤维拼缝焊接而成;金属圆筒可以是一个整体也可以由多块圆弧拼缝焊接而成;陶瓷圆筒可以是一个整体也可以由多块圆弧拼缝焊接而成。圆筒的外径2000mm~4000mm,金属层的厚度1.5mm~8mm,陶瓷层的厚度25mm~30mm。
在另一个实施例中,通过活性金属钎焊工艺、活性铸接工艺和粉末烧结工艺制造的一种圆筒层状复合结构,从内到外依次为金属层、纤维层、陶瓷层、纤维层、金属层,纤维材料可以是单层缠绕也可以是多层缠绕,如果多层缠绕,优选地多层之间纤维方向交错设置,纤维可以是整块也可以由多块纤维拼缝焊接而成;金属圆筒可以是一个整体也可以由多块圆弧拼缝焊接而成;陶瓷圆筒可以是一个整体也可以由多块圆弧拼缝焊接而成。圆筒的外径2000mm~4000mm,内层金属层的厚度2.5mm~6mm,陶瓷层的厚度15mm~25mm,外层金属层的厚度0.5mm~1.0mm。
在另一个实施例中,通过活性金属钎焊工艺、活性铸接工艺和粉末烧结工艺制造的一种圆筒层状复合结构,从内到外依次为金属层、纤维层、陶瓷层、纤维层、陶瓷层,纤维材料可以是单层缠绕也可以是多层缠绕,如果多层缠绕,优选地多层之间纤维方向交错设置,纤维可以是整块也可以由多块纤维拼缝焊接而成;金属圆筒可以是一个整体也可以由多块圆弧拼缝焊接而成;陶瓷圆筒可以是一个整体也可以由多块圆弧拼缝焊接而成。圆筒的外径2000mm~4000mm,金属层的厚度1.5mm~5mm,内层陶瓷层的厚度10mm~20mm,外层陶瓷的厚度5mm~10mm。
前述关于氧化锆陶瓷的不同实施例与上述三个关于包容机舱的具体实施例可以进行组合。而且本领域技术人员可以根据本发明公开的内容和所掌握的本领域技术对本发明内容做出替换或变型,但是这些替换或变型都不应视为脱离本发明构思的,这些替换或变型均在本发明要求保护的权利范围内。

Claims (1)

1.一种用于飞机发动机的包容机舱,呈圆筒状,包括夹层结构,其使用金属、纤维和陶瓷层状复合材料制成,具有至少一个金属层、纤维层和陶瓷层构成的夹层结构,金属层采用铝、镁或者钛,纤维层采用氮化硅、碳化硅或者二氧化锆纤维,所述陶瓷层包括重量比100:6:4:2:1的氧化锆、氧化镁、氧化钙、氧化钇和氧化铈;其特征在于氧化锆陶瓷材料采用重量比100:6:4:2:1的氧化锆、氧化镁、氧化钙、氧化钇和氧化铈,加入与前述多种成分总重等重的蒸馏水,在球磨机中球磨5个小时,然后干燥、造粒、成型,于1600-1750摄氏度的温度下烧结1.8小时,总升温时间为8小时;再以220摄氏度每小时的速度冷却至1200摄氏度热处理3.5小时,然后自然冷却至室温,再将试样升温至1460摄氏度热处理1.6小时,而后再次自然冷却至室温即可;夹层结构采用如下粉末烧结工艺焊接:将粉末烧结材料均匀涂刷在要结合的金属层、纤维层和陶瓷层表面,并将它们放置在一起,先在烘箱中烘干,然后放置在真空电炉中,升温到1650℃~1750℃,保温150分钟,随炉冷却。
CN201310065119.2A 2013-03-01 2013-03-01 一种飞机发动机外壳 Active CN103158876B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310065119.2A CN103158876B (zh) 2013-03-01 2013-03-01 一种飞机发动机外壳

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310065119.2A CN103158876B (zh) 2013-03-01 2013-03-01 一种飞机发动机外壳

Publications (2)

Publication Number Publication Date
CN103158876A CN103158876A (zh) 2013-06-19
CN103158876B true CN103158876B (zh) 2015-06-10

Family

ID=48582486

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310065119.2A Active CN103158876B (zh) 2013-03-01 2013-03-01 一种飞机发动机外壳

Country Status (1)

Country Link
CN (1) CN103158876B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114017141A (zh) * 2021-11-05 2022-02-08 中国航发沈阳发动机研究所 一种转静子机匣

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4875616A (en) * 1988-08-10 1989-10-24 America Matrix, Inc. Method of producing a high temperature, high strength bond between a ceramic shape and metal shape
CN1073503A (zh) * 1992-12-29 1993-06-23 王魁久 稀土陶瓷轴承元件及其制造方法
DE19628105A1 (de) * 1996-07-12 1997-11-06 Daimler Benz Ag Mehrschichtiges Leichtpanzerelement
CN1241551A (zh) * 1998-03-24 2000-01-19 阿苏拉布股份有限公司 着色氧化锆制品的生产方法和获得的着色氧化锆装饰制品
CN100497089C (zh) * 2006-09-27 2009-06-10 北京航空航天大学 纤维增强的金属/陶瓷层状复合包容机匣及其制造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10310945A1 (de) * 2003-03-13 2004-10-07 Sgl Carbon Ag Faserverstärkter Keramik-Werkstoff

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4875616A (en) * 1988-08-10 1989-10-24 America Matrix, Inc. Method of producing a high temperature, high strength bond between a ceramic shape and metal shape
CN1073503A (zh) * 1992-12-29 1993-06-23 王魁久 稀土陶瓷轴承元件及其制造方法
DE19628105A1 (de) * 1996-07-12 1997-11-06 Daimler Benz Ag Mehrschichtiges Leichtpanzerelement
CN1241551A (zh) * 1998-03-24 2000-01-19 阿苏拉布股份有限公司 着色氧化锆制品的生产方法和获得的着色氧化锆装饰制品
CN100497089C (zh) * 2006-09-27 2009-06-10 北京航空航天大学 纤维增强的金属/陶瓷层状复合包容机匣及其制造方法

Also Published As

Publication number Publication date
CN103158876A (zh) 2013-06-19

Similar Documents

Publication Publication Date Title
CN100497089C (zh) 纤维增强的金属/陶瓷层状复合包容机匣及其制造方法
CN100570268C (zh) 纤维增强的金属/陶瓷层状复合材料防护板
US10167733B2 (en) Turbine engine component with vibration damping
JP2004036443A (ja) ガスタービンシュラウド構造
CA2675107A1 (en) Device for protecting components having a flammable titanium alloy from titanium fire and production method therefor
CN102418562B (zh) 一种纤维缠绕的预应力涡轮转子
CN103722823A (zh) 一种C/C-SiC-ZrC陶瓷基复合材料及其制备方法
CN103158878B (zh) 一种飞机发动机包绕结构
CN103158876B (zh) 一种飞机发动机外壳
JP2022519444A (ja) 超合金及びその製造方法
CN103144759B (zh) 一种抗冲击复合机身面板
CN103158877B (zh) 一种用于飞机发动机的包容机舱
CN103144773B (zh) 一种用于飞机发动机的短舱
CN103253364B (zh) 一种抗冲击复合机翼蒙皮
CN103158879B (zh) 一种飞机发动机吊舱
CN103158852B (zh) 一种用于靠近飞机发动机安装位置附近区域的机身外壳
CN103144760B (zh) 一种飞机机身外壳
CN103144761B (zh) 一种复合机身
CN200955411Y (zh) 纤维增强的金属/陶瓷层状复合包容机匣
CN201016655Y (zh) 纤维增强的金属/陶瓷层状复合材料防护板
CN103253365B (zh) 一种机翼蒙皮
CN103144762B (zh) 一种机身蒙皮
CN103158858B (zh) 一种飞机机翼外壳
CN103158857B (zh) 一种复合机翼
CN103144764B (zh) 一种具有夹层结构的机翼面板

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant