CN103134600A - 一种自相关仪 - Google Patents

一种自相关仪 Download PDF

Info

Publication number
CN103134600A
CN103134600A CN2011103764545A CN201110376454A CN103134600A CN 103134600 A CN103134600 A CN 103134600A CN 2011103764545 A CN2011103764545 A CN 2011103764545A CN 201110376454 A CN201110376454 A CN 201110376454A CN 103134600 A CN103134600 A CN 103134600A
Authority
CN
China
Prior art keywords
light path
mirror
autocorrelation function
wedge
function analyzer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011103764545A
Other languages
English (en)
Inventor
熊桂生
张志刚
祝传文
王树雨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BEIJING QUANTUM OPTIC TECHNOLOGY Co Ltd
Original Assignee
BEIJING QUANTUM OPTIC TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BEIJING QUANTUM OPTIC TECHNOLOGY Co Ltd filed Critical BEIJING QUANTUM OPTIC TECHNOLOGY Co Ltd
Priority to CN2011103764545A priority Critical patent/CN103134600A/zh
Publication of CN103134600A publication Critical patent/CN103134600A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Spectrometry And Color Measurement (AREA)

Abstract

本发明公开了一种自相关仪,用于测量超短激光脉冲宽度,包括:入射参考小孔、楔形分光镜、第一直角反射镜、第二直角反射镜、扫描装置平台、抛物面镜、探测器以及控制装置,所述入射参考小孔用于等高平直入射的被测激光通过以形成入射光路,所述楔形分光镜位于所述入射光路上,其与所述入射光路的夹角为45°。本发明的自相关仪由于采用楔形分光镜代替了现有技术中采用的两片两面平行的分束片,使得自相关仪的光路结构简单,且楔形分光镜的两表面的多次反射形成的干涉场信号不再与出射光路重合在一起,从而使探测器能够检测到干净的自相关信号。

Description

一种自相关仪
技术领域
本发明涉及激光参数测量技术领域,特别涉及一种用于测量超短激光脉冲宽度的自相关仪。
背景技术
随着激光技术的飞速发展,激光脉冲宽度不断变窄,在超短、超快激光领域,人们已经通过实验手段压缩获得脉冲宽度小于10fs(飞秒)的飞秒激光,超短激光脉冲宽度的测量是超短激光参数测量中最重要的问题。
传统的用于测量激光脉冲宽度的方法是利用光电双光子探测器直接显示脉冲波形,然而现有的光电响应器件的最快响应时间为皮秒量级,无法用于测量飞秒量级的超短激光脉冲信息,这就需要飞秒激光脉冲对自己本身进行扫描,利用光与物质相互作用的非线性效应,将时间测量转化为空间测量,从而得到飞秒激光脉冲的自相关信号。
测量飞秒激光脉冲宽度的基本过程是:待测飞秒激光被分光镜分成两束,其中一束光通过一个延迟器,另一束光则不经过延迟器,然后将上述经过不同路径的两束光重合,再利用倍频晶体的二阶非线性效应或者采用有双光子吸收效应的光电转换介质,将光信号转换成电信号来测量,调整两路径的光程差可以得到二阶相关信号,从而推算出超短脉冲的宽度。二次谐波法只需双光子探测器测出光强的相对平均值,不需要快速响应的双光子探测器,也不需要定标,目前获得的飞秒级光脉冲主要是采用自相关方法测量。
现有技术中有多种用于测量飞秒脉冲时域波形和光谱位相的方法,如频率分辨光学开关法(Frequency-Resolved Optical Gating,FROG)和光谱位相相干直接电场重建法(Spectral Phase Interfere DidrectElectic-Field Reconstruction,SPIDER)等,但频率分辨光学开关法只能测放大的脉冲,而光谱位相相干直接电场重建法不能直接测得其脉冲宽度。
自相关仪由于结构简单,且可实现飞秒量级到皮秒量级的脉冲宽度的测量而得到广泛应用。目前在自相关仪设计领域,申请号为02202596.0的中国实用新型专利提供了一种“双功能小型超短激光脉冲自相关测量仪”,申请号为201010217215.0的中国发明专利公开了一种“多功能大量程超短脉冲激光自相关仪”,两者均以迈克尔逊干涉仪为基本框架结构,采用由两片两面平行的分束片构成的分光镜将被测激光脉冲一分为二,调节其中一路光程,使两路光有相应的时间延迟,合并后(共线)或者独自(非共线)经过透镜或者凹面镜聚焦,再通过倍频晶体由双光子探测器接收产生的二次谐波信号并最终转变成电信号输出,或者直接通过具有双光子吸收效应的双光子探测器接收脉冲信号。
由于现有技术中的自相关仪的分光镜由两片两面平行的分束片构成,且均没有提供校准光路,导致其光路结构复杂,光路调节的难度大,且测量时分束片的两表面多次反射后形成的干涉场信号和重合后出射光路的干涉信号完全重合叠加在一起,带来了额外的噪声。
发明内容
本发明解决的技术问题是:由于现有技术中的自相关仪的分光镜由两片两面平行的分束片构成,且均没有提供校准光路,而导致其光路结构复杂,光路调节的难度大,且测量时分束片的两表面多次反射后形成的干涉场信号和重合后光路的干涉信号完全重合叠加在一起,带来了额外的噪声。
为了解决现有技术中存在的上述问题,本发明的目的是提供一种自相关仪,用于测量超短激光脉冲宽度,包括:
用于等高平直入射的被测激光通过以形成入射光路的入射参考小孔;
楔形分光镜,位于所述入射光路上,所述楔形分光镜与入射光路的夹角为45°;
第一直角反射镜,包括第一平面反射镜和第二平面反射镜;所述第一平面反射镜位于所述入射光路经所述楔形分光镜反射后形成的第三光路上,所述第三光路与第一平面反射镜的夹角为45°;所述第二平面反射镜与第一平面反射镜垂直以将所述第三光路原方向返回形成第四光路;
第二直角反射镜,包括第三平面反射镜和第四平面反射镜;所述第三平面反射镜位于所述入射光路经所述楔形分光镜透射后形成的第一光路上,所述第一光路与第三平面反射镜的夹角为45°;所述第四平面反射镜与第三平面反射镜垂直以将所述第一光路原方向返回形成第二光路;所述第二直角反射镜设于可平行于所述第一光路周期往复运动的扫描装置平台上;
抛物面镜,位于所述第二光路经所述楔形分光镜反射后形成的光路上;
探测器,位于所述出射光路经所述抛物面镜聚光后的光路上以采集所述出射光路聚焦后的光信号并将采集到的光信号转换成电信号;
控制装置,分别与所述探测器和扫描装置平台电连接以采集所述探测器生成的电信号并控制所述扫描装置平台的周期往复运动。
作为优选,还包括位于所述第二光路经所述楔形分光镜透射形成的光路上的光路校准窗口,所述光路校准窗口包括一个用于对所述自相关仪进行校准的检测点,所述第一直角反射镜设置于一可平行于所述第三光路和第一光路移动的二维精密平移台上。
作为进一步地优选,所述检测点是一个十字叉丝的中心点。
作为优选,所述楔形分光镜包括透射面和反射面,所述透射面镀有增透膜,所述反射面镀有反射膜。
作为进一步地优选,所述反射膜是光线45°入射时反射透射光强比为1∶1的宽波段膜系。
作为优选,所述楔形分光镜的楔角的范围是0.3°~0.8°。
作为进一步地优选,所述楔形分光镜的楔角是0.5°。
作为优选,所述探测器位于所述抛物面镜的焦点处。
作为优选,所述抛物面镜是凹面镜或凸透镜。
作为优选,所述探测器为双光子探测器。
与现有技术相比,本发明具有以下有益效果:
(1)由于采用楔形分光镜代替了现有技术中采用的两片两面平行的分束片,使得自相关仪的光路结构简单,且楔形分光镜的两表面的多次反射形成的干涉场信号不再与出射光路重合在一起,从而使探测器能够检测到干净的自相关信号;
(2)由于提供了光路校准窗口和校准光路,大大降低了自相关仪的光路调节难度,节约了光路调节所花费的时间。
附图说明
图1为本发明的自相关仪的结构示意图。
图2为图1所示的自相关仪的楔形分光镜的主视示意图。
图3为图1所示的自相关仪的楔形分光镜的右视示意图。
图4为采用本发明的自相关仪测量脉冲宽度为40fs的飞秒光纤激光器的共线干涉自相关信号图。
主要附图标记说明:
10、入射光路        11、第一光路
12、第二光路        13、第三光路
14、第四光路        15、第五光路
16、出射光路        17、被测激光
20、楔形分光镜      21、第一直角反射镜
22、第二直角反射镜  23、入射参考小孔
24、光路校准窗口    25、抛物面镜
30、二维精密平移台  31、扫描装置平台
40、探测器          41、控制装置
201、透射面         202、反射面
211、第一平面反射镜 212、第二平面反射镜
221、第三平面反射镜 222、第四平面反射镜
具体实施方式
下面结合附图对本发明的具体实施例进行详细说明。
如图1所示,本发明的实施例的自相关仪包括:
入射参考小孔23,等高平直入射的被测激光17通过该入射参考小孔23后形成入射光路10;
楔形分光镜20,位于入射光路10上,其与入射光路10的夹角为45°,入射光路10经楔形分光镜20透射和反射后分别形成第一光路11和第三光路13,第一光路11与第三光路13相互垂直;
第一直角反射镜21,包括第一平面反射镜211和第二平面反射镜212;第一平面反射镜211位于入射光路10经楔形分光镜20反射后形成的第三光路13上,第三光路13与第一平面反射镜211的夹角为45°;第二平面反射镜212与第一平面反射镜211垂直以将第三光路13原方向返回形成第四光路14;第一平面反射镜211和第二平面反射镜212相互垂直,且二者之间有一定距离,以避免超短激光返回到产生激光的激光谐振腔内,破坏激光锁模的运转;
二维精密平移台30,其上固定有第一直角反射镜21,二维精密平移台30的位置是可平行于第三光路13(即图中y轴方向)和第一光路11(即图中x轴方向)移动调节的;
第二直角反射镜22,其包括第三平面反射镜221和第四平面反射镜222;第三平面反射镜221位于入射光路10经楔形分光镜20透射后形成的第一光路11上,第一光路11与第三平面反射镜221的夹角为45°;第四平面反射镜222与第三平面反射镜221垂直以将第一光路11原方向返回形成第二光路12;第二光路12经楔形分光镜20透射的光路部分与第四光路14经楔形分光镜20反射的光路部分重合形成第五光路15,第二光路12经楔形分光镜20反射的光路部分与第四光路14经楔形分光镜20透射的光路部分重合形成出射光路16;
扫描装置平台31,其上固定有第二直角反射镜22,在测量所述超短激光脉冲宽度时,扫描装置平台31接收控制装置41发出的周期扫描的驱动信号,可平行于第一光路11(即图1中x轴方向)做周期往复运动;
抛物面镜25,位于第二光路12经楔形分光镜20反射后形成的光路上,用于使出射光路16聚焦;在本实施例中,作为优选方案,抛物面镜25可以采用凹面镜或凸透镜,实现光束聚焦,增强超短激光脉冲的非线性,由探测器40接收探测;
探测器40,位于出射光路16经抛物面镜25聚光后的光路上以采集出射光路16聚焦后的光信号并将采集到的光信号转换成电信号;在本实施例中,作为优选方案,探测器40位于抛物面镜25的焦点处;探测器40可以选用双光子探测器;
控制装置41,分别与探测器40和扫描装置平台31电连接以采集探测器40生成的电信号并控制扫描装置平台31的周期往复运动。
在本实施例中,作为优选方案,所述自相关仪还包括位于第二光路12经所述楔形分光镜20透射形成的光路上的光路校准窗口24,光路校准窗口24包括一个用于对所述自相关仪进行校准的检测点,所述第一直角反射镜21设置于一可平行于第三光路13和第一光路11移动的二维精密平移台30上;对所述自相关仪的光路进行校准时,若第二光路12经楔形分光镜20透射的光路部分与第四光路14经楔形分光镜20反射的光路部分重合形成的第五光路15投射到所述检测点上,则该自相关仪的光路校准完成;所述检测点可以是一个十字叉丝的中心点。
如图1至图3所示,本发明的实施例的自相关仪的楔形分光镜20包括透射面201和反射面202,透射面201镀有增透膜,反射面202镀有反射膜,在本实施例中,所述反射膜采用光线45°入射时反射与透射光强比为1∶1的宽波段600nm-1000nm膜系;楔形分光镜20的楔角的范围是0.3°~0.8°,在本实施例中楔角为0.5°。
采用本发明的实施例的自相关仪测量超短激光脉冲宽度的过程为:
入射前已经调节至等高平直状态的被测激光17通过入射参考小孔23后形成入射光路10;
入射光路10照射到楔形分光镜20上,经楔形分光镜20透射和反射后分别形成第一光路11和第三光路13,第一光路11与第三光路13相互垂直;
第一光路11照射到第二直角反射镜22上,经第二直角反射镜22反射后原方向返回,形成第二光路12;第三光路13照射到第一直角反射镜21上,经第一直角反射镜21反射后原方向返回,形成第四光路14;第二光路12与第四光路14的交点位于楔形分光镜20上;
第二光路12经楔形分光镜20透射的光路部分与第四光路14经楔形分光镜20反射的光路部分在空间上处处重合形成第五光路15,第二光路12经楔形分光镜20反射的光路部分与第四光路14经楔形分光镜20透射的光路部分在空间上处处重合形成出射光路16;
调整二维精密平移台30在y轴方向上的位置,使第一光路11和第二光路12分别与第三光路13和第四光路14的光程一致,这时可以在出射光路16中用扫描的方式观察到明显的干涉光斑;
抛物面镜25使出射光路16聚焦,探测器40采集出射光路16聚焦后的光信号并将该光信号转换成电信号,然后将电信号传送至控制装置41,在示波器上显示干涉条纹产生的信号图像,以此来推算所述超短激光脉冲宽度。
如图4所示,采用本发明的实施例的自相关仪测量脉冲宽度为40fs的飞秒光纤激光器的共线干涉自相关信号时,由图4可推算出此高斯型飞秒激光脉冲宽度为40.95fs,测量结果与激光器输出脉宽基本相符,测量精度很高。
在第一次采用本发明的实施例的自相关仪测量超短激光脉冲宽度之前,需要对该自相关仪的光路进行校准,光路校准的过程是:将入射前已经调节至等高平直状态的被测激光17通过入射参考小孔23射入;观察第四光路14经楔形分光镜20反射的光路部分是否与第二光路12经楔形分光镜20透射的光路部分重合形成第五光路15并投射到光路校准窗口24上的十字叉丝的中心点上,如果是,则该自相关仪的光路已经准确,无需对该自相关仪的各个部件进行调整,如果否,则根据第四光路14经楔形分光镜20反射的光路部分在光路校准窗口24上的投射光点与十字叉丝的中心点的相对位置对该自相关仪的各个部件进行调整,使第五光路15投射到十字叉丝的中心点上,完成光路校准过程。
该自相关仪的光路校准过程一旦完成,以后测量时均不需要重新调节该自相关仪中的各个部件,只要保证被测激光17以等高平直状态进入入射参考小孔23,通过观察第五光路15在光路校准窗口24上的投射光点与十字叉丝的中心点的相对位置,微调入射的被测激光17或者微调整个自相关仪,使第五光路15在光路校准窗口24上的投射光点与十字叉丝的中心点重合,即完成光路调节。
本发明的自相关仪由于采用楔形分光镜代替了现有技术中采用的两片两面平行的分束片,使得自相关仪的光路结构简单,且楔形分光镜的两表面的多次反射形成的干涉场信号不再与出射光路重合在一起,从而使探测器能够检测到干净的自相关信号;此外,本发明的自相关仪由于提供了光路校准窗口和校准光路,大大降低了自相关仪的光路调节难度,节约了光路调节所花费的时间。
以上实施例仅为本发明的示例性实施例,不用于限制本发明,本发明的保护范围由权利要求书限定。本领域技术人员可以在本发明的实质和保护范围内,对本发明做出各种修改或等同替换,这种修改或等同替换也应视为落在本发明的保护范围内。

Claims (10)

1.一种自相关仪,用于测量超短激光脉冲宽度,其特征在于,包括:
用于等高平直入射的被测激光(17)通过以形成入射光路(10)的入射参考小孔(23);
楔形分光镜(20),位于所述入射光路(10)上,所述楔形分光镜(20)与入射光路(10)的夹角为45°;
第一直角反射镜(21),包括第一平面反射镜(211)和第二平面反射镜(212);所述第一平面反射镜(211)位于所述入射光路(10)经所述楔形分光镜(20)反射后形成的第三光路(13)上,所述第三光路(13)与第一平面反射镜(211)的夹角为45°;所述第二平面反射镜(212)与第一平面反射镜(211)垂直以将所述第三光路(13)原方向返回形成第四光路(14);
第二直角反射镜(22),包括第三平面反射镜(221)和第四平面反射镜(222);所述第三平面反射镜(221)位于所述入射光路(10)经所述楔形分光镜(20)透射后形成的第一光路(11)上,所述第一光路(11)与第三平面反射镜(221)的夹角为45°;所述第四平面反射镜(222)与第三平面反射镜(221)垂直以将所述第一光路(11)原方向返回形成第二光路(12);所述第二直角反射镜(22)设于可平行于所述第一光路(11)周期往复运动的扫描装置平台(31)上;
抛物面镜(25),位于所述第二光路(12)经所述楔形分光镜(20)反射后形成的光路上;
探测器(40),位于所述出射光路(16)经所述抛物面镜(25)聚光后的光路上以采集所述出射光路(16)聚焦后的光信号并将采集到的光信号转换成电信号;
控制装置(41),分别与所述探测器(40)和扫描装置平台(31)电连接以采集所述探测器(40)生成的电信号并控制所述扫描装置平台(31)的周期往复运动。
2.如权利要求1所述的自相关仪,其特征在于,还包括位于所述第二光路(12)经所述楔形分光镜(20)透射形成的光路上的光路校准窗口(24),所述光路校准窗口(24)包括一个用于对所述自相关仪进行校准的检测点,所述第一直角反射镜(21)设置于一可平行于所述第三光路(13)和第一光路(11)移动的二维精密平移台(30)上。
3.如权利要求2所述的自相关仪,其特征在于,所述检测点是一个十字叉丝的中心点。
4.如权利要求1所述的自相关仪,其特征在于,所述楔形分光镜(20)包括透射面(201)和反射面(202),所述透射面(201)镀有增透膜,所述反射面(202)镀有反射膜。
5.如权利要求4所述的自相关仪,其特征在于,所述反射膜是光线45°入射时反射透射光强比为1∶1的宽波段膜系。
6.如权利要求1所述的自相关仪,其特征在于,所述楔形分光镜(20)的楔角的范围是0.3°~0.8°。
7.如权利要求6所述的自相关仪,其特征在于,所述楔形分光镜(20)的楔角是0.5°。
8.如权利要求1所述的自相关仪,其特征在于,所述探测器(40)位于所述抛物面镜(25)的焦点处。
9.如权利要求1所述的自相关仪,其特征在于,所述抛物面镜(25)是凹面镜或凸透镜。
10.如权利要求1所述的自相关仪,其特征在于,所述探测器(40)为双光子探测器。
CN2011103764545A 2011-11-23 2011-11-23 一种自相关仪 Pending CN103134600A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011103764545A CN103134600A (zh) 2011-11-23 2011-11-23 一种自相关仪

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011103764545A CN103134600A (zh) 2011-11-23 2011-11-23 一种自相关仪

Publications (1)

Publication Number Publication Date
CN103134600A true CN103134600A (zh) 2013-06-05

Family

ID=48494729

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011103764545A Pending CN103134600A (zh) 2011-11-23 2011-11-23 一种自相关仪

Country Status (1)

Country Link
CN (1) CN103134600A (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103424633A (zh) * 2013-08-30 2013-12-04 中国科学院西安光学精密机械研究所 一种超短电子脉冲脉宽测量装置及方法
CN104019911A (zh) * 2014-06-18 2014-09-03 苏州紫光伟业激光科技有限公司 实时宽频反射性自相干仪
CN104501974A (zh) * 2014-12-30 2015-04-08 华东师范大学 一种简单的飞秒脉冲宽度测量系统
CN104596652A (zh) * 2015-01-04 2015-05-06 中国科学院上海光学精密机械研究所 一种时间分辨率可调的超短脉冲脉宽测量仪
CN108007585A (zh) * 2017-12-01 2018-05-08 北京无线电计量测试研究所 一种飞秒激光脉宽测量装置
CN108593121A (zh) * 2018-04-03 2018-09-28 上海交通大学 超短脉冲自相关测量装置和测量方法
CN109540305A (zh) * 2019-01-16 2019-03-29 中国工程物理研究院激光聚变研究中心 一种自相关仪
CN110919649A (zh) * 2019-11-14 2020-03-27 黄冈师范学院 环状激光接触传感器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1448690A (zh) * 2003-05-09 2003-10-15 中国科学院上海光学精密机械研究所 马赫-陈德尔干涉仪的快速调整方法
CN1455397A (zh) * 2002-04-30 2003-11-12 三星电子株式会社 光学拾波器和楔形分光镜
CN101900608A (zh) * 2010-06-23 2010-12-01 中国计量科学研究院 多功能大量程超短脉冲激光自相关仪
CN202362081U (zh) * 2011-11-23 2012-08-01 北京量子光通科技有限公司 一种自相关仪

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1455397A (zh) * 2002-04-30 2003-11-12 三星电子株式会社 光学拾波器和楔形分光镜
CN1448690A (zh) * 2003-05-09 2003-10-15 中国科学院上海光学精密机械研究所 马赫-陈德尔干涉仪的快速调整方法
CN101900608A (zh) * 2010-06-23 2010-12-01 中国计量科学研究院 多功能大量程超短脉冲激光自相关仪
CN202362081U (zh) * 2011-11-23 2012-08-01 北京量子光通科技有限公司 一种自相关仪

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
赵玉连: "太赫兹光谱技术在农业选种中的应用及飞秒激光自相关仪的研制", 《中国优秀硕士学位论文全文数据库 工程科技I辑》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103424633A (zh) * 2013-08-30 2013-12-04 中国科学院西安光学精密机械研究所 一种超短电子脉冲脉宽测量装置及方法
CN103424633B (zh) * 2013-08-30 2015-12-30 中国科学院西安光学精密机械研究所 一种超短电子脉冲脉宽测量装置及方法
CN104019911A (zh) * 2014-06-18 2014-09-03 苏州紫光伟业激光科技有限公司 实时宽频反射性自相干仪
CN104501974A (zh) * 2014-12-30 2015-04-08 华东师范大学 一种简单的飞秒脉冲宽度测量系统
CN104501974B (zh) * 2014-12-30 2017-10-27 华东师范大学 一种简单的飞秒脉冲宽度测量系统
CN104596652A (zh) * 2015-01-04 2015-05-06 中国科学院上海光学精密机械研究所 一种时间分辨率可调的超短脉冲脉宽测量仪
CN104596652B (zh) * 2015-01-04 2017-11-10 中国科学院上海光学精密机械研究所 一种时间分辨率可调的超短脉冲脉宽测量仪
CN108007585A (zh) * 2017-12-01 2018-05-08 北京无线电计量测试研究所 一种飞秒激光脉宽测量装置
CN108593121A (zh) * 2018-04-03 2018-09-28 上海交通大学 超短脉冲自相关测量装置和测量方法
CN109540305A (zh) * 2019-01-16 2019-03-29 中国工程物理研究院激光聚变研究中心 一种自相关仪
CN110919649A (zh) * 2019-11-14 2020-03-27 黄冈师范学院 环状激光接触传感器

Similar Documents

Publication Publication Date Title
CN103134600A (zh) 一种自相关仪
CN101900608B (zh) 多功能大量程超短脉冲激光自相关仪
CN101556386B (zh) 一种液晶空间光调制器多参数的干涉式双成像测量装置
CN102564611B (zh) 大功率激光波前测量仪及波前测量方法
CN102393383B (zh) 辐照密度高均匀性的ArF激光薄膜元件损伤测试装置
JP2006242570A (ja) 表面形状測定装置
CN103543125A (zh) 基于迈克尔逊干涉原理的全光学气体探测方法及装置
CN101762332A (zh) 单发次超短激光脉冲对比度测量装置
CN202522516U (zh) 一种光学透过率测试装置
CN104808193A (zh) 基于非偏振分光棱镜的f-p标准具瑞利散射多普勒鉴频装置
CN107884079B (zh) 单发次超短激光脉冲宽度测量装置及测量方法
CN103698025A (zh) 基于畴壁非线性的脉冲自相关测量方法及测量装置
JP2015148523A (ja) テラヘルツ波位相差測定システム
CN102243106B (zh) 一种用于激光频率测量的拍频装置
CN103048053A (zh) 单次激光信噪比探测装置
CN103308903A (zh) 一种激光测距机的测距精度测试装置及方法
CN103529419A (zh) 一种用于产生定标的超快脉冲信号的装置及方法
CN105866788A (zh) 调节飞秒激光器谐振腔实现光学采样的测距装置及方法
CN107505054A (zh) 实时原位皮秒激光脉冲自相关仪
CN200993600Y (zh) 偏振式半导体光二极管自相关测量装置
CN102661795B (zh) 泵浦光与信号光同步斩波、信号光分区记录的泵浦-探测光谱的方法及实现装置
CN202362081U (zh) 一种自相关仪
CN207487831U (zh) 单发次超短激光脉冲宽度测量装置
CN109060151A (zh) 一种亚纳秒激光脉冲对比度测量装置
CN105203223A (zh) 一种基于cars光谱测量一维扫描火焰温度的装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
AD01 Patent right deemed abandoned

Effective date of abandoning: 20170208

C20 Patent right or utility model deemed to be abandoned or is abandoned