CN103149534B - 用于确定磷酸铁锂离子蓄电池的电荷状态的磁性传感器变压器 - Google Patents

用于确定磷酸铁锂离子蓄电池的电荷状态的磁性传感器变压器 Download PDF

Info

Publication number
CN103149534B
CN103149534B CN201210522048.XA CN201210522048A CN103149534B CN 103149534 B CN103149534 B CN 103149534B CN 201210522048 A CN201210522048 A CN 201210522048A CN 103149534 B CN103149534 B CN 103149534B
Authority
CN
China
Prior art keywords
battery
magnetic
battery cell
core
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210522048.XA
Other languages
English (en)
Other versions
CN103149534A (zh
Inventor
J.O.康奈尔
B.J.科赫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GM Global Technology Operations LLC
Original Assignee
GM Global Technology Operations LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GM Global Technology Operations LLC filed Critical GM Global Technology Operations LLC
Publication of CN103149534A publication Critical patent/CN103149534A/zh
Application granted granted Critical
Publication of CN103149534B publication Critical patent/CN103149534B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/52Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by DC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/66Arrangements of batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/12Measuring magnetic properties of articles or specimens of solids or fluids
    • G01R33/16Measuring susceptibility
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

本发明涉及用于确定磷酸铁锂离子蓄电池的电荷状态的磁性传感器变压器。一种用于测量蓄电池单格电池的磁性,并且将磁性转换为蓄电池单格电池SOC的磁性传感器。磁性传感器包括由以C形提供的叠层的高磁导率板组成的磁芯。蓄电池单格电池的延伸部分穿过芯中的横向开口延伸,以使得其定位于芯中。驱动线圈围绕磁芯的一个端部缠绕,并且产生芯中的磁场,其跨越横向开口,并且穿过蓄电池单格电池延伸。接收线圈围绕芯的相反端部缠绕,其接收磁场,并且将磁场转换为代表性的电流。探测电路将接收线圈电流转换为蓄电池单格电池SOC。

Description

用于确定磷酸铁锂离子蓄电池的电荷状态的磁性传感器变压器
技术领域
本发明总体涉及用于确定蓄电池的电荷状态(SOC)的磁性传感器,更具体地,涉及用于确定电动车辆的磷酸铁锂离子蓄电池的SOC的磁性传感器,其中磁性传感器包括C形金属芯。
背景技术
电动车辆变得越来越流行。这些车辆包括混合动力车辆,例如增程式电动车辆(EREV),其兼具蓄电池与例如内燃发动机、燃料电池系统等的主动力源,还包括纯电动车辆,例如蓄电池电动车辆(BEV)。所有这些类型的电动车辆均使用高电压蓄电池,其包括多个蓄电池单格电池。这些蓄电池可以是不同蓄电池类型,例如锂离子、镍金属氢化物、铅酸等。典型的电动车辆高电压蓄电池系统可以包括大量蓄电池单格电池或大量的包含了几个蓄电池单格电池的模块,以满足车辆动力与能量需求,其中,每个蓄电池模块均可以包括特定数量的蓄电池单格电池,例如12个单格电池。各个蓄电池单格电池可以串联电耦合,或一连串单格电池可以并联电耦合,其中,模块中的许多单格电池串联连接,并且每个模块并联电耦合至其他模块。不同车辆设计包括不同蓄电池设计,其对特定应用使用各种权衡与优势。
为了最大化蓄电池耐用性,并且向车辆的驾驶员提供有用的里程信息,重要的是能够准确地确定电动或混合动力车辆中的蓄电池的电荷状态(SOC)。用于估算蓄电池SOC的常见方法是通过测量跨过蓄电池的开路电压或空载电压。开路电压测量容易得到,但不幸的是,也易于产生误差。开路电压误差可以通过电压传感器自身引入,通过控制器中的电压传感电路引入,通过电子硬件、A/D转换器、滤波器增益的尺寸引入,或由这些以及其他因素的组合引入。
适合电动车辆的一些蓄电池,例如镍金属氢化物以及某些类型的锂离子蓄电池,产生在蓄电池电荷状态的大部分范围上的几乎恒定的开路电压。可以使用复杂的模型与算法估算负载下的开路电压,并且当蓄电池休眠时,可获得真实开路电压的非常准确的测量结果,但事实依然是在某些操作区域中,非常少的有关电荷状态的信息可以从电压确定。开路电压与电荷状态的弱相关可能导致对剩余蓄电池能量与车辆驱动范围的错误估算,并且还可能导致蓄电池的过度使用或不足使用。然而,这些类型的蓄电池作为电动混合动力车辆的动力源通常仍是非常令人满意的,因为它们的低重量、高功率能力以及更大的能量存储能力。因此,对于使用具有在蓄电池SOC的大部分范围上的几乎恒定的开路电压的蓄电池类型的车辆,需要提供用于不基于蓄电池开路电压而确定蓄电池SOC的系统与方法。
在一个特定的锂离子蓄电池设计中,各个蓄电池单格电池的正极端子板由磷酸铁组成,负极端子板由石墨组成,其中,正是磷酸铁的磁性随着蓄电池单格电池SOC的改变以线性方式改变。特别地,当蓄电池单格电池的SOC增加时,磷酸铁的磁化率降低。为此,公知的是,在现有技术中,使用磁性传感器以测量这些类型蓄电池的SOC。
美国专利申请公开号2010/0079145,题为使用磁致伸缩探测蓄电池材料的磁性响应而确定蓄电池电荷状态的系统与方法,其转让给本申请的受让人,并且通过参考合并在此,其公开了基于蓄电池材料的磁性响应确定蓄电池SOC的技术。’145申请公开了磁性传感器,其耦合至蓄电池单格电池,其中,传感器包括第一线圈与第二线圈。将AC信号提供至第一线圈,第一线圈在蓄电池单格电池中感生磁场,这进而在第二线圈中感生电流。测量在第二线圈中的电流,其中,蓄电池单格电池的磁性响应于蓄电池SOC的变化而变化。
发明内容
根据本发明的教导,公开了一种用于测量蓄电池单格电池的磁性、并将该磁性转换成蓄电池单格电池SOC的磁性传感器。该磁性传感器包括由以C形提供的叠层的、高导磁率的磁性板形成的磁性芯。蓄电池单格电池的延伸部分延伸通过所述芯内的横向开口,使得它被定位在该芯内。驱动线圈缠绕在该磁性芯的一端并在芯内产生延伸跨过该横向开口并通过蓄电池单格电池的磁场。接收线圈缠绕在该芯的相对端,其接收该磁场,并将该磁场转换成代表性电流。探测电路将该接收线圈的电流转换成蓄电池单格电池SOC。
本发明还提供了如下方案:
方案1.一种用于确定蓄电池单格电池的电荷状态的磁性传感器组件,所述传感器组件包括:
磁芯,其包括几乎连续的高导磁率材料环,所述芯具有限定了中心开口的两个相对的端部以及两个相对的侧部,所述磁芯进一步包括穿过所述侧部之一的横向开口,所述横向开口接收穿过其延伸的所述蓄电池单格电池的一部分,以使得将所述蓄电池单格电池的所述一部分定位于所述中心开口中;
驱动线圈,其围绕所述端部之一缠绕,并且响应于产生所述芯中的磁场的驱动信号,所述磁场跨越所述横向开口与所述蓄电池单格电池的所述一部分延伸;
接收线圈,其围绕另一端部缠绕,其中,所述芯中的所述磁场在所述接收线圈中感生电流;以及
处理器,其响应于来自所述接收线圈的电流,所述处理器配置成将所述接收线圈中的电流转换为表示所述芯中的所述磁场的磁场强度的比例磁性信号,并且将所述磁性信号转换为所述蓄电池单格电池的电荷状态。
方案2.根据方案1所述的传感器组件,其特征在于,所述磁芯包括多个叠层板。
方案3.根据方案2所述的传感器组件,其特征在于,所述多个叠层板形成为C形,以限定所述中心开口与所述横向开口。
方案4.根据方案1所述的传感器组件,其特征在于,所述磁芯由高导磁率的高导磁合金型材料制成。
方案5.根据方案1所述的传感器组件,其特征在于,所述蓄电池单格电池为磷酸铁锂离子蓄电池单格电池。
方案6.根据方案1所述的传感器组件,其特征在于,所述蓄电池单格电池为包括多个蓄电池单格电池的蓄电池模块的一部分。
方案7.根据方案6所述的传感器组件,其特征在于,所述蓄电池模块为电动车辆上的蓄电池系统的一部分。
方案8.一种用于确定蓄电池单格电池的电荷状态的磁性传感器组件,所述蓄电池单格电池为包括多个蓄电池单格电池的蓄电池模块的一部分,并且所述蓄电池模块为电动车辆上的蓄电池系统的一部分,所述传感器组件包括:
磁芯,其形成为具有中心开口与横向开口的C形,其中,所述横向开口接收所述模块中的所述蓄电池单格电池之一的一部分;
驱动线圈,其围绕所述磁芯的端部缠绕,并且响应于产生所述芯中的磁场的驱动信号,所述磁场跨越所述横向开口与所述蓄电池单格电池的所述一部分延伸;
接收线圈,其围绕相反端部缠绕,其中,所述芯中的所述磁场在所述接收线圈中感生电流;以及
处理器,其响应于来自所述接收线圈的电流,所述处理器配置成将所述接收线圈中的电流转换为表示所述芯中的所述磁场的磁场强度的比例磁性信号,并且将所述磁性信号转换为所述蓄电池单格电池的电荷状态。
方案9.根据方案8所述的传感器组件,其特征在于,所述磁芯包括多个叠层板。
方案10.根据方案8所述的传感器组件,其特征在于,所述磁芯由高导磁率的高导磁合金型材料制成。
方案11.根据方案8所述的传感器组件,其特征在于,所述蓄电池单格电池为磷酸铁锂离子蓄电池单格电池。
方案12.一种用于电动车辆的蓄电池模块,所述蓄电池模块包括:
多个蓄电池单格电池;以及
用于测量所述模块中的蓄电池单格电池之一的电荷状态的磁性传感器,所述磁性传感器包括具有几乎连续的高导磁率材料环的磁芯,所述芯具有限定了中心开口的两个相对的端部以及两个相对的侧部,所述磁芯进一步包括穿过所述侧部之一的横向开口,所述横向开口接收所述一个蓄电池单格电池的一部分,所述磁性传感器进一步包括驱动线圈,其围绕所述端部之一缠绕,并且响应于产生所述芯中的磁场的驱动信号,所述磁场跨越所述横向开口与所述蓄电池单格电池的所述一部分延伸;所述磁性传感器进一步包括接收线圈,其围绕相反端部缠绕,其中,所述芯中的所述磁场在所述接收线圈中感生电流。
方案13.根据方案12的蓄电池模块,进一步包括处理器,其响应于所述接收线圈中的电流,并且配置成将所述电流转换为表示所述芯中的所述磁场的磁场强度的比例磁性信号,并且将所述磁性信号转换为所述一个蓄电池单格电池的电荷状态。
方案14.根据方案12的蓄电池模块,其特征在于,所述磁芯包括多个叠层板。
方案15.根据方案14所述的蓄电池模块,其特征在于,所述多个叠层板形成为C形,以限定所述中心开口与所述横向开口。
方案16.根据方案12所述的蓄电池模块,其特征在于,所述磁芯由高导磁率的高导磁合金型材料制成。
方案17.根据方案12所述的蓄电池模块,其特征在于,所述蓄电池单格电池为磷酸铁锂离子蓄电池单格电池。
结合附图,本发明的额外特征将从以下的说明与所附权利要求中变得明显。
附图说明
图1为电动混合动力车辆的简单示例;
图2为水平轴表示蓄电池单格电池SOC,右侧垂直轴表示蓄电池单格电池电压,左侧垂直轴表示磁性传感器响应的曲线图,其显示了蓄电池单格电池开路电压与蓄电池单格电池SOC之间的关系以及磁性传感器响应与蓄电池单格电池SOC之间的关系;
图3为包括耦合至蓄电池模块中的蓄电池单格电池的C形芯的磁性传感器的示意性示例;
图4为示出了用于将磁性传感器电流输出信号转换为蓄电池单格电池SOC的过程的流程图。
具体实施方式
对本发明的涉及用于测量蓄电池单格电池的磁性而确定该单格电池的SOC的磁性传感器的实施例的以下讨论在本质上仅仅是示例性的,并且决不旨在限制于本发明或其应用或使用。例如,下面论述涉及确定电动车辆的磷酸铁锂离子蓄电池单格电池的单格电池SOC。然而,如本领域技术人员所知道的,本发明还可用于探测用于其它应用的其它类型的蓄电池的SOC。
图1为车辆10的简单示例,其旨在表示任意电动车辆或电动混合动力车辆。车辆10可以是纯插电式电动车辆、燃料电池电动车辆、汽油-电动车辆、柴油-电动混合动力车辆,或使用高电压蓄电池实现其功率的部分或全部的任意其他类型的车辆。车辆10包括安装至车辆10中的合适的支撑物的高电压蓄电池12或蓄电池组,其中,蓄电池12包括多个蓄电池单格电池14。蓄电池12可以是适合电动车辆的任意蓄电池,例如铅酸蓄电池、锂离子蓄电池、金属氢化物蓄电池等。蓄电池12提供能量至马达20,其驱动车辆的车轮18。车辆10还可以包括单独的动力源16,例如内燃发动机,燃料电池系统等。
蓄电池开路电压通常用作蓄电池SOC的指示器,这是因为公知的是,开路电压随着蓄电池电荷状态的降低而降低。知晓蓄电池12的SOC对于适当的车辆能量与动力管理非常重要。在纯电动车辆中,低的电荷状态必须通讯至车辆的驾驶者,以使得蓄电池12可以插上电源,并且再充电。在混合动力车辆中,低的电荷状态将触发动力源16的启动,其可以再充电蓄电池12。按照本文的讨论,设置控制器22以确定蓄电池12的SOC。
在多种类型的蓄电池化学中,开路电压与电荷状态之间的关系为非常线性,并且几乎不或完全不呈现斜率。因此,存在一些蓄电池电荷状态区域,其中开路电压并不是足够好的蓄电池电荷状态指示器。这是因为,在这些区域中,开路电压在电荷状态的相当宽广的范围上保持几乎恒定。在开路电压并不是足够好的蓄电池电荷状态指示器的区域中,需要使用一些其他测量方法,以估算蓄电池电荷状态。本发明提出使用磁性传感器确定这些蓄电池类型的蓄电池单格电池SOC。以下给出了对某些类型蓄电池材料的蓄电池单格电池SOC如何产生不同磁性的简要概述。
磁化率描述了材料在存在已应用的磁场的情况下变得磁化的程度。材料的单位体积磁化率Xυ由方程给出:
Xυ=MH(1)
其中,M为以单位体积磁偶极表示的磁化强度,H为应用的磁场。
磁化率X还可以用材料的单位质量或单位摩尔数表示。由应用的磁场施加于材料上的机械力与磁化率X、磁场强度,以及磁场梯度成比例。如果磁化率X为正,则将材料被吸引至磁场强度增加的区域,并且被描述为“顺磁性的”。如果磁化率X为负,则材料相反地被排斥,并且被描述为“反磁性的”。
由应用的磁场的作用在材料中引起的磁化强度产生其自身的磁场,其与所应用的磁场组合。在顺磁性体材料的情况中,组合的磁场通常是在单独的所应用的磁场之上增加,其中,该增加与材料的顺磁性磁化率成比例。在反磁性材料的情况中,最终的组合的磁场相反地被减小。两种情况原则上可以用于本发明的目的。
磁性可以由自由循环的电流产生,例如在电磁体中发现的那些,或可以由在一些有机分子的环形结构中观察到的电子电流产生。当将碱性金属离子引入构成石墨的六碳环薄片之间时,出现所谓的“顺磁性环电流”的值得注意的情况。锂在石墨中的存储形成锂离子蓄电池中普通负电极材料的基础。更常见的是,材料中的磁性从电子的自转以及它们在原子中的轨道运行中产生。在周期表中铁族系列、锕族系列、以及稀土系列元素中的自由离子中观察到磁化率。化合物可用作蓄电池中的电化学能量存储的活性材料。它们通常属于已知为嵌入或插入化合物的一类,它们的特征在于,能够使小离子,例如锂,容易插入它们的固态结构中以及从它们的固态结构中抽出。该行为为蓄电池的充电与放电过程提供条件。
用于锂离子蓄电池的作为嵌入材料的常见金属氧化物包括锂钴氧化物LiCoO2、锂镍氧化物LiNiO2、以及LiCoxNiyMnzO2形式的变体,其中,钴、镍、以及锰类占据相同的晶格格位,并且x+y+z=1。当经历嵌入时,一些锂蓄电池材料形成两个相,无论这两相在哪里共存都会产生平坦的开路电压特性。目前考虑用作锂离子蓄电池中的阴极的两相插入电极的示例为磷酸铁(FePO4)。相关电化学反应由以下给出:
Li(1-n)FePO4+nLi+ne-=LiFePO4(2)
其中,n为在反应中涉及的锂离子与电子的数量。
在蓄电池12的放电过程中,将锂插入磷酸铁中,并且当蓄电池12充电时,将锂移走。材料中的锂相对于该材料所能接受的最大数量的锂,即,LiFePO4中一个Li,的分数对应于电荷状态分数,其乘以100得到电荷状态。
当磷酸铁中的自由原子、铁(Fe)、磷(P)与氧(O)结合时,各个电子结构都被改变以变成更大化合物的一部分。每个原子的价电子有助于化合物中的结合,并且在原子中发生电荷转移。形成的新的电子结构是具体化合物的特征,并且具有唯一的与之相关的磁化率。进一步,电子结构的改变发生在将更多离子引入化合物时,在锂离子蓄电池的放电过程中将锂插入到磷酸铁电极中就会是这种情况。该种改变具有对电极的磁化率的可测量的效果,其与增加的锂的数量成比例。通过系统地改变电极中的锂分数,并且测量相应的磁化率X,可能建立两个变量之间的关系。
图2为水平轴表示蓄电池SOC,右侧垂直轴表示蓄电池单格电池电压,左侧垂直轴表示磁性传感器响应的曲线图,其显示了蓄电池单格电池电压与蓄电池单格电池SOC之间的关系以及磷酸铁锂离子蓄电池的磁性与蓄电池单格电池SOC之间的关系。曲线28显示了当蓄电池12充电时蓄电池单格电池SOC与单格电池电压之间的关系,曲线30显示了当蓄电池12放电时蓄电池单格电池SOC与单格电池电压之间的关系,其中,曲线28与30之间的关系提供了磁滞输出。如显而易见的,充电与放电曲线明显不同,并且两者横跨蓄电池单格电池SOC的大部分均为相对平坦。因此,如上所述,难以基于蓄电池开路电压提供对蓄电池单格电池SOC的准确估算。区域34与36分别限定了蓄电池单格电池SOC与单格电池电压之间的关系不平坦,但具有明显斜率的曲线28与30的放电与充电端的界标,并且可以用于准确确定蓄电池单格电池SOC。
对于某些蓄电池技术,例如LiFePO4锂离子型,测量的均衡单格电池电压相对电荷状态相对不变,并且因此几乎不提供电荷状态算法的基础。如图2中所示的,均衡电压相对于蓄电池单格电池SOC非常平坦,除了在区域34与36处的曲线末端,在此称之为界标。在0-20%、15-30%、65-70%以及97-100%SOC的区域中,注意到了电压对SOC的一些依赖,并且在区域34与36中,可能实施从均衡电压中得到SOC的算法,均衡电压要么在休眠时测量要么通过负载下的电压由计算估算。如所述的,最有区别的且容易识别的电压界标在0%与100%SOC处产生。在任何一点上,都确定地知道蓄电池单格电池SOC,并且因此该SOC可以用作参考,以标定磁性传感器的输出。当单格电池均衡电压指示0%SOC时,磁性传感器的相应输出也可以指定为0%SOC。同样地,当单格电池均衡电压指示100%SOC时,磁性传感器的相应输出也可以指定为100%SOC。其他电压界标能够以相同方式使用,并且可以在均衡时或负载之下确定。可以将电流阈值指定给特定电压,从而识别出使该电压有资格作为标定点使用的那一点。标定了磁性传感器以后,其输出相对于标定点的变化随后可以用于确定SOC,而不是完全依靠于输出的绝对值。
返回来参照图2,曲线32显示了蓄电池单格电池中的磷酸铁的磁性与蓄电池单格电池SOC之间的关系。如显而易见的,该关系为线性,具有明显斜率,并且对于蓄电池充电和放电均相同。由于已知某些蓄电池材料的磁性取决于电荷状态,并且已经被示出为形成电荷状态算法的基础,所以在那些特性与蓄电池SOC之间的关系中明显的任意界标可以用于标定传感器,该传感器用于探测那些特性。在区域38的曲线32中示出的磁化率界标的例子,其中,由于发生在单格电池阳极中的反磁性与顺磁性之间的转换,在0与10%SOC之间注意到了磁性传感器输出中的趋势的反转。这个特别的特征是稀疏插入锂中的石墨阳极特有的,但是,可以在其他材料中发现其它界标,这些界标可以是同样有用的。诸如此的传感器输出的趋势的反转、或者斜率或符号的变化,可用于将传感器输出标定到已知SOC值,或用于标定可能是基于电压或电流的、与磁性传感器算法并行运行的另一SOC算法。传感器的取向可能对于观察期望的性能来说是重要的,对于石墨阳极来说就是如此,其中,取决于SOC的顺磁性仅在平行于单位晶格的C轴取向的磁场中是明显的。此时可以详细规定传感器的位置,以使得磁场线垂直或平行于单格电池中的电极的表面,或处于任意适合于观测性能的取向中。
已经在本领域中提出使用磁性传感器测量各种类型蓄电池的磁性以及将那些磁性响应转化为蓄电池SOC。一种已知技术在上面的’145申请公开中被讨论。因为蓄电池单格电池通常在蓄电池模块或其他外壳中紧密地包装在一起,本领域可能需要各种设计,以提供合适的磁性传感器来测量不同蓄电池设计的蓄电池单格电池磁性响应。一种通常类型的设计包括将永磁体安装在蓄电池模块中的端单格电池之一的端面,并且测量由穿过蓄电池单格电池的永磁磁场线感应的电流。然而,其他类型的磁性传感器设计可能会更加令人满意地用于充分地测量蓄电池单格电池SOC。
图3为包括外壳42的蓄电池模块40的示意性示例,该外壳围封多个蓄电池单格电池44,其数量可以对于不同蓄电池模块而改变。在该实施例中,蓄电池单格电池44为此处讨论类型的磷酸铁锂离子蓄电池单格电池,但是其他类型的蓄电池单格电池也可以适用于本发明。磁性传感器48安装至外壳44的外表面,其测量多个单格电池44的一个单格电池50的磁性。尽管示出了磁性传感器48安装至外壳42的外表面,但这仅仅说明了一个普通的构造,因为磁性传感器44可以安装至蓄电池模块40中或蓄电池模块40上任意合适的位置。而且,示出了单格电池50在多个单格电池44中心。这还是通过非限制性示例的方式,因为按照本文中的讨论可以测量单格电池44中任一个的SOC。
磁性传感器48包括C形芯52,其包括形成为C形以限定出中心开口56与横向开口58的多个叠层54。叠层54可以由任意合适的材料制成,优选地是高磁导率材料,例如高导磁合金。单格电池50的延伸部分60通过横向开口58延伸出外壳42,并且延伸进入中心开口56,如图所示。AC驱动线圈62围绕芯52的一个端部64缠绕,并且AC接收线圈66围绕芯52的相反端部68缠绕,如图所示。通过电流控制器70将AC驱动电流应用于驱动线圈62,以产生芯52中的磁场74,其横跨横向开口58传导,并且因此穿过单格电池50的延伸部分60。
磁场74在接收线圈66中感生AC电流,其被传送至探测电路78,以测量由其产生的AC电压,并且将其转换为指示性磁场强度。取决于单格电池50中的电荷,对于恒定温度,单格电池50中的磁性将遵循图2中的曲线32,其中,电荷越高,磁性吸引响应越低。因此,基于已知的单格电池材料的磁性,从接收线圈66中的电流转换来的磁场强度可以被转换成蓄电池单格电池SOC。现有技术中可获得并且已知蓄电池诊断,用以确定一个蓄电池单格电池的单格电池SOC是否指示蓄电池模块40中的其他单格电池44的单格电池SOC。温度传感器46测量蓄电池模块40的温度,并且向探测电路78提供温度信号,以提供温度补偿,因为单格电池50的磁性随温度改变,如以下将更加详细论述的。
芯52提供了磁场74的集中,其增加了借助本领域中已知的那些磁性传感器的探测蓄电池单格电池SOC的改变的能力,这些磁性传感器也是用于此目的。而且,传感器48能够设置于车辆的内部,因为其对于振动不敏感。而且,磁场74集中于芯52内,这给其更加一致的路径,其允许磁场74中的更多部分被正确地导入接收线圈66。传感器48不直接测量磁场,但测量由磁场74产生的电流或功率。
图4为流程图表80,其示出了基于以上论述的用于将来自接收线圈66的电流输出信号转换成探测电路78中的蓄电池单格电池SOC的示例性过程。尽管此处论述的用于将接收线圈电流转换成合适的蓄电池单格电池SOC的过程用于磁性传感器48,本领域技术人员应该理解的是,流程图表80中所示的过程可以用于其他磁性传感器,这些磁性传感器用于确定蓄电池单格电池SOC。
在方框82中提供来自接收线圈60的输出信号,并且在方框84校正偏差。偏差校正提供标定,以确保来自接收线圈66的电流输出信号与在芯52中产生的已知的磁场74相一致。为了校正测量磁场74的传感器84中的漂移,需要周期性地将传感器48暴露至已知强度的磁场。这通过关闭AC驱动信号,并且完全移开磁场74,并观测不存在磁场74的传感器输出而最容易地实现。换句话说,关闭驱动线圈62,以使得不产生芯52中的磁场74,并且将来自接收线圈66的输出电流信号设置为零。随后可以校正传感器48的电流信号输出,以识别零场,并且因此去除来自接收线圈60的电流输出信号中的任意偏移误差。实际上,如果像在该特定传感器中一样通过电磁体提供磁场74,可以简单关掉磁场足够长时间,以完成偏差校正。执行这种操作时要考虑到传感器48的环境,并且在当没有其他偶然性磁场存在时完成。在混合动力或电动车辆应用的情况中,这意味着车辆很有可能被关闭。还可以提供已知的、但非零磁场强度的磁场,从而实现偏差校正。
在方框86中,算法执行由温度传感器46提供的对偏差校正后信号的温度补偿。因为材料的磁性与温度相关,并且那些磁性中的与温度有关的变化可能远大于由于SOC差导致的改变,必须将温度校正因数应用于电流输出信号。顺磁性材料遵从居里-外斯定理,其规定它们的摩尔磁化率Xm与温度成反比:
(3)
其中,c为居里常数,θ为外斯常数,并且T为绝对温度。
可以在实验室环境中测量对温度的敏感性,记录并且存储在探测电路78的查询表中,并且通过传感器控制算法在任意给定时间存取以补偿电流输出信号。应该尽可能靠近磁性传感器48测量温度,并且该温度应该代表位于感兴趣的材料位置处的内部单格电池温度。可以直接感测温度信号,或可以使用算法,其根据测量的单格电池表面温度而估算单格电池内部温度。如果还存在任何对温度的敏感性,则需要额外的温度校正用于磁性传感器硬件本身。
在方框88中,算法执行电流补偿校正,以校正由不是主驱动线圈的源在芯中感应产生的磁场74。流过蓄电池的电流将感应产生蓄电池单格电池内部的电导体附近的磁场。蓄电池单格电池外部的导体,例如终端设备与母线条,也将感应产生磁场。除了为了感测蓄电池单格电池SOC而应用的磁场74,磁性传感器48还感测这些磁场。如果要用磁性传感器48进行测量,同时,电流正流经蓄电池模块40,则必须相应地补偿电流输出信号。换句话说,需要去除或减去由磁场74的不是由其电荷状态正被测量的蓄电池单格电池产生的那部分所产生的接收线圈66中的电流。和温度校正一样,在实验室测量穿过传感器48的电流的影响,在探测电路78中的查询表中记录并存储,并且通过传感器控制算法在任意给定时间访问以补偿电流输出信号。可以将单独的校正应用于充放电流,或应用于蓄电池组中的不同位置。电流偏差校正还可以是温度的函数。
补偿的磁性传感器信号被进行偏差补偿、温度补偿和电流补偿,该补偿的磁性传感器信号最终要被通过查询表转换来产生蓄电池单格电池电荷状态:
补偿后的传感器信号=S测量-S偏差-S温度-S电流(4)。
在判定菱形90中,随后算法确定蓄电池单格电池电压是否处于蓄电池/SOC曲线中的界标位置。尤其,如果单格电池电压/SOC曲线30与32处于图2中的界标区域34或36,此处曲线30与32具有明显斜率,则单格电池电压能够以非常准确的方式用于确定蓄电池单格电池SOC。在判定菱形90处,如果单格电池电压在这些区域之一中,则在方框92中,算法将蓄电池单格电池SOC重置为相应电压值的SOC,并且在方框94中将该蓄电池单格电池SOC作为输出值输出。
在判定菱形90处,如果单格电池电压不在电压界标处,则算法确定磁性响应是否指示其处于由图2中的区域38确定的磁性界标,在方框96中,其也能够以上述方式用于重置或标定单格电池SOC。如果单格电池电压或磁性响应不处于任意界标处,则在方框98中,将来自接收线圈66的校正的补偿输出电压发送至查询表,以在方框94中,将该值转换为输出的蓄电池单格电池SOC。
正如本领域技术人员所理解的,此处论述的描述本发明的几种与各种步骤与过程可以指由计算机、处理器、或其他使用电效应操作和/或转换数据的电子计算装置完成的操作。那些计算机与电子装置可以使用各种易失性和/或非易失性存储器,包括具有存储于其上的可执行程序的非暂时性计算机可读介质,程序包括能够由计算机或处理器完成的各种代码或可执行的指令,其中,存储器和/或计算机可读介质可以包括所有形式与类型的存储器以及其他计算机可读介质。
前述内容仅公开与描述了本发明的典型实施例。本领域技术人员将从这些论述与附图以及权利要求中认识到的是,在不脱离如以下权利要求所限定的本发明的精神与范围的情况下,可以在其中进行各种改变、修改与变型。

Claims (14)

1.一种用于确定蓄电池单格电池的电荷状态的磁性传感器组件,所述传感器组件包括:
磁芯,其包括C形的高导磁率材料,所述芯具有限定了中心开口的两个相对的端部以及两个相对的侧部,所述磁芯进一步包括穿过所述侧部之一的横向开口,所述横向开口接收穿过其的延伸的所述蓄电池单格电池的一部分,以使得将所述蓄电池单格电池的所述一部分定位于所述中心开口中;
驱动线圈,其围绕所述端部之一缠绕,并且响应于产生所述芯中的磁场的驱动信号,所述磁场跨越所述横向开口与所述蓄电池单格电池的所述一部分延伸;
接收线圈,其围绕另一端部缠绕,其中,所述芯中的所述磁场在所述接收线圈中感生电流;以及
处理器,其响应于来自所述接收线圈的电流,所述处理器配置成将所述接收线圈中的电流转换为表示所述芯中的所述磁场的磁场强度的比例磁性信号,并且将所述磁性信号转换为所述蓄电池单格电池的电荷状态。
2.根据权利要求1所述的传感器组件,其特征在于,所述磁芯包括多个叠层板。
3.根据权利要求1所述的传感器组件,其特征在于,所述磁芯由高导磁率的高导磁合金型材料制成。
4.根据权利要求1所述的传感器组件,其特征在于,所述蓄电池单格电池为磷酸铁锂离子蓄电池单格电池。
5.根据权利要求1所述的传感器组件,其特征在于,所述蓄电池单格电池为包括多个蓄电池单格电池的蓄电池模块的一部分。
6.一种用于确定蓄电池单格电池的电荷状态的磁性传感器组件,所述蓄电池单格电池为包括多个蓄电池单格电池的蓄电池模块的一部分,并且所述蓄电池模块为电动车辆上的蓄电池系统的一部分,所述传感器组件包括:
磁芯,其形成为具有中心开口与横向开口的C形,其中,所述横向开口形成在C形的一个侧部中并且接收所述模块中的所述蓄电池单格电池之一的一部分;
驱动线圈,其围绕所述磁芯的C形的一个端部缠绕,并且响应于产生所述芯中的磁场的驱动信号,所述磁场跨越所述横向开口与所述蓄电池单格电池的所述一部分延伸;
接收线圈,其围绕所述C形的相反端部缠绕,其中,所述芯中的所述磁场在所述接收线圈中感生电流;以及
处理器,其响应于来自所述接收线圈的电流,所述处理器配置成将所述接收线圈中的电流转换为表示所述芯中的所述磁场的磁场强度的比例磁性信号,并且将所述磁性信号转换为所述蓄电池单格电池的电荷状态。
7.根据权利要求6所述的传感器组件,其特征在于,所述磁芯包括多个叠层板。
8.根据权利要求6所述的传感器组件,其特征在于,所述磁芯由高导磁率的高导磁合金型材料制成。
9.根据权利要求6所述的传感器组件,其特征在于,所述蓄电池单格电池为磷酸铁锂离子蓄电池单格电池。
10.一种用于电动车辆的蓄电池模块,所述蓄电池模块包括:
多个蓄电池单格电池;以及
用于测量所述模块中的蓄电池单格电池之一的电荷状态的磁性传感器,所述磁性传感器包括具有C形的高导磁率材料的磁芯,所述芯具有限定了中心开口的两个相对的端部以及两个相对的侧部,所述磁芯进一步包括穿过所述侧部之一的横向开口,所述横向开口接收一个所述蓄电池单格电池的一部分,所述磁性传感器进一步包括驱动线圈,其围绕所述端部之一缠绕,并且响应于产生所述芯中的磁场的驱动信号,所述磁场跨越所述横向开口与所述蓄电池单格电池的所述一部分延伸;所述磁性传感器进一步包括接收线圈,其围绕相反端部缠绕,其中,所述芯中的所述磁场在所述接收线圈中感生电流。
11.根据权利要求10的蓄电池模块,进一步包括处理器,其响应于所述接收线圈中的电流,并且配置成将所述电流转换为表示所述芯中的所述磁场的磁场强度的比例磁性信号,并且将所述磁性信号转换为所述一个所述蓄电池单格电池的电荷状态。
12.根据权利要求10的蓄电池模块,其特征在于,所述磁芯包括多个叠层板。
13.根据权利要求10所述的蓄电池模块,其特征在于,所述磁芯由高导磁率的高导磁合金型材料制成。
14.根据权利要求10所述的蓄电池模块,其特征在于,所述蓄电池单格电池为磷酸铁锂离子蓄电池单格电池。
CN201210522048.XA 2011-12-07 2012-12-07 用于确定磷酸铁锂离子蓄电池的电荷状态的磁性传感器变压器 Active CN103149534B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/313,967 2011-12-07
US13/313967 2011-12-07
US13/313,967 US9511670B2 (en) 2011-12-07 2011-12-07 Magnetic sensor transformer for determining state of charge for iron phosphate lithium ion batteries

Publications (2)

Publication Number Publication Date
CN103149534A CN103149534A (zh) 2013-06-12
CN103149534B true CN103149534B (zh) 2016-04-27

Family

ID=48464801

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210522048.XA Active CN103149534B (zh) 2011-12-07 2012-12-07 用于确定磷酸铁锂离子蓄电池的电荷状态的磁性传感器变压器

Country Status (3)

Country Link
US (1) US9511670B2 (zh)
CN (1) CN103149534B (zh)
DE (1) DE102012110551B4 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014152650A1 (en) * 2013-03-14 2014-09-25 California Institute Of Technology Detecting electrical and electrochemical energy units abnormalities
WO2016042488A1 (en) * 2014-09-16 2016-03-24 Wayne State University Battery state of charge estimator
US10247783B2 (en) 2014-09-23 2019-04-02 Ford Global Technologies, Llc Sensor system for measuring battery internal state
CN106165338A (zh) * 2015-11-17 2016-11-23 瑞典爱立信有限公司 生成用作共享秘密的密钥
WO2017215752A1 (de) * 2016-06-15 2017-12-21 Power-Blox Ag Elektrische energieversorgungseinheit und steuerung dafür
US9970993B1 (en) 2017-02-16 2018-05-15 Ford Global Technologies, Llc Sensor system for measuring battery internal state
CA3107955A1 (en) * 2017-08-01 2019-02-07 Hyperion Sensors Inc. Optical sensing methods and systems for transformers, and the construction thereof
CN108363022A (zh) * 2018-05-21 2018-08-03 杭州市质量技术监督检测院 一种铅酸蓄电池健康状态的检测装置及方法
CN109239607A (zh) * 2018-07-13 2019-01-18 深圳先进技术研究院 电池检测方法、系统及电池分析装置
US10884062B2 (en) 2018-10-30 2021-01-05 GM Global Technology Operations LLC Detection and mitigation of rapid capacity loss for aging batteries
KR20210114759A (ko) * 2020-03-11 2021-09-24 주식회사 엘지에너지솔루션 이차전지 및 이의 리튬 석출 검출 방법
CN111257783A (zh) * 2020-03-31 2020-06-09 中南大学 一种锂离子电池健康状态的检测方法
CN113594560B (zh) * 2020-04-30 2024-03-19 宁德时代新能源科技股份有限公司 电池模组、电池包及装置
CN113916965B (zh) * 2021-10-12 2023-12-15 芜湖天弋能源科技有限公司 一种检测锂离子电池正极材料中磁性物质含量的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5093624A (en) * 1989-03-13 1992-03-03 Yuasa Battery (Uk) Limited Battery monitoring
CN101685142A (zh) * 2008-09-26 2010-03-31 通用汽车环球科技运作公司 用磁致伸缩测电池磁响应以确定其荷电状态的系统和方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59147280A (ja) * 1983-02-12 1984-08-23 Nissan Motor Co Ltd バツテリ残存容量測定装置
US6136177A (en) 1999-02-23 2000-10-24 Universal Dynamics Technologies Anode and cathode current monitoring
US8198864B2 (en) 2007-11-05 2012-06-12 GM Global Technology Operations LLC Method and system for determining a state of charge of a battery
US7928690B2 (en) 2007-11-29 2011-04-19 GM Global Technology Operations LLC Method and system for determining a state of charge of a battery
US8872519B2 (en) 2008-09-26 2014-10-28 GM Global Technology Operations LLC System and method to determine the state of charge of a battery using magnetostriction to detect magnetic response of battery material
KR101597627B1 (ko) * 2009-02-05 2016-02-25 마그나-라스틱 디바이시스, 인코포레이티드 배터리 충전 상태 센서
DE102009034854B4 (de) 2009-07-27 2015-10-15 Continental Automotive Gmbh Anordnung und Verwendung einer Anordnung zur Durchführung eines Verfahrens zum Bestimmen eines Ladezustands
WO2012092467A2 (en) * 2010-12-29 2012-07-05 Methode Electronics, Inc. Sensor arrangements for measuring magnetic susceptibility

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5093624A (en) * 1989-03-13 1992-03-03 Yuasa Battery (Uk) Limited Battery monitoring
CN101685142A (zh) * 2008-09-26 2010-03-31 通用汽车环球科技运作公司 用磁致伸缩测电池磁响应以确定其荷电状态的系统和方法

Also Published As

Publication number Publication date
US9511670B2 (en) 2016-12-06
CN103149534A (zh) 2013-06-12
DE102012110551B4 (de) 2019-03-21
US20130149565A1 (en) 2013-06-13
DE102012110551A1 (de) 2013-06-13

Similar Documents

Publication Publication Date Title
CN103149533B (zh) 蓄电池磁性电荷状态传感器控制算法
CN103149534B (zh) 用于确定磷酸铁锂离子蓄电池的电荷状态的磁性传感器变压器
US7928690B2 (en) Method and system for determining a state of charge of a battery
US9914366B2 (en) System and method to determine the state of charge of a battery using magnetostriction to detect magnetic response of battery material
US8198864B2 (en) Method and system for determining a state of charge of a battery
US11313910B2 (en) Anomaly detection system and anomaly detection method for a secondary battery
KR101943091B1 (ko) 전기 화학적 배터리 전지의 건강 상태를 판정하는 시스템 및 방법
US10833376B2 (en) Battery with life estimation
JP5862836B2 (ja) 電池システム
EP3521846B1 (en) Power storage element soc estimation device, power storage device, and power storage element soc estimation method
CN108445399A (zh) 用于测量电池内部状态的传感器系统
CN107179509B (zh) 基于开环模型和闭环模型的电池容量估计
CN102447141A (zh) 蓄电池荷电状态的磁学确定方法的温度补偿
CN101685142A (zh) 用磁致伸缩测电池磁响应以确定其荷电状态的系统和方法
US10516305B2 (en) Variable flux bridge for rotor of an electric machine
WO2013184132A1 (en) Battery state of charge measurement system
CN111674199A (zh) 轮胎、轮胎感应发电装置、系统、方法及汽车

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant