CN103121783B - 污泥低压催化热水解处理方法及其应用 - Google Patents

污泥低压催化热水解处理方法及其应用 Download PDF

Info

Publication number
CN103121783B
CN103121783B CN201210212188.7A CN201210212188A CN103121783B CN 103121783 B CN103121783 B CN 103121783B CN 201210212188 A CN201210212188 A CN 201210212188A CN 103121783 B CN103121783 B CN 103121783B
Authority
CN
China
Prior art keywords
mud
reactor
sludge
thermal hydrolysis
catalytic thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210212188.7A
Other languages
English (en)
Other versions
CN103121783A (zh
Inventor
黄彤宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ECO-SOLUTION TECHNOLOGY Corp
Original Assignee
ECO-SOLUTION TECHNOLOGY Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ECO-SOLUTION TECHNOLOGY Corp filed Critical ECO-SOLUTION TECHNOLOGY Corp
Priority to CN201210212188.7A priority Critical patent/CN103121783B/zh
Publication of CN103121783A publication Critical patent/CN103121783A/zh
Application granted granted Critical
Publication of CN103121783B publication Critical patent/CN103121783B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明属于污泥处理技术领域,并公开了一种污泥低压催化热水解处理方法及其应用,包括:S1.将污泥与催化剂注入反应釜内;S2.向反应釜内注入0.5-1.59MPa的饱和蒸汽,当污泥的温度达到80~180℃时,停止注入饱和蒸汽并保持0~25分钟后获得热水解后的泥浆。本发明的有益效果是采用向污泥中加入催化剂的方法提高污泥水解效率,在催化剂及加热的条件下,有助于污泥细胞的快速破碎和有机物的快速水解。由于向污泥中加入催化剂提高了污泥水解效率,所以可以向反应釜内注入0.5-1.59Mpa的饱和蒸汽,饱和蒸汽压力下降使得反应釜设计压力下降导致投资成本大幅降低,并且由于饱和蒸汽压力下降使得锅炉等配套设备投资大幅降低,而且蒸汽使用量下降致能耗降低,使处理污泥运行成本大幅下降。

Description

污泥低压催化热水解处理方法及其应用
技术领域
本发明属于污泥处理技术领域,并涉及一种污泥的处理方法。更具体地,本发明涉及一种污泥低压催化热水解处理方法及其应用。
背景技术
脱水污泥是污水处理过程中产生的主要副产物,其不仅含丰富的水分、有机物和微生物,而且含有重金属等多种可导致环境污染的有害物质,因此污泥的不当处理很有可能造成二次环境污染。为避免上述问题的发生,目前已陆续研发出一些污泥处理方法和装置,以期望降低污泥中的有害物质含量,并通过污泥处理对其进行二次回收利用。其中,对污泥进行热水解处理是一种有效的污泥处理手段。现有的污泥热水解处理方法主要存在以下不足:(1)均采用高压饱和蒸汽加热污泥,并通常在高于190℃的高温条件下进行长时间的水解反应。由于处理过程中反应器内长时间为高压高热环境,这种处理方法要求使用成本较高的高压设备,而且能耗极高。(2)加热污泥、保持处理和高压设备卸压均耗用较长时间,导致整个污泥热水解处理的耗时长、效率较低,而且造成整个处理过程的运行成本较高。(3)对待处理污泥的含水率有特定要求,在进行热水解处理前需对污泥进行脱水、浆化等预处理,使得运行成本进一步提高、处理效率也受到了极大的限制。
发明内容
本发明要解决的技术问题在于,针对现有技术中的污泥热水解处理方法的能耗大、设备要求严格且处理效率低而导致运行成本和投资成本高的缺陷,提供一种能耗小、处理效率高且采用成本低的低压设备即可实现的污泥低压催化热水解处理方法。
本发明要解决的技术问题通过以下技术方案得以实现:提供一种污泥低压催化热水解处理方法,所述方法包括:
S1:将催化剂和含水率为75~97%污泥注入反应釜内;
S2:向反应釜内注入0.5-1.59MPa的饱和蒸汽,加热污泥获得热水解后的泥浆。
在热力和压力的作用下,污泥中的有机高分子结构、胶状体等固相物质的持水结构被有效破坏,使污泥由初始的粘稠固态转化为流动性很好的泥浆。加入催化剂后,污泥的臭气浓度大幅下降,尾气处理负荷大幅降低;脱除液的可生化性大幅提高,总氮含量大幅下降,可作为污水厂的碳源使用;催化剂的使用可加速热水解反应,使热水解反应所需的温度和压力进一步降低,从而使本发明处理过程的能耗和设备要求得到控制。另外,高温热水解处理可彻底杀灭污泥中的细菌和病原体,实现污泥的无害化。经热水解处理后,污泥的持水结构被破坏,污泥中的结合水被释放出来,脱水性能大为改善,为后续脱水处理创造有利条件;同时,污泥所含的微生物解体,微生物细胞的有机质充分释放出来并进一步水解,污泥中固体有机物的溶解和水解,使污泥的厌氧消化性能大为改善,为后续的厌氧消化处理创造有利条件。
在上述污泥低压催化热水解处理方法中,在所述步骤S1中向反应釜内注入污泥的含水率为75~89%。
在上述污泥低压催化热水解处理方法中,在所述步骤S1中向反应釜内注入污泥的含水率为80~85%。
在上述污泥低压催化热水解处理方法中,在所述步骤S2中,向反应釜内注入1.2~1.4Mpa的饱和蒸汽。
在上述污泥低压催化热水解处理方法中,在所述步骤S2中,当污泥的温度达到80~180℃时,停止注入饱和蒸汽并保持0~25分钟。
在上述污泥低压催化热水解处理方法中,在所述步骤S2中,当所述污泥的温度达到90~130℃时,停止注入饱和蒸汽并保持10~15分钟。
在上述污泥低压催化热水解处理方法中,在所述步骤S2中,所述污泥的温度为所述反应釜内低温区的温度。
在上述污泥低压催化热水解处理方法中,所述催化剂包括但不限于以下化合物中的至少一种:氢氧化钠、氧化钙、氢氧化钾、碳酸钠、碳酸氢钠、氢氧化钙和氢氧化镁。虽然以下均结合上述催化剂对本发明进行详细解释与说明,但应该理解的是,本发明可使用的催化剂类型并不受限于上述特定示例;在不违背本发明精神和范围的前提下,本领域技术人员对所用催化剂做出的任何更替、调整或等同替换均包含在本发明所附权利要求的范围内。
在上述污泥低压催化热水解处理方法中,在所述步骤S1中,所述催化剂与污泥的质量比为1∶10~1∶100。
在上述污泥低压催化热水解处理方法中,所述反应釜内部装有搅拌装置;所述方法还包括在注入所述饱和蒸汽前启动所述搅拌装置搅拌污泥。优选地,所述方法还包括在注入饱和蒸汽前预先搅拌0-5分钟,使污泥与催化剂混合均匀。搅拌操作可促进污泥与饱和蒸汽的充分接触,使得处理过程中热传质更快、污泥的热水解反应更完全。另外说明的是,虽然此处以及后续实施例中均在注入饱和蒸汽前启动搅拌装置,但搅拌装置的使用控制并不受限于此方式。换言之,还可在注入污泥的过程中、注入催化剂的过程中或在开始注入饱和蒸汽后启动搅拌装置。
在上述污泥低压催化热水解处理方法中,所述方法还包括排汽泄压并排出所述泥浆。
根据本发明的一个方面,提供上述污泥低压催化热水解处理方法在处理有机固体废弃物中的应用。这一类型的有机固体废弃物包括但不限于餐厨垃圾、动物粪便和/或食品加工厂废渣等。
实施本发明可获得以下有益效果:(1)本发明的热水解处理方法适用于多种含水率的脱水污泥,且无需在热水解反应前对污泥进行任何预处理;(2)加入催化剂可使污泥热水解更完全,臭气浓度下降、泥浆中总氮含量降低,有利于后续处理的开展;(3)加入催化剂后,本发明仅需采用1.6MPa以下的饱和蒸汽对污泥进行加热,饱和蒸汽的压力大幅度下降,因此降低了对所采用的反应器及配套设施的压力级别的要求,可采用低压构造的热水解反应装置作为反应器,有效降低了设备成本,同时也降低了操作人员的资质要求、进而控制了人员成本;(4)本发明的低压催化热水解处理方法可用于处理有机固体废弃物。
附图说明
图1是根据本发明的污泥低压催化热水解处理方法的流程图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图和具体实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
如图1所示,本发明提供了一种污泥低压催化热水解处理方法,该方法采用催化剂和0.5-1.59MPa的饱和蒸汽对含水率为75-97%的污泥进行热水解处理,当污泥温度达到80-180℃后,停止注入饱和蒸汽并保持0-25分钟,使初始的粘稠状污泥转化为流动性强、含氮量低、便于脱水处理的泥浆。
上述对待处理污泥进行加热的过程中,本发明通过污泥与饱和蒸汽(可称为加热源)的直接接触、以及污泥之间的热交换实现加热。本领域技术人员理解的是,目前用作污泥热水解处理的反应釜主要从其顶部注入饱和蒸汽,少数反应釜同时从其顶部和底部注入饱和蒸汽。由于热水解处理前的污泥呈粘稠状、热交换过程缓慢,且反应器内不同区域的污泥距离加热源的位置不等,加热过程中反应釜内不同位置的污泥温度并不相同。
在运用本发明所提供的热水解处理方法时,首先在反应器内部纵向取点,将反应釜按纵向三等分成上、中、下三部分,即靠近顶部的1/3为上部,靠近底部的1/3为下部,中间的1/3为中部。当饱和蒸汽从上部注入时,下部为低温区;当从上部和下部同时注入饱和蒸汽时,中部为低温区。换言之,本文所用的表达“低温区”意指在反应器(本发明为热水解反应装置)内距离加热源较远、且因此在加热过程中温度相对较低的污泥所在的区域。
在本发明的优选实施例中,测定低温区内污泥的温度,并以此温度值为标准判断是否需要继续注入饱和蒸汽。在低温区测定污泥温度的优点在于:可确保反应器的所有待处理污泥均达到进行有效热水解处理的必需温度,有助于后续保持过程中污泥的充分水解;同时,降低蒸汽注入控制温度,缩短处理时间,降低能耗,提高效率。
本发明优选使用卧式构造和低压构造的反应釜。本发明所用的反应釜的设备成本低,且与该类型的反应器配合使用的其他装置(例如锅炉、进料阀、卸料阀及相应的管道等)均可采用低压型装置。另一方面,相比采用立式构造的反应釜,卧式构造的反应釜受热面积更大,传热更为均匀,使用同等压力的饱和蒸汽时热传质速度更快且更均匀,因而使整个待处理污泥加热到一定处理温度所需的时间可大为缩短。以下的具体实施例也均结合卧式反应釜(在实施例中简称为反应釜)展开详细描述。但本发明并不限于使用这一构造的反应装置,任何采用其他构造的反应釜的变形和等同替换均在本发明的保护范围之内。
以下将结合具体实施例进一步详细说明本发明的污泥低压催化热水解处理方法。
实施例1:
将50kg碳酸钠和1吨含水率为90-97%的污泥注入反应釜,关闭反应釜进料口,并启动反应釜内的搅拌装置;从反应釜顶部向其内注入0.5-0.8MPa的饱和蒸汽,对反应釜内混合有碳酸钠的污泥进行加热;检测反应釜下部污泥的实时温度,当污泥温度达到140℃时,停止注入饱和蒸汽并保持20-25分钟;随后打开泄压阀开始排汽泄压,当反应釜内的压力降至0.05MPa以下时打开排料阀,排出热水解处理得到的泥浆。此时完成对含水率为90-97%的污泥的低压催化热水解处理。
在排出的泥浆冷却后对其进行脱水处理,得到脱除液和含水率为55-60%的脱水泥饼。
实施例2:
将30kg氢氧化钠和1吨含水率为85-89%的污泥注入反应釜,关闭反应釜进料口,并启动反应釜内的搅拌装置,匀速搅拌1分钟使氢氧化钠与污泥混合均匀;从反应釜内上部和下部注入0.9-1.1MPa的饱和蒸汽,对反应釜内混合有氢氧化钠的污泥进行加热;检测反应釜中部污泥的实时温度,当污泥温度达到160℃时,停止注入饱和蒸汽并保持15-20分钟;随后打开泄压阀开始排汽泄压,当反应釜内的压力降至0.05MPa以下时打开排料阀,排出热水解处理得到的泥浆。此时完成对含水率为85-89%的污泥的低压催化热水解处理。
在排出的泥浆冷却后对其进行脱水处理,得到脱除液和含水率为45-55%的脱水泥饼。
实施例3:
将5kg氢氧化钙及30kg氢氧化钾和1吨含水率为80-85%的污泥注入反应釜,关闭反应釜进料口,并启动反应釜内的搅拌装置,匀速搅拌3分钟,使氢氧化钙及氢氧化钾与污泥混合均匀;同时从反应釜内上部和下部注入1.2-1.4MPa的饱和蒸汽,对反应釜内混合有氢氧化钙及氢氧化钾的污泥进行加热;检测反应釜中部污泥的实时温度,当污泥温度达到130℃时,停止注入饱和蒸汽并保持10-15分钟;随后打开泄压阀开始排汽泄压,当反应釜内的压力降至0.05MPa以下时打开排料阀,排出热水解处理得到的泥浆。此时完成对含水率为80-85%的污泥的低压催化热水解处理。
在排出的泥浆冷却后对其进行脱水处理,得到脱除液和含水率为40-45%的脱水泥饼。
实施例4:
将15kg氧化钙及10kg氢氧化钾和1吨含水率为75-80%的污泥注入反应釜,关闭反应釜进料口,并启动反应釜内的搅拌装置,匀速搅拌5分钟,使氧化钙和氢氧化钾与污泥混合均匀;从反应釜顶部向其内注入1.3-1.59MPa的饱和蒸汽,对反应釜内的污泥进行加热;检测反应釜下部污泥的实时温度,当污泥温度达到105℃时,停止注入饱和蒸汽并保持10-15分钟;完成后打开泄压阀开始排汽泄压,当反应釜内的压力降至0.05MPa以下时打开排料阀,排出热水解处理得到的泥浆。此时完成对含水率为75-80%的污泥的低压催化热水解处理。
在排出的泥浆冷却后对其进行脱水处理,得到脱除液和含水率为40-45%的脱水泥饼。
实施例5:
将30kg碳酸氢钠和1吨含水率为80-83%的污泥注入反应釜,关闭反应釜进料口,并启动反应釜内的搅拌装置,匀速搅拌3分钟,使碳酸氢钠与污泥混合均匀;从反应釜顶部向其内注入1.4-1.59MPa的饱和蒸汽,对反应釜内混合有碳酸氢钠的污泥进行加热;检测反应釜下部污泥的实时温度,当污泥温度达到90℃时,停止注入饱和蒸汽并保持10-15分钟;随后打开泄压阀开始排汽泄压,当反应釜内的压力降至0.05MPa以下时打开排料阀,排出热水解处理得到的泥浆。此时完成对含水率为80-83%的污泥的低压催化热水解处理。
在排出的泥浆冷却后对其进行脱水处理,得到脱除液和含水率为45-50%的脱水泥饼。
实施例6:
将10kg氢氧化钙和1吨含水率为93-95%的污泥注入反应釜,关闭反应釜进料口,并启动反应釜内的搅拌装置;从反应釜上部和下部同时向其内注入0.8-1.2MPa的饱和蒸汽,对反应釜内混合有氢氧化钙的污泥进行加热;检测反应釜中部污泥的实时温度,当污泥温度达到80℃时,停止注入饱和蒸汽并保持5-10分钟;随后打开泄压阀开始排汽泄压,当反应釜内的压力降至0.05MPa以下时打开排料阀,排出热水解处理得到的泥浆;此时完成对含水率为93-95%的污泥的低压催化热水解处理。
在排出的泥浆冷却后对其进行脱水处理,得到脱除液和含水率为40-45%的脱水泥饼。
实施例7:
将100kg氢氧化镁和1吨含水率为80-85%的污泥注入反应釜,关闭反应釜进料口,并启动反应釜内的搅拌装置,匀速搅拌3分钟,使氢氧化镁与污泥混合均匀;从反应釜上部向其内注入1.5-1.59MPa的饱和蒸汽,对反应釜内混合有氢氧化镁的污泥进行加热;检测反应釜下部污泥的实时温度,当污泥温度达到170-180℃时,停止注入饱和蒸汽并保持0分钟;随后打开泄压阀开始排汽泄压,当反应釜内的压力降至0.05MPa以下时打开排料阀,排出热水解处理得到的泥浆;此时完成对含水率为80-85%的污泥的低压催化热水解处理。
在排出的泥浆冷却后对其进行脱水处理,得到脱除液和含水率为40-45%的脱水泥饼。
实施例8:
将25kg氢氧化镁和20kg氢氧化钾和1吨含水率为83-88%的污泥注入反应釜,关闭反应釜进料口,并启动反应釜内的搅拌装置,匀速搅拌3分钟,使氢氧化镁和氢氧化钾与污泥混合均匀;从反应釜顶部向其内注入0.8-1.1MPa的饱和蒸汽,对反应釜内混合有氢氧化镁和氢氧化钾的污泥进行加热;检测反应釜下部污泥的实时温度,当污泥温度达到120℃时,停止注入饱和蒸汽并保持5-10分钟;随后打开泄压阀开始排汽泄压,当反应釜内的压力降至0.05MPa以下时打开排料阀,排出热水解处理得到的泥浆;此时完成对含水率为83-88%的污泥的低压催化热水解处理。
在排出的泥浆冷却后对其进行脱水处理,得到脱除液和含水率为45-50%的脱水泥饼。
由以上实施例1-8可知,本发明的污泥低压催化热水解处理方法可适用于多种含水率的污泥(脱水污泥),应用范围广泛。加入催化剂可使污泥热水解更完全,臭气浓度下降、泥浆中总氮含量降低,有利于后续处理的开展。加入催化剂后,本发明仅需采用0.5-1.59MPa的饱和蒸汽对污泥进行加热,饱和蒸汽的压力大幅度下降,因此降低了对所采用的反应器及配套设施的压力级别的要求,可采用低压构造和/或常压构造的热水解反应装置作为反应器,有效降低了设备成本,同时也降低了操作人员的资质要求、进而控制了人员成本;另外,降低处理压力可有效节省达到所需高压条件、以及处理完成后卸压的时间。停止注入饱和蒸汽的温度降低至80~180℃,可有效缩短加热时间,使总处理时间大为缩短、整体的热水解处理效率提高,在同等的能耗和时间条件下可处理更多的污泥。通过本发明的方法可使粘稠状污泥转化为流动性很好的泥浆,便于后续结合机械脱水设备、厌氧消化设备等处理设备对泥浆进行进一步处理和综合利用。
本发明的污泥低压催化热水解处理方法可应用于处理有机固体废弃物,优选处理高含水率的有机固体废弃物,更优选处理含水率为75-97%的有机固体废弃物。这一类型的有机固体废弃物包括但不限于餐厨垃圾、动物粪便和/或食品加工厂废渣等。以下将通过具体示例详细说明该处理方法的应用,但应该理解的是,以下具体示例仅用于解释本发明,而不对本发明的范围构成任何限制。
示例1:
将25kg氢氧化钠和1吨含水率为80-85%的餐厨垃圾注入反应釜,关闭反应釜进料口,并启动反应釜内的搅拌装置,匀速搅拌3分钟,使氢氧化钠与餐厨垃圾混合均匀;同时从反应釜内上部和下部注入1.2-1.4MPa的饱和蒸汽,对反应釜内混合有氢氧化钠的餐厨垃圾进行加热;检测反应釜中部餐厨垃圾的实时温度,当餐厨垃圾温度达到130℃时,停止注入饱和蒸汽并保持10-15分钟;随后打开泄压阀开始排汽泄压,当反应釜内的压力降至0.05MPa以下时打开排料阀,排出热水解处理得到的浆状餐厨垃圾。此时完成对含水率为80-85%的餐厨垃圾的低压催化热水解处理。
在排出的浆状物冷却后对其进行脱水处理,得到脱除液和含水率为40-45%的脱水产物。
示例2:
将15kg氧化钙和10kg氢氧化钾和1吨含水率为75-80%的动物粪便注入反应釜,关闭反应釜进料口,并启动反应釜内的搅拌装置,匀速搅拌5分钟,使氧化钙和氢氧化钾与动物粪便混合均匀;从反应釜顶部向其内注入1.3-1.59MPa的饱和蒸汽,对反应釜内的动物粪便进行加热;检测反应釜下部动物粪便的实时温度,当动物粪便温度达到105℃时,停止注入饱和蒸汽并保持10-15分钟;完成后打开泄压阀开始排汽泄压,当反应釜内的压力降至0.05MPa以下时打开排料阀,排出热水解处理得到的浆状动物粪便。此时完成对含水率为75-80%的动物粪便的低压催化热水解处理。
在排出的浆状物冷却后对其进行脱水处理,得到脱除液和含水率为40-45%的脱水产物。
示例3:
将30kg碳酸氢钠和1吨含水率为80-83%的食品加工厂废渣注入反应釜,关闭反应釜进料口,并启动反应釜内的搅拌装置,匀速搅拌3分钟,使碳酸氢钠与食品加工厂废渣混合均匀;从反应釜顶部向其内注入1.4-1.59MPa的饱和蒸汽,对反应釜内混合有碳酸氢钠的食品加工厂废渣进行加热;检测反应釜下部食品加工厂废渣的实时温度,当食品加工厂废渣温度达到90℃时,停止注入饱和蒸汽并保持10-15分钟;随后打开泄压阀开始排汽泄压,当反应釜内的压力降至0.05MPa以下时打开排料阀,排出热水解处理得到的浆状食品加工厂废渣。此时完成对含水率为80-83%的食品加工厂废渣的低压催化热水解处理。
在排出的浆状物冷却后对其进行脱水处理,得到脱除液和含水率为45-50%的脱水产物。
以上所述仅为本发明的优选实施例,并不用以限制本发明,凡在本发明的精神和原则内所作的任何修改、等同替换或改进等,均应包含在本发明的保护范围内。

Claims (3)

1.一种污泥低压催化热水解处理方法,其特征在于,所述方法由以下步骤组成:
S1:将催化剂和含水率为80~85%污泥注入反应釜内,所述催化剂与污泥的质量比为1:10~1:100;在注入饱和蒸汽前启动搅拌装置搅拌污泥;
S2:向反应釜内注入0.5-1.59MPa的饱和蒸汽,加热污泥获得热水解后的泥浆;当污泥的温度达到90~130℃时,停止注入饱和蒸汽并保持10~15分钟,然后排汽泄压并排出所述泥浆。
2.根据权利要求1所述的污泥低压催化热水解处理方法,其特征在于,在所述步骤S2中,向反应釜内注入1.2~1.4Mpa的饱和蒸汽。
3.权利要求1-2中任一权利要求的污泥低压催化热水解处理方法在处理有机固体废弃物中的应用。
CN201210212188.7A 2012-06-26 2012-06-26 污泥低压催化热水解处理方法及其应用 Active CN103121783B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210212188.7A CN103121783B (zh) 2012-06-26 2012-06-26 污泥低压催化热水解处理方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210212188.7A CN103121783B (zh) 2012-06-26 2012-06-26 污泥低压催化热水解处理方法及其应用

Publications (2)

Publication Number Publication Date
CN103121783A CN103121783A (zh) 2013-05-29
CN103121783B true CN103121783B (zh) 2015-07-22

Family

ID=48452976

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210212188.7A Active CN103121783B (zh) 2012-06-26 2012-06-26 污泥低压催化热水解处理方法及其应用

Country Status (1)

Country Link
CN (1) CN103121783B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104276740A (zh) * 2014-09-24 2015-01-14 安徽国祯环保节能科技股份有限公司 一种污泥脉动燃烧干化系统及污泥处理方法
CN106365410B (zh) * 2016-11-03 2019-08-02 广东华大纵横环保科技有限公司 一种污泥处理方法
CN109970303A (zh) * 2019-03-15 2019-07-05 深圳市兴能保环境科技有限公司 一种模块化的污泥热水解处理方法及装置
CN112845495B (zh) * 2020-12-04 2022-07-05 杭州坤灵环境技术有限公司 有机剩余物的水解工艺
CN113415962A (zh) * 2021-07-21 2021-09-21 江苏辉能环境科技有限公司 一种污泥快速水热裂解处理方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101987772A (zh) * 2010-11-23 2011-03-23 北京机电院高技术股份有限公司 一种污泥的热调质改善污泥脱水性能的方法
CN102381820A (zh) * 2011-09-20 2012-03-21 福州开发区三水环保科技有限公司 基于水热改性技术的污泥处理工艺

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5658596A (en) * 1979-10-16 1981-05-21 Ebara Infilco Co Ltd Treatment of sludge
CN102417285B (zh) * 2011-10-20 2013-05-01 同济大学 一种高含固生物污泥连续热水解装置与方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101987772A (zh) * 2010-11-23 2011-03-23 北京机电院高技术股份有限公司 一种污泥的热调质改善污泥脱水性能的方法
CN102381820A (zh) * 2011-09-20 2012-03-21 福州开发区三水环保科技有限公司 基于水热改性技术的污泥处理工艺

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
污水污泥低温催化热解实验研究;李娣 等;《新疆环境保护》;20081215;第30卷(第4期);第24-28页 *
碱热联合处理用于污泥强化脱水;李洋洋 等;《高校化学工程学报》;20100831;第24卷(第4期);第714-718页第2.2~2.3节、第3.1节第1~2段及第3.2~3.3节 *

Also Published As

Publication number Publication date
CN103121783A (zh) 2013-05-29

Similar Documents

Publication Publication Date Title
CN103130388B (zh) 基于热水解的污泥处理及资源化利用方法及其应用
CN103121783B (zh) 污泥低压催化热水解处理方法及其应用
CN103121778A (zh) 基于低压催化热水解的污泥处理及资源化利用方法及其应用
CN109226188B (zh) 一种水热碳化耦合厌氧消化处理餐厨垃圾的方法
CN102234170B (zh) 一种快速降低污泥含水率的处理方法及其装置
CN101628779B (zh) 利用高温蒸汽对污泥干化的方法和设备
CN104944732A (zh) 一种有机固体废弃物的节能资源化处理处置系统及工艺
CN102718377B (zh) 一种城市污泥除砂消毒预处理的装置与方法
CN104520243B (zh) 有机废料、尤其是净化站污泥的处理方法及实施这种方法的设备
CN105948448B (zh) 一种促进脱水污泥中pam水解同时生产短链脂肪酸的方法
CN108249733B (zh) 一种低能耗市政污泥热处理脱水装置及方法
CN103121777B (zh) 基于热水解的污泥处理及综合利用方法及其应用
CN111170603A (zh) 一种污泥高效资源化利用系统及其处理方法
Li et al. Optimization of thermally activated persulfate pretreatment of corn straw and its effect on anaerobic digestion performance and stability
CN103121784A (zh) 基于低压催化热水解的污泥处理及综合利用方法及其应用
CN103121781A (zh) 一种污泥催化热水解处理方法及其应用
CN109867428A (zh) 一种污泥分质处理处置的方法
CN102515466B (zh) 一种可强化剩余污泥高温厌氧发酵的连续热水解预处理工艺
CN114262137B (zh) 一种耦合嵌入式热水解的污泥与餐厨协同消化工艺
CN103849655A (zh) 一种木质纤维素原料的前处理方法
CN106630513A (zh) 一种新型污泥预处理方法
CN103121785A (zh) 一种污泥中压热水解处理方法及其应用
Wang et al. Integrated methane production improvement from sugarcane rind by microwave coupled calcium hydroxide pretreatment
Gurieff et al. Maximizing energy efficiency and biogas production: Exelys™–continuous thermal hydrolysis
CN111609410A (zh) 一种生活垃圾与市政污泥协同处理系统及方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20130529

Assignee: Shenzhen Luyuan Environmental Technology Co. Ltd.

Assignor: Eco-Solution Technology Corporation

Contract record no.: 2015440020349

Denomination of invention: Low-pressure catalytic thermal-hydrolysis sludge treatment method and application thereof

Granted publication date: 20150722

License type: Common License

Record date: 20151110

LICC Enforcement, change and cancellation of record of contracts on the licence for exploitation of a patent or utility model