CN103154270A - 用于rt-pcr反应缓冲液中的细胞裂解的方法 - Google Patents

用于rt-pcr反应缓冲液中的细胞裂解的方法 Download PDF

Info

Publication number
CN103154270A
CN103154270A CN2011800481504A CN201180048150A CN103154270A CN 103154270 A CN103154270 A CN 103154270A CN 2011800481504 A CN2011800481504 A CN 2011800481504A CN 201180048150 A CN201180048150 A CN 201180048150A CN 103154270 A CN103154270 A CN 103154270A
Authority
CN
China
Prior art keywords
pcr
cell
volume
reaction
reaction buffer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011800481504A
Other languages
English (en)
Other versions
CN103154270B (zh
Inventor
I.霍夫曼
H.瓦尔克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
F Hoffmann La Roche AG
Roche Diagnostics GmbH
Original Assignee
F Hoffmann La Roche AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by F Hoffmann La Roche AG filed Critical F Hoffmann La Roche AG
Publication of CN103154270A publication Critical patent/CN103154270A/zh
Application granted granted Critical
Publication of CN103154270B publication Critical patent/CN103154270B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6851Quantitative amplification

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明一般而言提供了用于扩增靶RNA的方法,其包括步骤(i)将包含至少一个或多个活细胞的具有第一体积的液体转移到容器内,(ii)向所述容器中加入具有第二体积的RT-PCR反应缓冲液,其中所述第二体积是所述第一体积至少2x大,(iii)通过在至少90℃温育至少20秒,裂解所述容器内的所述至少一个或多个活细胞,以及(iv)通过一步RT-PCR而不执行中间纯化步骤扩增所述靶。

Description

用于RT-PCR反应缓冲液中的细胞裂解的方法
发明领域
本发明涉及通过PCR的RNA表达分析领域。更具体而言,本发明提供了新方法以便执行从仅少数细胞的材料开始的表达分析,以及通过实时PCR对所述样品DNA执行后续直接分析。
发明背景
在过去数十年中,PCR已成为用于DNA分析的“役用马(working horse)”,因为它允许指数扩增核酸。特别地,实时PCR(也称为qPCR)已成为有力工具,因为它允许同时分析扩增过程中的扩增的核酸,或不含中间空档,通过解链曲线分析直接在扩增反应后分析扩增的核酸。
此外,PCR以及RT-PCR的自动化已取得显著进展,因为qPCR系统目前是可获得的,其允许以微量滴定板形式平行执行96、384或1536个反应。系统也已变得更加用户友好。例如,微量滴定板是商购可得的,其中每个反应容器已包含冷冻干燥形式的执行PCR或RT-PCR扩增或扩增和检测所需的化合物,并且客户仅需要在实际反应自身之前加入包含待分析核酸的样品。替代系统由Advalytics(AG 480F)提供,其使得在载玻片上的PCR扩增和检测成为可能。
然而,进一步改善用于PCR和RT-PCR分析的作业流程仍是挑战,特别是如果分析仅可以对源于仅小数目细胞的RNA执行。在常规实时PCR中,DNA或RNA首先在耗时步骤中从细胞分离,其可以导致材料的丢失。在收获后,将细胞裂解并且将DNA至少部分从裂解物中纯化,因为若非如此,PCR扩增可能至少被定量地抑制。
在这个背景中,本发明潜在的技术问题是提供改善和可自动化的高流通量方法,其允许进一步简化的核酸分析方案。
发明概述
本发明提供了用于扩增RNA靶核酸的方法,其包括步骤
a)将包含一个或多个活细胞的具有第一体积的液体样品转移到容器内
b)向所述容器中加入具有第二体积的一步RT-PCR反应缓冲液,其中所述第二体积是所述第一体积至少2x大
c)通过在至少90℃温育至少20秒,裂解所述容器内的所述一个或多个活细胞
d)通过聚合酶链反应用能够执行一步RT-PCR的热稳定的DNA聚合酶扩增所述靶核酸而不执行中间纯化步骤。
其中在步骤b)过程中加入的一步RT-PCR反应缓冲液另外包含热稳定的DNA聚合酶和dNTPs。
步骤b)的所述一步RT-PCR反应缓冲液可以另外包含至少一对扩增引物和任选的至少一种标记的杂交探针或双链DNA结合荧光化合物。
可替代地,所述容器包含至少一对PCR扩增引物和任选的至少一种标记的杂交探针或双链DNA结合荧光化合物的干燥组合物。
在一个实施方案中,所述热稳定的DNA聚合酶的活性在步骤c)过程中被热活化。
此外,在与上文公开的实施方案不相互排斥的一个实施方案中,所述聚合酶是Tth聚合酶。
在本创造性方法的一个实施方案中,包含至少一个或多个活细胞的所述液体已在步骤a)之前通过细胞分选方法获得。
优选地,步骤a)的所述活细胞的数目与在其中执行步骤d)的聚合酶链反应的液体体积相比较的比值不超过2细胞/μl。
优选地,将被扩增的核酸是RNA。如果靶RNA仅以极低量表达和/或由单拷贝DNA转录,那么这也在本发明的范围内。
在特定实施方案中,所述样品具有小于2μl的体积,并且在步骤b)和c)之间,所述样品在37℃ - 65℃之间的温度温育30秒 – 5分钟。
在另一个方面,本发明提供了包含设计为适合热循环仪仪器的多个反应容器、包含能够执行一步RT-PCR的热稳定的DNA聚合酶和dNTPs的PCR反应缓冲液的试剂盒。
在一个实施方案中,所述试剂盒进一步包含至少一对扩增引物,和任选的至少一种标记的杂交探针或双链DNA结合荧光化合物。
在替代实施方案中,在所述试剂盒内的所述反应容器包含至少一对PCR扩增引物和任选的至少一种标记的杂交探针或双链DNA结合荧光化合物的干燥组合物。
所述多个反应容器可以以微量滴定板或反应容器的线性条的形式彼此物理连接。
此外,在这样的试剂盒内的所述热稳定的聚合酶可以优选通过在90℃温育至少1分钟被热活化。
发明详述
一般来说,本发明提供了允许裂解液体环境中的细胞样品的方法,其随后直接用于通过应用一步RT-PCR的RNA表达分析,而无需任何中间纯化步骤或复杂的液体处理程序。更精确而言,本发明提供了用于扩增RNA靶核酸的方法,其包括步骤
a)将包含一个或多个活细胞的具有第一体积的液体样品转移到容器内
b)向所述容器中加入具有第二体积的1步RT-PCR反应缓冲液,其中所述第二体积是所述第一体积至少2x大
c)在至少90℃温育所述容器至少20秒,从而裂解所述容器内的所述一个或多个活细胞
d)通过聚合酶链反应用包含逆转录酶活性以及DNA依赖性聚合酶活性的热稳定的DNA聚合酶扩增所述靶核酸而不执行中间纯化步骤。
根据本发明的一个方面,可能所有步骤a)、b)、c)和d)都在相同反应容器内执行。
如由实施例示范的,本发明提供了令人惊讶地可应用于从作为原始样品材料的仅一个单一活细胞开始执行1步RT-PCR分析的方法。此外,可以重现地扩增且分析来自仅少数细胞或甚至一个单一细胞的单拷贝基因的靶DNA。
靶核酸可以是任何RNA,包括但不限于用于监控各自RNA表达水平目的的mRNA。因此,需要用热稳定的聚合酶扩增RNA靶核酸,所述热稳定的聚合酶包含RNA模板依赖性聚合酶活性(逆转录酶活性)和DNA模板依赖性活性两者。这样的酶的显著例子是Tth DNA聚合酶(Roche Applied Science目录号:11 480 022 001)。可替代地,包含逆转录酶活性以及DNA依赖性聚合酶活性的热稳定的DNA聚合酶可以是具有逆转录酶活性和DNA依赖性DNA聚合酶活性的酶的混合物。例如,C. therm聚合酶系统(Roche Applied Science目录号:12 016 346 001)由C.therm聚合酶和Taq聚合酶的混合物组成。
Tth DNA聚合酶(最适+55℃至+70℃,最大+95℃)在升高温度的活性克服由RNA二级结构造成的问题。所得到的cDNA可以在Mg2+-离子的存在下使用相同酶通过PCR进行扩增。Tth DNA聚合酶在升高温度执行逆转录和DNA扩增两者的能力允许这种酶用于定量RT-PCR、克隆和基因表达分析。Tth DNA聚合酶用于高达1 kb的RNA的RT-PCR扩增。
Tth DNA聚合酶活性对在高温(+95℃)的延长温育有抵抗力,并且因此可以用于PCR扩增。
在锰离子(Mn2+)的存在下,Tth DNA聚合酶具有非常有效的内在(intrinsic)逆转录酶(RT)活性,其比对于大肠杆菌DNA聚合酶和Taq DNA聚合酶报道的活性高得多(Saiki,R.K.,等人,Science 239(1988)487–491)。
步骤a)
根据步骤a)的一个或多个活细胞优选是人、动物或植物起源的真核细胞。细胞可以衍生自细胞系、血液或活组织检查。
含有细胞的液体样品可以是所述细胞在其中存活至少一定时间段(其优选长于30分钟)的任何液体、缓冲液或培养基。这样的液体例如可以是已在其中成功地培养悬浮生活且生长的细胞的培养基。在贴壁细胞的情况下,液体可以是缓冲液,其中细胞已从固体载体脱离。优选地,然而,这样的缓冲液不含任何可能对后续聚合酶介导的PCR或RT-PCR扩增反应具有抑制作用的蛋白酶。如果观察到,那么这样的作用可以通过在沉积到容器内之前对细胞实施另外的洗涤步骤得到避免。
液体转移到容器内可以通过首先制备细胞样品的合适的稀释系列且随后将仅一个细胞或几个细胞的等价物吸取到所述容器内来手动实现。优选地,转移使用合适的自动化移液站或最优选地细胞分选仪来实现。这样的细胞分选机是本领域众所周知的并且从许多不同制造商商购可得。由于细胞分选仪的基础技术,偶尔发生细胞碎片的大颗粒被细胞分选仪误认为细胞。由于这种作用,在单细胞分析的情况下,一些样品可能在后续PCR或RT-PCR反应过程中未给出结果。
优选地,转移至反应容器的细胞数目应是有限的,因为不含任何纯化步骤,较高浓度的细胞碎片的存在可能抑制后续扩增反应。有利地,转移至反应容器的细胞数目被调整从而使得如下公开的步骤d)以这样的方式执行:样品不超过2细胞当量/μl的比值。
还优选地,转移至反应容器的细胞数目不应太低,因为若非如此可以变得难以执行PCR或RT-PCR反应用于扩增仅以低丰度表达的RNAs。因此,转移至反应容器的细胞数目被调整从而使得如下公开的步骤d)以这样的方式执行:样品包含至少1细胞当量/25μl的比值。
液体体积足够小,从而使得在步骤b)中1步RT-PCR反应缓冲液的添加以及 需要时后续扩增反应所需的进一步化合物的添加最终导致对于所述RT-PCR执行仍是合理地小的最终体积。所述体积从不应超过100且决不超过200μl。有利地,所述体积不超过50μl。高度优选的是20 μl或更少的体积,且甚至10 μl。在自动沉积的情况下,含有一个或多个细胞的液体可以是极低的亚μl范围。特别地,如果使用细胞分选仪,那么仅含有一个细胞当量的体积是约小于100 nl。即使在后面一种情况下样品完全干燥,本发明人已证明该新方法仍是有效的。在单细胞分析的特定实施方案中,最终体积优选不超过25μl。
反应容器可以是可以在其中执行扩增反应的任何类型的反应容器。因此,唯一的基本限制是容器具有足够的耐热性,因为在热循环方案过程中,它将变得反复暴露于90℃或以上的高温。
在一个实施方案中,反应容器是微量滴定板的孔,其适合于或设计为置于热循环仪仪器内。这允许以高度平行方式对许多样品执行本发明的方法。包含96、384和1536个孔的微量滴定板是本领域已知的,并且从许多不同供应商商购可得。本领域可获得的微量滴定板允许至少2 μl的反应体积。通过将其置于合适的加热器上,或可替代地直接置于设计为并入微量滴定板的PCR热循环仪器内,可以对这样的微量滴定板实施至少90℃的高温。
在第二实施方案中,反应容器可以是单个反应管或其为反应管的条的部分反应管,其彼此连接,从而使得它们可以共同置于热循环仪仪器的加热器内。在进一步实施方案中,反应容器是特定的毛细管,其可以置于毛细管LightCycler仪器(Roche Applied Science目录号.  023 531 414 001)内。
步骤b)
在本发明的上下文中,在本发明的步骤b)时加入的“1步RT-PCR反应缓冲液”的术语应理解为样品在其中以后可以被实施RT-PCR反应的任何液体,而无需任何中间纯化步骤。加入的反应缓冲液的所述第二体积应是第一体积的至少两倍(2x)大且优选5倍(5x)大。这允许在后续1步RT-PCR反应过程中靶核酸的有效扩增。
“1步RT-PCR反应缓冲液”至少包括包含逆转录酶和DNA依赖性DNA聚合酶活性两者的热稳定的DNA聚合酶,和脱氧核苷三磷酸(desoxynucleoside-triphosphates)(dNTPs)的混合物。在一个实施方案中,“1步RT-PCR反应缓冲液”已含有对于执行PCR反应进一步所需的化合物。因此,所述“1步RT反应缓冲液”可以进一步包含至少一对合适的扩增引物。“1步RT-PCR反应缓冲液”还可以包含合适的pH缓冲化合物(例如Tris)、Mg2+盐、Mn2+盐、热启动组分等。
在特定实施方案中,“1步RT-PCR反应缓冲液”可以已包含实时监控靶DNA扩增所需的化合物。特别地,这些化合物是荧光杂交探针或双链DNA结合染料。多种可能的检测形式的细节将在下文讨论。
可替代地,如果上述组分中的一些、任何或所有或任何其他另外化合物在裂解步骤c)后,但在执行根据步骤d)的实际扩增反应前加入,那么这也在本发明的范围内。
步骤c)
根据本发明,细胞的裂解在1步RT-PCR反应缓冲液内发生,而无需任何先前添加本领域常规使用的特定裂解步骤试剂。相反,一个或多个活细胞的裂解通过将样品在至少90℃温育至少20秒的时期发生。通常,小于1分钟的高温温育时期对于中等数目的细胞(不超过64个细胞)的完全裂解是足够的,其使得以低丰度表达的转录物的后续扩增和检测成为可能。然而,如果所述时期延长到高达30但优选不超过15分钟的时期,那么这也在本发明的范围内。
用于细胞裂解的温度不应超过100℃且优选是95℃或更低,因为在更高温度,反应缓冲液中含有的后续PCR反应所需的组分被破坏的风险增加。例如,即使热稳定的DNA聚合酶例如Taq DNA聚合酶在超过100℃也基本上变得变性或降解。
步骤d)
如由实施例证明的,1步RT-PCR反应可以使用裂解物直接执行,而无需中间纯化步骤。然而,取决于实施方案,如果所述反应所需的另外化合物在裂解后加入样品中,那么这也在本发明的范围内。
因为本发明可应用于分析源于仅极少数或甚至单个细胞的核酸,所以如果考虑在分析的细胞数目和在其中发生根据步骤d)的实际RT-PCR反应的体积之间的比值,那么对于根据本发明的实验设计是有利的。一方面,如果将分析这样的少量起始材料,那么反应应以最低限度体积执行,以便达到最佳灵敏度。因此,已经证明步骤a)的所述细胞数目与在其中执行步骤d)的聚合酶链反应的液体体积相比较的比值是至少1细胞/20μl反应体积是有利的。
因为不存在中间纯化步骤,所以裂解的样品将含有细胞碎片,其可能干扰PCR反应的效率。在这个背景中,已证明步骤a)的所述活细胞或细胞等价物的数目与在其中执行步骤d)的聚合酶链反应的液体体积相比较的比值不超过2细胞/μl是有利的。甚至更有利的是在1细胞/25μl和2细胞/μl之间的比值。如已经实验测定的,在这个范围内的比值使得对源于仅1个单个细胞以及高得多的细胞数目的DNA的单拷贝分析成为可能。
用于1步RT-PCR反应的化合物可以是本领域使用的常规化合物:活性反应设置包含靶RNA、dNTPs、热稳定的DNA聚合酶,其也能够执行1步RT-PCR以便使用本创造性的方法用于监控基因表达,和至少一对扩增引物。
有利地,引物以这样的方式设计,从而使得生成的扩增产物相对小。具有高达1 kb的大小的扩增产物已用根据本发明的方法定量生成,但小于300 bp或甚至小于120 bp的扩增子大小是高度优选的。
还有利的是,根据本发明的引物以这样的方式设计,从而使得它们跨越内含子序列,即各自引物的一部分针对第一外显子,并且所述引物的另一部分针对第二邻接外显子。这样的设计允许特别产生衍生自样品中的RNA的扩增产物,和排除生成可能衍生自各自基因组DNA片段的扩增产物的可能性。
1步RT-PCR的逆转录部分不需要在热循环仪仪器内的分开的程序。相反,逆转录步骤在热循环方案的起始变温速率(ramping)、退火和延伸步骤过程中发生。这与公开于EP 1 978 109中的观察一致。
然而,对于2μl或更少的小样品体积,本发明人已惊讶地观察到在实际热裂解步骤之前在逆转录酶反应最佳的温度附近的预温育步骤的情况下,表达的检测甚至更灵敏。因此,在特定实施方案中,所述样品具有小于2 μl的体积,并且在步骤b)和c)之间所述样品在37℃ - 65℃之间的温度温育30秒 – 5分钟。这样的正面效果可能是由于小于2 μl的小样品体积导致少数分选细胞的膜的立即干燥和后续破坏。因此,细胞RNA可以变得可用于逆转录反应。
扩增DNA的分析随后通常可以借助于凝胶电泳来达到。然而,在更重要的实施方案中,RT-PCR反应可以是实时PCR反应,其中扩增的进展使用例如下述检测形式中的任何连续监控:
-     TaqMan水解探针形式:
单链杂交探针用两种组分标记。当第一种组分用合适波长的光激发时,根据荧光共振能量转移的原理,将吸收的能量转移至第二种组分,所谓的猝灭剂。在PCR反应的退火步骤过程中,杂交探针与靶DNA结合,并且在后续延伸期过程中通过Taq聚合酶的5’-3’外切核酸酶活性降解。因此,激发的荧光组分和猝灭剂在空间上彼此分开,并且因此可以测量第一种组分的荧光发射。TaqMan探针测定详细公开于US 5,210,015、US 5,538,848和US 5,487,972中。TaqMan杂交探针和化合物混合物公开于US 5,804,375中。
在特定实施方案中,Taqman杂交探针是如可从Roche Applied Sciences获得的来自Universal Probe Library的UPL探针(目录2010/2011,第577页)。
-     分子信标:
这些杂交探针也用第一种组分和猝灭剂标记,标记优选位于探针的两个末端处。由于探针的二级结构,两种组分在溶液中空间接近。在与靶核酸杂交后,两种组分彼此分开,从而使得在用合适波长的光激发后,可以测量第一种组分的荧光发射(US 5,118,801)。
-     FRET杂交探针:
FRET杂交探针测试形式对所有种类的同源杂交(homogenous hybridization)测定尤其有用(Matthews,J.A.和Kricka,L.J.,Analytical Biochemistry 169(1988)1-25)。它的特征在于两种单链杂交探针,其同时使用且与扩增的靶核酸的相同链的邻近位点互补。两种探针都用不同荧光组分标记。当用合适波长的光激发时,根据荧光共振能量转移的原理,第一种组分将吸收的能量转移至第二种组分,从而使得当两种杂交探针都与待检测的靶分子的邻近位置结合时,可以测量第二种组分的荧光发射。作为监控FRET受体组分的荧光中的增加的替代,还可以监控FRET供体组分的荧光减少作为杂交事件的定量测量。
特别地,FRET杂交探针形式可以用于实时PCR中,以便检测扩增的靶DNA。在本领域已知的实时PCR的所有检测形式中,FRET-杂交探针形式已证明是高度灵敏、确切和可靠的(WO 97/46707;WO 97/46712;WO 97/46714)。作为使用两种FRET杂交探针的替代,还可以使用荧光标记的引物和仅一种标记的寡核苷酸探针(Bernard,P.S.,等人,Analytical Biochemistry 255(1998)101-107)。在这点上,可以任意选择引物是用FRET供体还是用FRET受体化合物标记。
-     双链DNA结合染料形式:
如果在使用双链核酸结合部分检测扩增产物的情况下,实时PCR在根据本发明的添加剂的存在下执行时,那么这也在本发明的范围内。例如,各自的扩增产物也可以根据本发明通过荧光DNA结合染料进行检测,所述荧光DNA结合染料在与双链核酸相互作用并用合适波长的光激发后发出相应荧光信号。染料SybrGreenI和SybrGold(Molecular Probes)频繁用于本领域中。另一种特别有用的染料是LightCycler 480 Resolight染料(Roche Applied Science目录号:04 909 640 001)。
热启动PCR
PCR反应设置可以含有一些化合物,其提供热启动效应,即在环境温度抑制偶尔导致非特异性扩增产物例如引物二聚体形成的非特异性引物退火和后续延伸。在温度增加后,由于热启动化合物从任何结合配偶体中释放,这种抑制变得被消除,结果是热稳定的DNA聚合酶变得热活化且可以发生特异性聚合酶催化的引物延伸。这样的化合物的许多例子是本领域已知的。具体例子在US 5,338,671中给出,其公开了聚合酶抗体作为热启动化合物。这样的热启动化合物的更多近期例子公开于EP 1 989 324 A和EP 2 163 556中。
所述热启动化合物可以在裂解后连同聚合酶和任何其他RT-PCR化合物一起在步骤d)之前加入样品中。然而,优选地,所述热启动化合物已包括在“1步RT-PCR反应缓冲液”内,其在步骤b)过程中加入。因此,热稳定的DNA聚合酶的热活化可以已通过在步骤c)过程中在至少90℃温育来达到。
在特定实施方案中,DNA聚合酶由于化学修饰导致可逆地灭活。更具体而言,将不耐热的封闭基团引入聚合酶内,其致使酶在室温失活(US 5,773,258)。这些封闭基团在PCR前步骤过程中在高温去除,从而使酶变得活化。这样的不耐热的修饰例如可以通过将柠康酸酐或乌头酸酐(Aconitric Anhydride)与酶的赖氨酸残基偶联来获得(US 5,677,152)。
在优选实施方案中,热启动特征通过使用与适体组合的Tth DNA聚合酶来实现。Tth DNA聚合酶是具有RNA依赖性逆转录酶活性和DNA依赖性聚合酶活性的热稳定的酶,允许在单管反应中逆转录(RT)和PCR的组合。
适体是专用寡核苷酸,其与聚合酶的活性中心结合且在低于Tth酶的最佳反应温度的温度阻止与核酸靶的附着。因此,在反应设置过程中和在RT步骤前的后续加热期未发生引物延伸。在更高温度时,适体从酶中释放,并且可以起始RT或DNA聚合。Tth DNA聚合酶的用于RT的推荐的温育温度(+61℃)可以克服RNA的二级结构。这导致高度特异性和有效的cDNA合成,这导致高度特异和灵敏的PCR。
用适体的热启动是高度有效和非常方便的,因为它不需要另外的温育步骤、吸取步骤或反应时间的延长。用适体的热启动方案不干扰其他酶促过程、扩增产物的在线检测或后续处理步骤。
包含PCR试剂的干燥组合物的微量滴定板
如上公开的,可以使用微量滴定板,以便执行根据本发明的方法。如果是这种情况,那么微量滴定板的每个容器或反应孔可以已在其表面上包含试剂的干燥组合物,所述试剂是后续PCR所需的。主混合物的干燥组合物通过在步骤b)中添加“1步RT-PCR反应缓冲液”得到重溶(resolved)。在本发明的背景中,短语“干燥组合物”用于强调溶剂,优选含水溶剂的量减少低于5重量%。
例如,这样的干燥组合物可以包含至少一对扩增引物或仅由至少一对扩增引物组成。在这种情况下,“1步RT-PCR反应缓冲液”不包括任何扩增引物。微量滴定板的每个孔可以包含相同的扩增引物对,从而使得多重样品的平行分析成为可能,或基本上每个孔可以包含不同的扩增引物对,从而使得一个或仅少数不同样品的多参数分析成为可能。当然,板的布局也可以根据该两个概念的混合以及用于一式两份、一式三份或一式四份分析进行设计。用于产生核酸例如PCR扩增引物的干燥组合物的方法是本领域众所周知的,并且包括但不限于冷冻干燥、冻干(lyophyllization)或真空干燥的方法。WO 2008/36544描述了所谓的填充剂材料的使用,以便提供干燥的组合物,所述填充剂材料是例如碳水化合物例如FICOLL?、蔗糖、葡萄糖、海藻糖、松三糖、DEXTRAN?或甘露醇,蛋白质例如BSA、明胶或胶原,和聚合物例如PEG或聚乙烯吡咯烷酮(PVP)。已公开了冷冻干燥(US 5,593,824)或真空干燥(US 5,565,318)用于干燥碳水化合物聚合物基质中的生物学材料。
此外,这样的干燥组合物可以任选包含至少一种标记的杂交探针或双链DNA结合荧光化合物,以便使得实时PCR监控成为可能。此外,所述干燥的组合物可以另外包含热稳定的DNA聚合酶和/或dNTPs。在这种情况下,“1步RT-PCR反应缓冲液”不包括其为干燥组合物的部分的任何试剂。
生产包含蛋白质或酶的干燥组合物的几种方法也在本领域中得到公开。冻干或冷冻干燥是针对蛋白质贮存的充分建立的技术,其公开于许多最新水平的文件中(例如Passot,S.,等人,Pharmaceutical Development and Technology 12(2007)543-553;Carpenter,J.F.,等人,Pharmaceutical Research 14(1997)969-975;Schwegman,J.J.,等人,Pharmaceutical Development and Technology 10(2005)151-173)。特别地,US 7,407,747公开了Taq聚合酶可以在由缓冲溶液、核苷酸、BSA和海藻糖组成的混合物中干燥。此外,US 2010/0159529公开了将适体添加至液体溶液增强Taq聚合酶的稳定性,其中所述稳定作用不仅对于干燥而且对于贮存干燥的混合物是足够好的。
如技术人员应当理解的,公开的方法包含许多变化。例如,如果干燥组合物仅包含扩增引物,那么包含热稳定的DNA聚合酶、dNTPs和扩增所需的所有其他PCR化合物的1步RT-PCR主混合物可以在步骤b中作为“1步RT-PCR反应缓冲液”加入。任选地,“1步RT-PCR反应缓冲液”或1步RT-PCR主混合物可以另外包含用于实时监控扩增的工具,例如荧光标记的杂交探针,或可替代地,荧光双链DNA结合染料。
在另一个例子中,干燥组合物可以包含扩增所需的所有化合物,即至少一对扩增引物、热稳定的DNA聚合酶、dNTPs和任选的至少一种荧光标记的杂交探针或荧光双链DNA结合染料。随后,步骤b)的“1步RT-PCR反应缓冲液”可以仅仅是水,或需要时可以包含另外的辅助化合物例如pH缓冲系统(例如Tris盐)、Mg2+盐等。
根据本发明的试剂盒
本发明还提供了用于执行实时PCR分析的新型试剂盒。试剂盒包含试剂组分和一次性使用的组分,其一起可以用于且特别适合于上文公开的任何方法中。
因此,这样的试剂盒包含设计为适合热循环仪仪器的多个反应容器,和包括包含逆转录酶和DNA依赖性DNA聚合酶活性的热稳定的DNA聚合酶或一起提供这两种活性的聚合酶混合物,和dNTPs的1步PCR反应缓冲液。因此,这样的试剂盒首次为科学家提供了含有基因表达分析所需的所有试剂和一次性用品的完整集合的有用工具。
关于合适酶的显著例子是Tth DNA聚合酶(Roche Applied Science目录号:11 480 022 001)或C. therm聚合酶系统(Roche Applied Science目录号:12 016 346 001)。在高度优选实施方案中,热启动特征通过使用与适体组合的Tth DNA聚合酶实现。Tth DNA聚合酶是具有RNA依赖性逆转录酶活性和DNA依赖性聚合酶活性的热稳定的酶,允许在单管反应中逆转录(RT)和PCR的组合。优选地,在这样的试剂盒内的所述热稳定的聚合酶可以借助于在90℃温育至少1分钟热活化。
优选地,反应容器以微量滴定板的形式彼此物理连接。微量滴定板可以优选是96-、384-或1536-孔微量滴定板。可替代地,所述反应容器以反应容器的线性条的形式彼此物理连接。
在一个实施方案中,所述试剂盒进一步包含至少一对扩增引物,和任选的至少一种标记的杂交探针或双链DNA结合荧光化合物。这些试剂贮存于分开的容器内且可以在实验开始前加入PCR反应缓冲液中。
在可替代实施方案中,在所述试剂盒内的所述反应容器包含至少一对PCR扩增引物和任选的至少一种标记的杂交探针或双链DNA结合荧光化合物的干燥组合物。
实施例
实施例1
用于扩增来自分选的小鼠杂交瘤细胞的GAPDH基因和RPLI13A基因的qPCR
限定数目的小鼠杂交瘤细胞使用细胞分选器(Beckton Dickinson,FACS Aria I)沉积到96孔微量滴定板的分开的孔内,方式是以液体束总是定向到孔的中心内。然而,由于细胞分选器的基础技术,不能排除小百分比的分选颗粒不是完整的全细胞而是细胞碎片。因此,在下文中,分选材料的数量将称为细胞当量。
如公开的分选的细胞根据下述吸取方案分配到设计用于LC480实时PCR仪器(Roche Applied Science目录号:05 015 278 001)的96孔微量滴定板(Roche Applied Science目录号:04 729 692 001)内:
第1-4列1细胞当量/孔
第5-6列中2细胞当量/孔
第7-8列中4细胞当量/孔
第9列中8细胞当量/孔
第10列中16细胞当量/孔
第11列中32细胞当量/孔
第12列中64细胞当量/孔
向每个孔中加入含有下述的主混合物:
0.4 μM正向引物agcttgtcatcaacgggaag(SEQ ID NO:1)
0.4 μM反向引物tttgatgttagtggggtctcg(SEQ ID NO:2)
0.2 μM UPL探针(RocheApplied Science目录号04 685 075 001,No. 9)
1x LC480探针主液(Roche Applied Science目录号:04 902 343 001)
正向和反向引物设计为扩增小鼠GAPDH基因,其已知以高拷贝数存在于小鼠基因组中。
在分开的板上,加入相同主混合物,但引物和探针设计为扩增基因RPLI13A,其仅以12拷贝存在于小鼠基因组中。引物和探针如下:
0.4 μM正向引物catgaggtcgggtggaagta(SEQ ID NO:3)
0.4 μM反向引物gcctgtttccgtaacctcaa(SEQ ID NO:4)
0.2 μM UPL探针(RocheApplied Science目录号:04 686 993 001,No.25)
LightCycler探针主液包含热稳定的FastStart DNA聚合酶,其是化学修饰的热启动酶。借助于通过在高温温育去除所述修饰诱导活化。
qPCR根据下述热循环方案在LC480实时PCR仪器中执行:
预温育: 1x  95oC   10’
变性      45x     95oC   10’’
退火      45x     60oC   30’’
延伸      45x     72oC   1’’
冷却变温速率  2.2oC/s
加热变温速率  4.4oC/s
扩增信号的检测和cp值的计算(低cp值指示高水平的扩增)根据制造商的手册的说明书执行。
下表公开了对于分析的不同细胞数目获得的平均cp值:
 如由该表可见的,即使仅1个细胞用作起始材料,也可以检测到源于高拷贝数小鼠GAPDH基因以及仅以12拷贝存在于小鼠基因组中的RPLI13A基因的信号。
此外,可以观察到cp值与细胞数目/每孔反相关。因此,可以明显概括得出PCR反应缓冲液的添加和在95℃后续温育10’明显足够以定量方式裂解细胞。
实施例2
用于扩增来自分选的小鼠杂交瘤细胞的Kcnj2基因的qPCR
该实验基本上按照实施例1所公开的执行,改变是使用设计为扩增单拷贝小鼠基因Kcnj2的引物和探针。引物和探针如下:
正向引物ctgtcttgccttcgtgctct(SEQ ID NO:5)
反向引物agcagggctatcaaccaaaa(SEQ ID NO:6)
UPL探针(RocheApplied Science目录号:04 688 996 001,No.76)
该表公开了对经分析的不同细胞数目获得的平均cp值:
细胞数目 平均cp值
1 38,31
2 36,64
4 36,26
8 36,10
16 33,93
32 32,88
64 34,03
如由该表可见的,即使仅一个细胞用作起始材料,也可以获得源于单拷贝数小鼠基因Kcnj2的扩增信号。换言之,本发明提供了用于扩增来自单细胞样品的单拷贝基因的技术方案。
此外,可以观察到如果样品源于更高细胞数目例如64个细胞,那么cp值增加。这可以通过下述事实加以解释:由于在95℃在PCR反应缓冲液内的裂解,在给定反应体积内的细胞碎片的浓度增加且因此可以抑制PCR反应的扩增效率。可以得出结论本发明尤其可应用于对源于较低细胞数目的样品进行的PCR。
此外,下表公开了得自个别单细胞样品的cp值:
40,00 36,96 36,71 35,92 - 40,00 - -
37,71 40,00 - 40,00 39,56 37,19 37,22 38,50
如由该表可以推断的,在16次平行反应中的约4次中未获得扩增信号。考虑到实施例2的结果,其证明并非每一个单个分选事件都导致单细胞实际分离且递送到反应容器内,这个结果是可解释的。换言之,在一些情况下未观察到扩增信号的事实是由于个别孔不含细胞的事实,而不是由于裂解和扩增程序自身具有一定失败率的事实。
实施例3
使用含有干燥的试剂的微量滴定板,用于扩增来自分选的小鼠杂交瘤细胞的Kcnj2基因的qPCR
该实验基本上按照实施例2所公开的执行,具有下述改变:
将10 μl含有所需引物和探针的溶液填充到微量滴定板的每个孔内。将微量滴定板在25℃和200 mBar下温育12小时,并且随后在25℃和50 mBar下温育4小时,从而使得引物和探针在微量滴定板的每个反应孔的表面上干燥。
随后,如下执行细胞沉积:
第1-6列1细胞当量/孔
第7列中2细胞当量/孔
第8列中4细胞当量/孔
第9列中8细胞当量/孔
第10列中16细胞当量/孔
第11列中32细胞当量/孔
第12列中64细胞当量/孔
在添加20μl主混合物后,执行实时PCR分析。该表公开了对经分析的不同细胞数目获得的平均cp值:
细胞数目 平均cp值
1 38,14
2 37,45
4 36,22
8 35,14
16 34,89
32 33,76
64 33,27
重要的是还要指出对于用于单细胞分析的48个孔中,仅10个扩增反应是阴性的。这些反应未包括到平均cp值的计算内。
实施例4
使用含有干燥的试剂的微量滴定板,用于扩增来自单个小鼠杂交瘤细胞的Kcnj2基因的qPCR
为了分析实际上多少细胞当量的百分比对应于活细胞而非细胞碎片,将3 x 30分选的当量各自沉积到显微镜载玻片上且分别计数。28、28和29个细胞可以通过经由显微镜的目视检查鉴定。这对应于94%活细胞与6 %细胞碎片每细胞当量(分选事件)。
在下文中,实验基本上如对于实施例3公开的在两块微量滴定板上执行,具有如下改变:在两块微量滴定板上,每个反应孔仅含有单细胞当量。结果如下:
板编号 不含可检测扩增的孔数目 具有可检测扩增的孔百分比 具有可检测扩增的孔的平均cp值 标准差cp值
1 16 / 96 84 % 38,85 1,14
2 5  / 96 95 % 38,31 1,01
结果显示可以根据如由本发明提供的PCR方法执行单细胞分析。此外,如果还预期单细胞分析,那么将引物和探针在微量滴定板的表面上干燥。
实施例5
用于检测ActB、B2M和1表达的1步RT-PCR
如实施例1中公开的将细胞分选且沉积到微量滴定板上,得到小于2 μl的样品体积。
向每个孔中,加入1x LC480 RNA主水解探针(Roche Applied Science目录号 04 991 885 001,含有T.th聚合酶和热启动适体)。
主混合物另外含有下述引物和探针:
第1-2行:ActB的1步RT-PCR
0.4 μM正向引物AAGGCCAACCGTGAAAAGAT(SEQ ID NO:7)
0.4 μM反向引物GTGGTACGACCAGAGGCATAC(SEQ ID NO:8)
0.2 μM UPL探针(RocheApplied Science目录号56)
第3-4行:B2M的1步RT-PCR
0.4 μM正向引物TACGCCTGCAGAGTTAAGCA(SEQ ID NO:9)
0.4 μM反向引物GGTTCAAATGAATCTTCAGAGCA(SEQ ID NO:10)
0.2 μM UPL探针(RocheApplied Science目录号117)
第5-6行:18s RNA的1步RT-PCR
0.4 μM正向引物GCCGCTAGAGGTGAAATTCTT(SEQ ID NO:11)
0.4 μM反向引物CGTCTTCGAACCTCCGACT(SEQ ID NO:12)
0.2 μM UPL探针(Roche Applied Science目录号93) 
在第一块板上,根据下述热循环方案在LC480实时PCR仪器上执行1步RT-PCR:
预温育:       1x  95oC   30’’
变性      45x     95oC   10’’
退火      45x     60oC   30’’
延伸      45x     72oC   1’’
冷却变温速率  2.2oC/s
加热变温速率  4.4oC/s
在第二块板上,根据包括在61℃的进一步预温育步骤的热循环方案,在LC480实时PCR仪器上执行1步RT-PCR:
预温育:       1x  61oC   3’
预温育:       1x  95oC   30’’
变性      45x     95oC   10’’
退火      45x     60oC   30’’
延伸      45x     72oC   1’’
冷却变温速率  2.2oC/s
加热变温速率  4.4oC/s
扩增信号的检测和cp值的计算(低cp值指示高水平的扩增)根据制造商的手册的说明书执行。
为了证明测量的cp值实际上反映对mRNA表达而不是DNA的检测,随后通过凝胶电泳证实扩增子的正确大小。下表公开了对经分析的不同细胞数目获得的平均cp值:
Figure 197349DEST_PATH_IMAGE003
如由该表可见的,测试的基因的表达可以在源于仅一个细胞用作起始材料的材料中检测到。可以观察到cp值与细胞数目/孔反相关。逆转录步骤在热循环方案的起始变温、退火和延伸步骤过程中发生。
如由该表可以进一步推断的,令人惊讶的是,表达的检测在95℃实际裂解前的在61℃3分钟的预温育步骤的情况下甚至更灵敏。这种正面效果可能是由于小于2 μl的小样品体积导致少数分选细胞的立即干燥和破坏,从而使得细胞RNA变得可用于逆转录反应。
实施例6
对18s靶的DNA PCR和1步RT-PCR之间的比较
根据下述吸取方案,将细胞分选且如实施例1中公开的置于微量滴定板上:
对于3块等同的板编号1-3,加入1x LC480 RNA主水解探针(Roche Applied Science目录号 04 991 885 001,含有T.th聚合酶和热启动适体),以便用1步RT PCR反应扩增RNA。引物以这样的方式设计,从而使得在这个反应过程中,RNA及其相应基因组DNA片段是可扩增的。对于第四块板编号4,使用包含热稳定的DNA依赖性DNA聚合酶而不含任何逆转录酶活性的实时现成DNA探针主液(Roche Applied Science目录号:05 502 381 001)。
此外,4个设置含有适合于扩增18s RNA和DNA的下述引物和探针
0.4 μM正向引物GCCGCTAGAGGTGAAATTCTT(SEQ ID NO:11)
0.4 μM反向引物CGTCTTCGAACCTCCGACT(SEQ ID NO:12)
0.2 μM UPL探针(Roche Applied Science目录号93) 
对于第1块板,根据下述热循环方案,在LC480实时PCR仪器中执行具有在61℃的预温育步骤的1步RTPCR:
预变性: 1x  95°C   1’
预温育:       1x  61oC   3’ 
预温育:       1x  95oC   30’’
变性      45x     95oC   10’’
退火      45x     60oC   30’’
延伸      45x     72oC   1’’
冷却变温速率  2.2oC/s
加热变温速率  4.4oC/s
对于第2和3块板,执行不含在61℃的任何预温育的RT-PCR:
预温育:       1x  95oC   30’’(第2块板)或2’(第3块板)
变性      45x     95oC   10’’
退火      45x     60oC   30’’
延伸      45x     72oC   1’’
冷却变温速率  2.2oC/s
加热变温速率  4.4oC/s
将用于第3块板的相同方案用于第4块板,以便执行不含任何逆转录活性的PCR。
扩增信号的检测和cp值的计算(低cp值指示高水平的扩增)根据制造商的手册的说明书执行。
为了证明测量的cp值实际上反映对mRNA表达而不是DNA的检测,随后通过凝胶电泳证实扩增子的正确大小。下表公开了对经分析的不同细胞数目获得的平均cp值。
Figure 2011800481504100002DEST_PATH_IMAGE005
 如由该表可见的,与来自相应PCR反应的结果相比较,来自RT-PCR的结果提供更低cp值。这指示靶核酸的更高起始浓度,其根据所选择的条件由RT-PCR设置内的各自的RNA及其相应基因序列的扩增导致。
当比较具有在61℃3分钟和没有在61℃预温育的RT-PCR结果时,显而易见的是预温育不是必需的,但导致RNA检测的灵敏度增加。如实施例5中公开的,后面一种观察到的效应可能是由于小于2 μl的小样品体积导致少数分选细胞的立即干燥和破坏,从而使得细胞RNA变得可用于逆转录反应。
                         序列表
 
<110>  Roche Diagnostics GmbH
       F. Hoffmann-La Roche AG
 
<120>  用于RT-PCR反应缓冲液中的细胞裂解的方法
 
<130>  30629 WO
 
<150>  EP 10186417.1
<151>  2010-10-04
 
<150>  EP 10186416.3
<151>  2010-10-04
 
<160>  12   
 
<170>  PatentIn version 3.5
 
<210>  1
<211>  20
<212>  DNA
<213>  人工序列
 
<220>
<223>  正向引物
 
<400>  1
agcttgtcat caacgggaag                                                   20
 
 
<210>  2
<211>  21
<212>  DNA
<213>  人工序列
 
<220>
<223>  反向引物
 
<400>  2
tttgatgtta gtggggtctc g                                                 21
 
 
<210>  3
<211>  20
<212>  DNA
<213>  人工序列
 
<220>
<223>  正向引物
 
<400>  3
catgaggtcg ggtggaagta                                                   20
 
 
<210>  4
<211>  20
<212>  DNA
<213>  人工序列
 
<220>
<223>  反向引物
 
<400>  4
gcctgtttcc gtaacctcaa                                                   20
 
 
<210>  5
<211>  20
<212>  DNA
<213>  人工序列
 
<220>
<223>  正向引物
 
<400>  5
ctgtcttgcc ttcgtgctct                                                   20
 
 
<210>  6
<211>  20
<212>  DNA
<213>  人工序列
 
<220>
<223>  反向引物
 
<400>  6
agcagggcta tcaaccaaaa                                                   20
 
 
<210>  7
<211>  20
<212>  DNA
<213>  人工序列
 
<220>
<223>  正向引物
 
<400>  7
aaggccaacc gtgaaaagat                                                   20
 
 
<210>  8
<211>  21
<212>  DNA
<213>  人工序列
 
<220>
<223>  反向引物
 
<400>  8
gtggtacgac cagaggcata c                                                 21
 
 
<210>  9
<211>  20
<212>  DNA
<213>  人工序列
 
<220>
<223>  正向引物
 
<400>  9
tacgcctgca gagttaagca                                                   20
 
 
<210>  10
<211>  23
<212>  DNA
<213>  人工序列
 
<220>
<223>  反向引物
 
<400>  10
ggttcaaatg aatcttcaga gca                                               23
 
 
<210>  11
<211>  21
<212>  DNA
<213>  人工序列
 
<220>
<223>  正向引物
 
<400>  11
gccgctagag gtgaaattct t                                                 21
 
 
<210>  12
<211>  19
<212>  DNA
<213>  人工序列
 
<220>
<223>  反向引物
 
<400>  12
cgtcttcgaa cctccgact                                                    19
 
 

Claims (14)

1. 用于扩增RNA靶核酸的方法,其包括步骤
a)将包含一个或多个活细胞的具有第一体积的液体样品转移到容器内,
b)向所述容器中加入具有第二体积的一步RT-PCR反应缓冲液,其中所述第二体积是所述第一体积至少2x大,
c)将所述容器在至少90℃加热至少20秒,
d)用能够执行一步RT-PCR的热稳定的DNA聚合酶通过聚合酶链反应扩增所述容器中的所述靶,而不执行中间纯化步骤,
其中在步骤b)过程中加入的所述一步RT-PCR反应缓冲液包含能够执行一步RT-PCR的热稳定的DNA聚合酶,和dNTPs。
2. 根据权利要求1的方法,其特征在于步骤b)的所述RT-PCR反应缓冲液另外包含至少一对扩增引物和任选的或者至少一种标记的杂交探针或者双链DNA结合荧光化合物。
3. 根据权利要求1的方法,其特征在于所述容器包含至少一对PCR扩增引物和任选的或者至少一种标记的杂交探针或者双链DNA结合荧光化合物的干燥组合物。
4. 根据权利要求1-2的方法,其特征在于所述热稳定的DNA聚合酶的活性在步骤c)过程中被热活化。
5. 根据权利要求1-4的方法,其中所述聚合酶是Tth聚合酶。
6. 根据权利要求1-5的方法,其特征在于在步骤a)之前包含至少一个或多个活细胞的所述液体已通过细胞分选方法获得。
7. 根据权利要求1-6的方法,其中步骤a)的所述活细胞的数目与在其中步骤d)的聚合酶链反应的液体体积相比较的比值不超过2细胞/μl。
8. 根据权利要求7的方法,其中所述比值是至少1细胞/25μl。
9. 根据权利要求7-8的方法,其中所述样品具有小于2μl的体积,以及在步骤b)和c)之间,所述样品在37℃和65℃之间的温度温育30秒至5分钟。
10. 一种试剂盒,其包含
- 设计为适合热循环仪仪器的多个反应容器,
- 包含能够执行一步RT-PCR的热稳定的DNA聚合酶和dNTPs的PCR反应缓冲液。
11. 根据权利要求10的试剂盒,其进一步包含至少一对扩增引物,和任选的或者至少一种标记的杂交探针或者双链DNA结合荧光化合物。
12. 根据权利要求10的试剂盒,其中所述反应容器包含至少一对PCR扩增引物和任选的或者至少一种标记的杂交探针或者双链DNA结合荧光化合物的干燥组合物。
13. 根据权利要求10-12的试剂盒,其中所述多个反应容器以微量滴定板或反应容器的线性条的形式彼此物理连接。
14. 根据权利要求10-13的试剂盒,其中所述热稳定的聚合酶通过在90℃温育至少1分钟被热活化。
CN201180048150.4A 2010-10-04 2011-09-30 用于rt‑pcr反应缓冲液中的细胞裂解的方法 Active CN103154270B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
EP10186416.3 2010-10-04
EP10186416 2010-10-04
EP10186417 2010-10-04
EP10186417.1 2010-10-04
PCT/EP2011/067067 WO2012045668A1 (en) 2010-10-04 2011-09-30 Method for cell lysis in a rt-pcr reaction buffer

Publications (2)

Publication Number Publication Date
CN103154270A true CN103154270A (zh) 2013-06-12
CN103154270B CN103154270B (zh) 2018-01-09

Family

ID=45927240

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180048150.4A Active CN103154270B (zh) 2010-10-04 2011-09-30 用于rt‑pcr反应缓冲液中的细胞裂解的方法

Country Status (6)

Country Link
EP (1) EP2625284B1 (zh)
JP (1) JP5798631B2 (zh)
CN (1) CN103154270B (zh)
CA (1) CA2810291C (zh)
ES (1) ES2533732T3 (zh)
WO (1) WO2012045668A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109136395A (zh) * 2018-08-27 2019-01-04 郑州安图生物工程股份有限公司 一种b族链球菌核酸检测试剂盒

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201812192D0 (en) 2018-07-26 2018-09-12 Ttp Plc Variable temperature reactor, heater and control circuit for the same
CA3126398A1 (en) * 2019-01-17 2020-07-23 Northwestern University Rapid reverse transcription quantitative polymerase chain reaction

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5118801A (en) 1988-09-30 1992-06-02 The Public Health Research Institute Nucleic acid process containing improved molecular switch
US5210015A (en) 1990-08-06 1993-05-11 Hoffman-La Roche Inc. Homogeneous assay system using the nuclease activity of a nucleic acid polymerase
US5338671A (en) 1992-10-07 1994-08-16 Eastman Kodak Company DNA amplification with thermostable DNA polymerase and polymerase inhibiting antibody
US5538848A (en) 1994-11-16 1996-07-23 Applied Biosystems Division, Perkin-Elmer Corp. Method for detecting nucleic acid amplification using self-quenching fluorescence probe
US5593824A (en) 1994-09-02 1997-01-14 Pharmacia Biotech, Inc. Biological reagent spheres
US5565318A (en) 1994-09-02 1996-10-15 Pharmacia Biotech, Inc. Room temperature stable reagent semi-spheres
US5773258A (en) 1995-08-25 1998-06-30 Roche Molecular Systems, Inc. Nucleic acid amplification using a reversibly inactivated thermostable enzyme
EP1033411B1 (en) 1996-06-04 2006-02-22 University of Utah Research Foundation Fluorescent donor-acceptor pair
ATE260988T1 (de) 1996-06-04 2004-03-15 Univ Utah Res Found Vorrichtung und verfahren zur durchführung und überwachung von polymerase kettenreaktionen
US7407747B2 (en) 2002-10-15 2008-08-05 Applera Corporation Method for drying dye-terminator sequencing reagents
EP1963493B1 (en) * 2005-12-23 2017-02-22 Siemens Healthcare Diagnostics Inc. Methods and reagents for genotyping hcv
WO2007096182A1 (en) 2006-02-27 2007-08-30 Roche Diagnostics Gmbh Pcr hot start by magnesium sequestration
CN104774924B (zh) 2006-09-18 2021-04-13 通用电气医疗集团生物科学公司 用玻璃覆盖的生物学试剂的制备
JP5191041B2 (ja) 2007-04-05 2013-04-24 エフ.ホフマン−ラ ロシュ アーゲー 急速ワンステップrt−pcr
JP5547071B2 (ja) * 2007-08-09 2014-07-09 セルラ・インコーポレイテッド 関連付け多パラメーター単一細胞測定および残留する生物学的材料の回収のための方法および装置
US7910720B2 (en) 2008-09-09 2011-03-22 Roche Diagnostics Operations, Inc. Polyanion for improved nucleic acid amplification
CA2688174C (en) 2008-12-19 2018-08-07 F. Hoffmann-La Roche Ag Dry composition of reaction compounds with stabilized polymerase

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
TIMOTHY K.W. CHEUNG等: "Evaluation of novel H1N1-specific primer-probe sets using commercial RT-PCR mixtures and a premixed reaction stored in a lyophilized format", 《JOURNAL OF VIROLOGICAL METHODS》 *
YONGZHONG LI: "An improved one-tube RT-PCR protocol for analyzing single-cell gene expression in individual mammalian cells", 《ANAL BIOANAL CHEM 》 *
YUAN GONG等: "Massively parallel detection of gene expression in single cells using subnanolitre wells", 《LAB CHIP》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109136395A (zh) * 2018-08-27 2019-01-04 郑州安图生物工程股份有限公司 一种b族链球菌核酸检测试剂盒

Also Published As

Publication number Publication date
ES2533732T3 (es) 2015-04-14
EP2625284A1 (en) 2013-08-14
JP5798631B2 (ja) 2015-10-21
CA2810291C (en) 2016-09-27
CN103154270B (zh) 2018-01-09
JP2013538585A (ja) 2013-10-17
EP2625284B1 (en) 2015-01-28
WO2012045668A1 (en) 2012-04-12
CA2810291A1 (en) 2012-04-12

Similar Documents

Publication Publication Date Title
RU2601129C2 (ru) Композиции и способы для количественного определения последовательности нуклеиновой кислоты в образце
US9714448B2 (en) Lysis and reverse transcription for MRNA quantification
US7709626B2 (en) Primer for nucleic acid detection
EP3167060B1 (en) Dna amplification technology
KR102323375B1 (ko) 다중 프로브
US9512493B2 (en) Compositions, methods, and kits for nucleic acid hybridization
CN103154270A (zh) 用于rt-pcr反应缓冲液中的细胞裂解的方法
CN103124797B (zh) 用于在相同反应容器内的细胞裂解和pcr的方法
McChlery et al. The use of hydrolysis and hairpin probes in real-time PCR
CN103124796B (zh) 用于pcr反应缓冲液中的细胞裂解的方法
Aslan et al. Nucleic Acid–Based Methods in the Detection of Foodborne Pathogens
Abaya et al. Review on Principles of Real Time Polymerase Chain Reaction (PCR)
CN115896251A (zh) 基于lamp的核酸快速检测和单核苷酸多态性测定技术

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant