CN103117969A - Multi-modulus blind equalization method using wavelet frequency domain transform based on fractional lower order statistics - Google Patents

Multi-modulus blind equalization method using wavelet frequency domain transform based on fractional lower order statistics Download PDF

Info

Publication number
CN103117969A
CN103117969A CN2013100361132A CN201310036113A CN103117969A CN 103117969 A CN103117969 A CN 103117969A CN 2013100361132 A CN2013100361132 A CN 2013100361132A CN 201310036113 A CN201310036113 A CN 201310036113A CN 103117969 A CN103117969 A CN 103117969A
Authority
CN
China
Prior art keywords
sigma
real part
imaginary part
modulus
transform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013100361132A
Other languages
Chinese (zh)
Other versions
CN103117969B (en
Inventor
郭业才
郭军
龚溪
冷柯辰
毕丞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Information Science and Technology
Original Assignee
Nanjing University of Information Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Information Science and Technology filed Critical Nanjing University of Information Science and Technology
Priority to CN201310036113.2A priority Critical patent/CN103117969B/en
Publication of CN103117969A publication Critical patent/CN103117969A/en
Application granted granted Critical
Publication of CN103117969B publication Critical patent/CN103117969B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

本发明提出了一种分数低阶统计量模值变换小波频域多模盲均衡方法,所述方法利用分数低阶统计量抑制α稳定分布噪声的同时,利用模值变换将多个幅度模值变换成单一幅度模值,然后将正交小波变换、快速傅里叶变换引入到多模盲均衡方法中。所述方法通过模值变换实现了对M阶正交幅度调制信号MQAM的有效均衡,同时利用FFT和重叠保留法减小了计算量,并在信号进入均衡器之前对其进行正交小波变换,减小了输入信号的自相关性。本发明方法具有较快的收敛速度和较小的稳态误差,在水声通信领域具有一定的应用价值。

Figure 201310036113

The present invention proposes a fractional low-order statistic modulus transform wavelet frequency-domain multi-mode blind equalization method. The method utilizes fractional low-order statistic to suppress α-stable distribution noise, and utilizes modulus transform to transform multiple amplitude moduli It is transformed into a single amplitude modulus, and then the orthogonal wavelet transform and fast Fourier transform are introduced into the multi-mode blind equalization method. The method realizes the effective equalization of the M-order quadrature amplitude modulation signal MQAM through the modulus transformation, and at the same time reduces the calculation amount by using the FFT and the overlap preservation method, and performs the orthogonal wavelet transformation on the signal before it enters the equalizer, The autocorrelation of the input signal is reduced. The method of the invention has faster convergence speed and smaller steady-state error, and has certain application value in the field of underwater acoustic communication.

Figure 201310036113

Description

一种分数低阶统计量模值变换小波频域多模盲均衡方法A multi-mode blind equalization method based on fractional low-order statistic modulus transform wavelet frequency domain

技术领域technical field

本发明属于水声无线通信技术领域,具体指的是一种分数低阶统计量模值变换小波频域多模盲均衡方法。The invention belongs to the technical field of underwater acoustic wireless communication, and specifically refers to a fractional low-order statistic modulus transform wavelet frequency-domain multi-mode blind equalization method.

背景技术Background technique

在水声通信系统中,由多径效应和信道畸变引起的码间干扰(inter-symbolinterference,ISI),降低了信息的发送速率和可靠性。为了克服水声信道中的ISI,需要采用盲自适应均衡技术来消除。盲自适应均衡技术因其不需要发射训练序列而成为水声通信领域研究的热点,时域常数模方法(constant modulusalgorithm,CMA)应用最为广泛,该方法非常适用于对常模信号的均衡。然而,非常模M阶正交幅度调制信号(MQAM)的星座和其统计模值不匹配,导致CMA对MQAM(例如16QAM信号)的均衡效果较差。通过模值变换将非常模MQAM的多个幅度模值变换成单一幅度模值后,对其进行均衡,有效降低了稳态误差。In underwater acoustic communication systems, inter-symbol interference (ISI) caused by multipath effects and channel distortion reduces the transmission rate and reliability of information. In order to overcome the ISI in the underwater acoustic channel, blind adaptive equalization technology is needed to eliminate it. Blind adaptive equalization technology has become a research hotspot in the field of underwater acoustic communication because it does not need to transmit training sequences. The time-domain constant modulus algorithm (CMA) is the most widely used, which is very suitable for the equalization of constant modulus signals. However, the constellation of the M-order quadrature amplitude modulation signal (MQAM) does not match its statistical modulus, resulting in a poor equalization effect of CMA on MQAM (such as 16QAM signal). After the multiple amplitude modulus values of the non-modulus MQAM are transformed into a single amplitude modulus value through the modulus transformation, it is equalized, which effectively reduces the steady-state error.

在传统盲自适应均衡方法(简称盲均衡方法)中,信道噪声都被假设为高斯噪声,但是近些年的大量研究表明,实际信道中的一些噪声经常表现为较强的脉冲性,并不完全服从高斯分布模型,而是一种称为α稳定分布的广义高斯分布模型。在α稳定分布噪声中,信号的二阶统计量是不存在的,基于信号二阶统计量的信号处理方法已经不再适用,因此需要采用分数低阶统计量对信号进行分析与处理。In the traditional blind adaptive equalization method (referred to as the blind equalization method), the channel noise is assumed to be Gaussian noise, but a large number of studies in recent years have shown that some noise in the actual channel often shows strong impulsiveness and is not Fully obey the Gaussian distribution model, but a generalized Gaussian distribution model called α-stable distribution. In α-stable distributed noise, the second-order statistics of the signal do not exist, and the signal processing method based on the second-order statistics of the signal is no longer applicable, so it is necessary to use fractional low-order statistics to analyze and process the signal.

频域常数模方法(frequency domain constant modulus algorithm,FCMA)将传统时域盲均衡方法变换到频域进行盲均衡处理,由于利用了快速傅里叶变换(fast fourier transform,FFT)和重叠保留法(overlap-save law,OSL),减少了时域盲均衡方法的计算量。将正交小波变换引入到盲均衡方法中,利用正交小波对均衡器输入信号良好的去相关性,加快了收敛速度。The frequency domain constant modulus algorithm (FCMA) transforms the traditional blind equalization method in the time domain into the frequency domain for blind equalization processing. (overlap-save law, OSL), which reduces the calculation amount of the time-domain blind equalization method. The orthogonal wavelet transform is introduced into the blind equalization method, and the good decorrelation of the equalizer input signal by the orthogonal wavelet is used to accelerate the convergence speed.

综上所述,现有技术中,对α稳定分布噪声信道条件下多模盲均衡问题还没有形成一个完整、有效的技术方案。To sum up, in the prior art, there is no complete and effective technical solution for the problem of multi-mode blind equalization under the condition of α-stable distributed noise channel.

发明内容Contents of the invention

本发明所要解决的技术问题在于克服现有技术的不足,针对时域常数模方法CMA在α稳定分布噪声中性能退化及其无法有效均衡16阶正交幅度调制多模信号的缺点,提出一种分数低阶统计量模值变换小波频域多模盲均衡方法WT-FLOSMTFMMA;所述方法利用分数低阶统计量对α稳定分布噪声进行抑制,利用模值变换将多个幅度模值变换成单一幅度模值,以降低稳态误差;利用快速傅里叶变换及重叠保留法,以减少传统盲均衡方法的计算量;利用正交小波变换,以降低均衡器输入信号的自相关性。The technical problem to be solved by the present invention is to overcome the deficiencies of the prior art, aiming at the performance degradation of the time-domain constant modulus method CMA in α-stable distributed noise and its inability to effectively balance the 16-order quadrature amplitude modulation multi-mode signal, a method is proposed A fractional low-order statistic modulus transform wavelet frequency-domain multi-mode blind equalization method WT-FLOSMTFMMA; the method uses fractional low-order statistic to suppress α-stable distribution noise, and uses modulus transform to transform multiple amplitude moduli into Single amplitude modulus to reduce steady-state error; use fast Fourier transform and overlap preservation method to reduce the calculation amount of traditional blind equalization method; use orthogonal wavelet transform to reduce the autocorrelation of equalizer input signal.

为了解决上述技术问题,本发明所采用的技术方案是:In order to solve the problems of the technologies described above, the technical solution adopted in the present invention is:

一种分数低阶统计量模值变换小波频域多模盲均衡方法,包括如下步骤:A fractional low-order statistic modulus transform wavelet frequency domain multi-mode blind equalization method, comprising the following steps:

步骤A,将发射信号a(n)经过脉冲响应信道c(n)得到信道输出向量b(n),其中n为时间序列;Step A, pass the transmitted signal a(n) through the impulse response channel c(n) to obtain the channel output vector b(n), where n is a time series;

步骤B,采用α稳定分布噪声w(n)和步骤A所述的信道输出向量b(n)得到正交小波变换前的均衡器输入信号y(n):y(n)=w(n)+b(n);Step B, using α-stable distributed noise w(n) and the channel output vector b(n) described in step A to obtain the equalizer input signal y(n) before orthogonal wavelet transform: y(n)=w(n) +b(n);

步骤C,对步骤B所述的均衡器输入信号y(n)取其实部yr(n)和虚部yi(n),然后对实部yr(n)和虚部yi(n)分别进行正交小波变换,则经过正交小波变换后的信号为Step C, get the real part y r (n) and the imaginary part y i (n) to the equalizer input signal y(n) described in step B, then for the real part y r ( n ) and the imaginary part y i (n ) respectively carry out orthogonal wavelet transform, then the signal after orthogonal wavelet transform is

vr(n)=Qyr(n),vi(n)=Qyi(n)v r (n)=Qy r (n), v i (n)=Qy i (n)

式中,Q为正交小波变换矩阵,vr(n)和vi(n)分别为时域均衡器输入信号y(n)的实部yr(n)和虚部yi(n)经过正交小波变换后的信号分量,频域均衡器输出Z(N)的实部Zr(N)和虚部Zi(N)分别为where Q is the orthogonal wavelet transform matrix, v r (n) and v i (n) are the real part y r (n) and imaginary part y i (n) of the input signal y(n) of the time domain equalizer respectively The signal components after orthogonal wavelet transform, the real part Z r (N) and the imaginary part Z i (N) of the frequency domain equalizer output Z (N) are respectively

Zr(N)=Rr(N)Fr(N),Zi(N)=Ri(N)Fi(N)Z r (N)=R r (N)F r (N), Z i (N)=R i (N)F i (N)

式中,N表示长度为L的数据块的块数,L为均衡器权向量长度,Fr(N)和Fi(N)分别为频域均衡器权向量F(N)的实部和虚部,Rr(N)和Ri(N)分别为vr(n)和vi(n)经过快速傅里叶变换后的频域实部和虚部;In the formula, N represents the number of data blocks with length L, L is the length of equalizer weight vector, F r (N) and F i (N) are the real part and The imaginary part, R r (N) and R i (N) are the frequency domain real part and imaginary part of v r (n) and v i (n) after fast Fourier transform;

步骤D,对步骤C频域均衡器输出信号Z(N)的实部Zr(N)和虚部Zi(N)分别作傅里叶反变换得到时域均衡器输出信号z(n)的实部zr(n)和虚部zi(n)。Step D, perform inverse Fourier transform on the real part Z r (N) and the imaginary part Z i (N) of the frequency domain equalizer output signal Z(N) in step C respectively to obtain the time domain equalizer output signal z(n) The real part z r (n) and the imaginary part z i (n) of .

所述步骤C中,频域均衡器权向量F(N)的计算步骤如下:In the step C, the calculation steps of the frequency domain equalizer weight vector F(N) are as follows:

步骤C-1,计算模值变换时域误差函数et(n)的实部ert(n)与虚部eit(n),计算公式如下:Step C-1, calculate the real part e rt (n) and the imaginary part e it (n) of the time domain error function e t (n) of the modulus transformation, the calculation formula is as follows:

ee rtrt (( nno )) == RR rtrt (( pp )) -- || zz rtrt (( nno )) || pp ,, ee itit (( nno )) == RR itit (( pp )) -- || zz itit (( nno )) || pp

RR rtrt (( pp )) == EE. {{ || aa rtrt (( nno )) || 22 pp }} EE. {{ || aa rtrt (( nno )) || pp }} ,, RR itit (( pp )) == EE. {{ || aa itit (( nno )) || 22 pp }} EE. {{ || aa itit (( nno )) || pp }}

式中,|·|为取模运算,p为大于零小于1的正数,E{·}表示求数学期望,art(n)与ait(n)分别为发射信号a(n)的实部ar(n)与虚部ai(n)分别经过模值变换后的信号分量,

Figure BDA00002794256800035
Figure BDA00002794256800036
分别为art(n)与ait(n)的p阶统计模值,zrt(n)与zit(n)分别为时域均衡器输出信号z(n)的实部zr(n)与虚部zi(n)经过模值变换后的实部与虚部;步骤C-2,对模值变换时域误差函数et(n)的实部ert(n)与虚部eit(n)作傅里叶变换后,得到模值变换频域误差函数Et(N)的实部Ert(N)与虚部Eit(N);In the formula, |·| is a modulo operation, p is a positive number greater than zero and less than 1, E{ } represents the mathematical expectation, a rt (n) and a it (n) are the transmitted signal a(n) The signal components of the real part a r (n) and the imaginary part a i (n) after the modulus transformation respectively,
Figure BDA00002794256800035
and
Figure BDA00002794256800036
are the p-order statistical moduli of a rt (n) and a it (n) respectively, and z rt (n) and z it (n) are the real part z r (n) of the time-domain equalizer output signal z(n) respectively ) and imaginary part z i (n) after modulus transformation; step C-2, the real part e rt (n) and imaginary part of modulus transformed time domain error function e t (n) After e it (n) is Fourier transformed, the real part E rt ( N) and the imaginary part E rt (N) of the frequency domain error function E t (N) of the modular value transformation are obtained;

步骤C-3,计算频域均衡器权向量F(N),其迭代过程的公式为:Step C-3, calculating the frequency domain equalizer weight vector F(N), the formula of the iterative process is:

Ff rr (( NN ++ 11 )) == Ff rr (( NN )) ++ μμ RR ^^ -- 11 (( NN )) || EE. rtrt (( NN )) ||

·&Center Dot; signsign (( EE. rtrt (( NN )) )) || ZZ rtrt (( NN )) || pp -- 11 signsign (( ZZ rtrt (( NN )) )) RR rr ** (( NN ))

Ff ii (( NN ++ 11 )) == Ff ii (( NN )) ++ μμ RR ^^ -- 11 (( NN )) || EE. itit (( NN )) ||

·&Center Dot; signsign (( EE. itit (( NN )) )) || ZZ itit (( NN )) || pp -- 11 signsign (( ZZ itit (( NN )) )) RR ii ** (( NN ))

式中,μ为迭代步长,sign(·)表示取符号运算,Zrt(N)和Zit(N)分别为经过模值变换后的频域均衡器输出信号Zt(N)的实部和虚部;

Figure BDA000027942568000311
Figure BDA000027942568000312
表示频域均衡器输入信号R(N)的实部Rr(N)与虚部Ri(N)的共轭;
Figure BDA000027942568000313
Figure BDA000027942568000314
的快速傅里叶变换,且
Figure BDA000027942568000315
的获取公式为:In the formula, μ is the iterative step size, sign( ) represents the sign operation, Z rt (N) and Z it (N) are the real values of the output signal Z t (N) of the frequency domain equalizer after modulus transformation respectively part and imaginary part;
Figure BDA000027942568000311
and
Figure BDA000027942568000312
Represents the conjugate of the real part R r (N) and the imaginary part R i (N) of the frequency domain equalizer input signal R (N);
Figure BDA000027942568000313
for
Figure BDA000027942568000314
The fast Fourier transform of , and
Figure BDA000027942568000315
The acquisition formula is:

RR ^^ -- 11 (( nno )) == diagdiag [[ σσ jj ,, 00 22 (( nno )) ,, σσ jj ,, 11 22 (( nno )) ,, ·· ·&Center Dot; ·· ,, σσ jj ,, kk 22 (( nno )) ,, σσ JJ ++ 1,01,0 22 (( nno )) ,, ·· ·&Center Dot; ·&Center Dot; ,, σσ JJ ++ 11 ,, kk JJ -- 11 22 (( nno )) ]]

其中,diag[·]表示对角阵,

Figure BDA000027942568000317
Figure BDA000027942568000318
分别表示对uj,k(n)与
Figure BDA000027942568000319
的平均功率估计,可由下式递推得到:Among them, diag[ ] represents a diagonal matrix,
Figure BDA000027942568000317
and
Figure BDA000027942568000318
Respectively for u j, k (n) and
Figure BDA000027942568000319
The average power estimate of can be recursively obtained by the following formula:

σσ jj ,, mm 22 (( nno ++ 11 )) == ββ σσ σσ jj ,, mm 22 (( nno )) ++ (( 11 -- ββ σσ )) || uu jj ,, mm (( nno )) || 22

σσ JJ ++ 11 ,, mm 22 (( nno ++ 11 )) == ββ σσ σσ JJ ++ 11 ,, mm 22 (( nno )) ++ (( 11 -- ββ σσ )) || sthe s JJ ,, mm (( nno )) || 22

式中,uj,m(n)是尺度参数为j、平移参数为m的小波变换系数,sJ,m(n)为尺度参数为J、平移参数为m的尺度变换系数,J为小波分解的最大尺度,k为尺度参数j下对应小波函数的平移参数,kJ表示最大尺度为J下小波函数的最大平移,βσ是平滑因子,且0<βσ<1。In the formula, u j, m (n) is the wavelet transformation coefficient with scale parameter j and translation parameter m, s J, m (n) is the scale transformation coefficient with scale parameter J and translation parameter m, and J is the wavelet The maximum scale of decomposition, k is the translation parameter of the corresponding wavelet function under the scale parameter j, k J represents the maximum translation of the wavelet function under the maximum scale J, β σ is the smoothing factor, and 0<β σ <1.

本发明的有益效果是:本发明提出了一种分数低阶统计量模值变换小波频域多模盲均衡方法,所述方法利用分数低阶统计量抑制α稳定分布噪声的同时,利用模值变换将多个幅度模值变换成单一幅度模值,然后将正交小波变换、快速傅里叶变换引入到多模盲均衡方法中。所述方法通过模值变换实现了对M阶正交幅度调制信号MQAM的有效均衡,同时利用FFT和重叠保留法减小了计算量,并在信号进入均衡器之前对其进行正交小波变换,减小了输入信号的自相关性。本发明方法具有较快的收敛速度和较小的稳态误差,在水声通信领域具有一定的应用价值。The beneficial effects of the present invention are: the present invention proposes a fractional low-order statistic modulus transformation wavelet frequency domain multi-mode blind equalization method, the method utilizes the fractional low-order statistic to suppress α-stable distribution noise, The transformation transforms multiple amplitude moduli into a single amplitude modulus, and then introduces the orthogonal wavelet transform and fast Fourier transform into the multi-mode blind equalization method. The method realizes the effective equalization of the M-order quadrature amplitude modulation signal MQAM through the modulus transformation, and at the same time reduces the calculation amount by using the FFT and the overlap preservation method, and performs the orthogonal wavelet transformation on the signal before it enters the equalizer, The autocorrelation of the input signal is reduced. The method of the invention has faster convergence speed and smaller steady-state error, and has certain application value in the field of underwater acoustic communication.

附图说明Description of drawings

图1:是本发明方法WT-FLOSMTFMMA原理图。Fig. 1: It is the principle diagram of WT-FLOSMTFMMA of the method of the present invention.

图2:是16QAM信号星座图。Figure 2: It is a 16QAM signal constellation diagram.

图3:是MTMMA原理图。Figure 3: is the schematic diagram of MTMMA.

图4:是FCMA原理图。Figure 4: is the schematic diagram of FCMA.

图5:是MTFMMA原理图。Figure 5: is the schematic diagram of MTFMMA.

图6:是FLOSMTFMMA原理图。Figure 6: is the schematic diagram of FLOSMTFMMA.

图7:实施实例结果图,图7(a)3种方法的均方误差曲线,7(b)FLOSFCMA输出星座图,7(c)FLOSMTFMMA输出星座图,7(d)WT-FLOSMTFMMA输出星座图。Figure 7: Implementation example result diagram, Figure 7(a) mean square error curves of the three methods, 7(b) FLOSFCMA output constellation diagram, 7(c) FLOSMTFMMA output constellation diagram, 7(d) WT-FLOSMTFMMA output constellation diagram .

图8:是不同频域误差函数指数情况下的实施实例结果图,8(a)3种方法的均方误差曲线,8(b)FLOSFCMA输出星座图,8(c)FLOSMTFMMA输出星座图,8(d)WT-FLOSMTFMMA输出星座图。Figure 8: is the result diagram of the implementation example under different frequency domain error function exponents, 8(a) mean square error curves of the three methods, 8(b) FLOSFCMA output constellation diagram, 8(c) FLOSMTFMMA output constellation diagram, 8 (d) WT-FLOSMTFMMA output constellation diagram.

具体实施方式Detailed ways

下面结合附图,对本发明提出的一种分数低阶统计量模值变换小波频域多模盲均衡方法进行详细说明:Below in conjunction with the accompanying drawings, a kind of fractional low-order statistic modulus transformation wavelet frequency domain multi-mode blind equalization method proposed by the present invention is described in detail:

A.模值变换方法A. Modulo value transformation method

M阶正交幅度调制信号(MQAM)a(n)的幅度模值|a(n)|不是常数,也不等于其二阶统计模值R2=E{|a(n)|}4/E{|a(n)|}2的平方根;a(n)的实部ar(n)模值|ar(n)|也不等于ar(n)的二阶统计模值

Figure BDA00002794256800051
的平方根,a(n)的虚部ai(n)模值|ai(n)|也不等于ai(n)的二阶统计模值
Figure BDA00002794256800052
的平方根;|·|为取模运算,E{·}表示求数学期望。现以16QAM信号为例说明,能通过模值变换方法使16QAM信号a(n)的幅度模值与其统计模值相等。The amplitude modulus |a(n)| of the M-order quadrature amplitude modulation signal (MQAM) a(n) is not a constant, nor equal to its second-order statistical modulus R 2 =E{|a(n)|} 4 / E{|a(n)|} is the square root of 2 ; the real part of a(n) a r (n) modulus |a r (n)| is not equal to the second-order statistical modulus of a r (n)
Figure BDA00002794256800051
The square root of the imaginary part of a(n) a i (n) modulus |a i (n)| is not equal to the second-order statistical modulus of a i (n)
Figure BDA00002794256800052
The square root of ; |·| is a modulo operation, and E{·} represents mathematical expectation. Taking the 16QAM signal as an example to illustrate, the amplitude modulus of the 16QAM signal a(n) can be made equal to its statistical modulus through the modulus transformation method.

图2给出了16QAM信号星座图,由图2可见,16QAM信号是非常模复信号a(n),因此将该信号的实部与虚部分开进行考虑。在16QAM星座图中,a(n)信号的实部ar(n)与虚部ai(n)对应的幅度模值分别为|ar(n)|=1或3,|ai(n)|=1或3;a(n)的实部ar(n)与虚部ai(n)的统计模值分别为

Figure BDA00002794256800053
Figure BDA00002794256800054
(
Figure BDA00002794256800055
表示开方运算),此时
Figure BDA00002794256800056
Figure BDA00002794256800057
因此,CMA方法不能对16QAM信号进行有效均衡。将发射信号模值变换方程定义为Figure 2 shows the constellation diagram of the 16QAM signal. It can be seen from Figure 2 that the 16QAM signal is a very modulo-complex signal a(n), so the real part and the imaginary part of the signal are considered separately. In the 16QAM constellation diagram, the amplitude modulus values corresponding to the real part a r (n) and the imaginary part a i (n) of the a(n) signal are respectively |a r (n)|=1 or 3, |a i ( n)|=1 or 3; the statistical modulus of the real part a r (n) and the imaginary part a i (n) of a(n) are respectively
Figure BDA00002794256800053
Figure BDA00002794256800054
(
Figure BDA00002794256800055
represents the square root operation), at this time
Figure BDA00002794256800056
Figure BDA00002794256800057
Therefore, the CMA method cannot effectively equalize the 16QAM signal. The transmit signal modulus transformation equation is defined as

|art(n)|=||ar(n)|-2|,|ait(n)|=||ai(n)|2|                        (1)|a rt (n)|=||a r (n)|-2|,|a it (n)|=||a i (n)|2| (1)

式中,|art(n)|和|ait(n)|分别为模值变换后发射信号at(n)的实部art(n)与虚部ait(n)的模值,将|ar(n)|和|ai(n)|代入式(1)得|art(n)|=1,ait(n)|=1,则模值变换后发射信号at(n)的实部与虚部的统计模值分别为

Figure BDA00002794256800058
Figure BDA00002794256800059
此时,模值变换后发射信号的模值与其统计模值相等,即 | a it ( n ) | = R it 2 = 1 . In the formula, |a rt (n)| and |a it (n)| are the modulus values of real part a rt ( n) and imaginary part a it (n) of transmitted signal at (n) after modulus transformation respectively , Substituting |a r (n)| and |a i (n)| into formula (1) to get |a rt (n)|=1, a it (n)|=1, then the signal a is transmitted after modulus transformation The statistical modulus values of the real part and imaginary part of t (n) are respectively
Figure BDA00002794256800058
Figure BDA00002794256800059
At this time, the modulus of the transmitted signal after modulus transformation is equal to its statistical modulus, that is | a it ( no ) | = R it 2 = 1 .

B.模值变换时域多模盲均衡方法B. Multi-mode Blind Equalization Method in Modulus Transformation Time Domain

通过模值变换将多模16QAM信号变为单一模值后,就可由CMA方法对其有效均衡。这种通过模值变换将多模信号变单模信号的盲均衡方法称为模值变换时域多模盲均衡方法(MTMMA),如图3所示。该方法的代价函数定义为After the multi-mode 16QAM signal is changed into a single mode value through the mode value conversion, it can be effectively equalized by the CMA method. This blind equalization method, which converts multi-mode signals into single-mode signals through modulus transformation, is called modulo-value transform time-domain multi-mode blind equalization method (MTMMA), as shown in FIG. 3 . The cost function of this method is defined as

JJ MTMMAMTMMA == EE. {{ [[ RR rtrt 22 -- || zz rtrt (( nno )) || 22 ]] 22 ++ [[ RR itit 22 -- || zz itit (( nno )) || 22 ]] 22 }} -- -- -- (( 22 ))

式中,JMTMMA为MTMMA的代价函数;|zrt(n)|=||zr(n)|-2|,|zit(n)|=||zi(n)|-2|分别为模值变换均衡器输出信号zt(n)的实部zrt(n)与虚部zit(n)的模值;zr(n)和zi(n)分别为时域均衡器输出信号z(n)的实部和虚部。In the formula, J MTMMA is the cost function of MTMMA; |z rt (n)|=||z r (n)|-2|, |z it (n)|=||z i (n)|-2| are respectively the modulus values of the real part z rt (n) and the imaginary part z it (n) of the output signal z t (n) of the modulus transform equalizer; z r (n) and z i (n) are the time domain equalization The real and imaginary parts of the output signal z(n) of the device.

MTMMA的权向量迭代公式为The weight vector iteration formula of MTMMA is

f r ( n + 1 ) = f r ( n ) + &mu; | z rt ( n ) | [ 1 - | z rt ( n ) | 2 ] sign [ z r ( n ) ] y r * ( n ) (3) f r ( no + 1 ) = f r ( no ) + &mu; | z rt ( no ) | [ 1 - | z rt ( no ) | 2 ] sign [ z r ( no ) ] the y r * ( no ) (3)

ff ii (( nno ++ 11 )) == ff ii (( nno )) ++ &mu;&mu; || zz itit (( nno )) || [[ 11 -- || zz itit (( nno )) || 22 ]] signsign [[ zz ii (( nno )) ]] ythe y ii ** (( nno ))

式中,μ为迭代步长,sign(·)表示取符号运算,

Figure BDA00002794256800064
Figure BDA00002794256800065
分别为时域均衡器输入信号y(n)的实部yr(n)与虚部yi(n)的共轭,fr(n)与fr(n)分别为时域均衡器权向量f(n)的实部与虚部。In the formula, μ is the iterative step size, and sign(·) represents the sign operation,
Figure BDA00002794256800064
and
Figure BDA00002794256800065
are the conjugates of the real part y r (n) and the imaginary part y i (n) of the input signal y(n) of the time domain equalizer respectively, f r (n) and f r (n) are the weights of the time domain equalizer The real and imaginary parts of the vector f(n).

C.频域常模盲均衡方法C. Frequency Domain Norm Blind Equalization Method

频域常模盲均衡方法(FCMA)原理,如图4所示。按图4对经过快速傅里叶变换FFT之前的信号进行分块,每块信号的长度等于均衡器权向量长度L,权向量每L样点进行一次更新,每次更新由L个误差信号样点累加结果控制,这就保证了与时域盲均衡方法CMA有相同的收敛速度,同时通过快速傅里叶变换(FFT)和重叠保留法(OSL),利用循环卷积代替时域信号的线性卷积,使计算量大大减少。The principle of the frequency domain constant mode blind equalization method (FCMA) is shown in FIG. 4 . According to Figure 4, the signal before the fast Fourier transform FFT is divided into blocks. The length of each block signal is equal to the equalizer weight vector length L, and the weight vector is updated once every L samples, and each update is composed of L error signal samples Point accumulation result control, which ensures the same convergence speed as the time-domain blind equalization method CMA, and at the same time, through the fast Fourier transform (FFT) and the overlap-save method (OSL), the circular convolution is used to replace the linearity of the time-domain signal Convolution greatly reduces the amount of computation.

FCMA的误差函数定义为The error function of FCMA is defined as

EE. (( NN )) == RR Ff 22 -- || ZZ (( NN )) || 22 -- -- -- (( 44 ))

式中,N表示长度为L的数据块的块数,

Figure BDA00002794256800067
为发射信号a(n)的二阶频域统计模值。In the formula, N represents the number of data blocks whose length is L,
Figure BDA00002794256800067
is the second-order frequency-domain statistical modulus of the transmitted signal a(n).

由CMA的权向量更新公式,得FCMA的权向量更新公式为From the weight vector update formula of CMA, the weight vector update formula of FCMA is obtained as

F(N+1)=F(N)+μE(N)Z(N)Y*(N)                               (5)F(N+1)=F(N)+μE(N)Z(N)Y * (N) (5)

式中,Z(N)为频域均衡器输出信号,为z(n)的快速傅里叶变换;F(N)为频域均衡器权向量,为f(n)的快速傅里叶变换;Y*(N)为频域均衡器输入信号Y(N)的共轭,Y(N)为y(n)的快速傅里叶变换。In the formula, Z(N) is the output signal of the frequency domain equalizer, which is the fast Fourier transform of z(n); F(N) is the weight vector of the frequency domain equalizer, which is the fast Fourier transform of f(n) ; Y * (N) is the conjugate of the input signal Y(N) of the frequency domain equalizer, and Y(N) is the fast Fourier transform of y(n).

D.模值变换频域多模盲均衡方法D. Modulo value transform frequency domain multi-mode blind equalization method

将模值变换引入到频域常模盲均衡方法中,得到模值变换频域多模盲均衡方法(MTFMMA),如图5所示。该方法的代价函数为The modulus transformation is introduced into the frequency-domain normal-mode blind equalization method, and the modulus-value transformation frequency-domain multi-mode blind equalization method (MTFMMA) is obtained, as shown in Fig. 5 . The cost function of this method is

JJ MTFMMAMTFMMA == EE. {{ [[ RR rtFrtF 22 -- || zz rtrt (( NN )) || 22 ]] 22 }} ++ EE. {{ [[ RR itFitF 22 -- || zz itit (( NN )) || 22 ]] 22 }} -- -- -- (( 66 ))

式中,JMTFMMA为MTFMMA的代价函数,Zrt(N)和Zit(N)分别为经过模值变换后频域均衡器输出信号Zt(N)的实部与虚部,

Figure BDA00002794256800073
分别为发射信号a(n)的实部ar(n)与虚部ai(n)模值变换后的二阶统计模值的傅里叶变换。MTFMMA的权向量更新公式为In the formula, J MTFMMA is the cost function of MTFMMA, Z rt (N) and Z it (N) are the real part and imaginary part of the frequency domain equalizer output signal Z t (N) after the modulus transformation, respectively, and
Figure BDA00002794256800073
are respectively the Fourier transform of the second-order statistical modulus after modulus transformation of the real part a r (n) and the imaginary part a i (n) of the transmitted signal a(n). The weight vector update formula of MTFMMA is

F r ( N + 1 ) = F r ( N ) + &mu; ( | R rtF 2 - Z rt ( N ) | 2 ) | Z rt ( N ) | sign [ Z r ( N ) ] Y r * ( N ) (7) f r ( N + 1 ) = f r ( N ) + &mu; ( | R rtF 2 - Z rt ( N ) | 2 ) | Z rt ( N ) | sign [ Z r ( N ) ] Y r * ( N ) (7)

Ff ii (( NN ++ 11 )) == Ff ii (( NN )) ++ &mu;&mu; (( || || RR itFitF 22 -- ZZ itit (( NN )) || 22 )) || ZZ itit (( NN )) || signsign [[ ZZ ii (( NN )) ]] YY ii ** (( NN ))

式中,

Figure BDA00002794256800076
Figure BDA00002794256800077
分别为频域均衡器输入信号Y(N)的实部与虚部的共轭,分别为
Figure BDA00002794256800078
Figure BDA00002794256800079
的快速傅里叶变换;Zr(N)和Zi(N)分别表示频域均衡器输出Z(N)的实部和虚部,分别为zr(n)和zi(n)的快速傅里叶变换;Fr(N)和Fi(N)分别为频域均衡器权向量F(N)的实部和虚部,分别为fr(n)和fi(n)的快速傅里叶变换。In the formula,
Figure BDA00002794256800076
and
Figure BDA00002794256800077
are the conjugates of the real part and the imaginary part of the frequency domain equalizer input signal Y(N), respectively, and are
Figure BDA00002794256800078
and
Figure BDA00002794256800079
Fast Fourier transform of ; Z r (N) and Zi (N) represent the real part and imaginary part of the frequency domain equalizer output Z(N), respectively, and are z r (n) and z i (n) Fast Fourier transform; F r (N) and F i (N) are the real and imaginary parts of the frequency-domain equalizer weight vector F(N), respectively, and are the f r (n) and f i (n) Fast Fourier transform.

E.分数低阶统计量模值变换频域多模盲均衡方法E. Fractional low-order statistic modulus transformation frequency-domain multi-mode blind equalization method

在α稳定分布噪声中,利用误差函数的分数低阶统计量,将得到分数低阶统计量模值变换频域多模盲均衡方法(FLOSMTFMMA)。该方法原理,如图6所示。该方法的代价函数为In α-stable distributed noise, using the fractional low-order statistics of the error function, the fractional low-order statistics modulus transform frequency-domain blind multi-mode equalization method (FLOSMTFMMA) will be obtained. The principle of this method is shown in Figure 6. The cost function of this method is

JFLOSMTFMMA=E{|Ert(N)|2+|Eit(N)|2}                              (8)J FLOSMTFMMA =E{|E rt (N)| 2 +|E it (N)| 2 } (8)

EE. rtrt (( NN )) == RR rtFrtF (( pp )) -- || ZZ rtrt (( NN )) || pp ,, EE. itit (( NN )) == RR itFitF (( pp )) -- || ZZ itit (( NN )) || pp -- -- -- (( 99 ))

式中,JFLOSMTFMMA为FLOSMTFMMA的代价函数;p是大于零小于1的正数,Ert(N)与Eit(N)分别为模值变换时域误差函数et(n)的实部ert(n)与虚部eit(n)的傅里叶变换;分别为发射信号a(n)的实部p阶统计模值

Figure BDA00002794256800083
和虚部p阶统计模值
Figure BDA00002794256800084
的快速傅里叶变换,下同。由最速下降法,得分数低阶统计量模值变换频域多模盲均衡方法(FLOSMTFMMA)的权向量更新公式为In the formula, J FLOSMTFMMA is the cost function of FLOSMTFMMA; p is a positive number greater than zero and less than 1, E rt (N) and E it (N) are the real part e of the time-domain error function e t (n) of the analog transformation Fourier transform of rt (n) and imaginary part e it (n); and are the p-order statistical modulus of the real part of the transmitted signal a(n), respectively
Figure BDA00002794256800083
and p-order statistical modulus of the imaginary part
Figure BDA00002794256800084
The fast Fourier transform of , the same below. According to the steepest descent method, the weight vector update formula of the score low-order statistic modulus transformation frequency-domain multi-mode blind equalization method (FLOSMTFMMA) is

Ff rr (( NN ++ 11 )) == Ff rr (( NN )) ++ &mu;&mu; || EE. rtrt (( NN )) ||

&CenterDot; sign ( E rt ( N ) ) | Z rt ( N ) | p - 1 sign ( Z rt ( N ) ) Y r * ( N ) (10) &Center Dot; sign ( E. rt ( N ) ) | Z rt ( N ) | p - 1 sign ( Z rt ( N ) ) Y r * ( N ) (10)

Ff ii (( NN ++ 11 )) == Ff ii (( NN )) ++ &mu;&mu; || EE. itit (( NN )) ||

&CenterDot;&Center Dot; signsign (( EE. itit (( NN )) )) || ZZ itit (( NN )) || pp -- 11 signsign (( ZZ itit (( NN )) )) YY ii ** (( NN ))

分数低阶统计量模值变换频域多模盲均衡方法,通过将分数低阶统计量与MTFMMA相结合,使FLOSMTFMMA在α稳定分布噪声条件下也能发挥较好的性能。Fractional low-order statistics modulus transform frequency domain multi-mode blind equalization method, by combining fractional low-order statistics with MTFMMA, FLOSMTFMMA can also play a better performance under the condition of α-stable distributed noise.

F.本发明一种分数低阶统计量模值变换小波频域多模盲均衡方法F. A fractional low-order statistic modulus transform wavelet frequency domain multi-mode blind equalization method of the present invention

在信号进入FLOSMTFMMA均衡器之前,对其进行正交小波变换后,发明了一种分数低阶统计量模值变换小波频域多模盲均衡方法WT-FLOSMTFMMA。其原理,如图1所示。图1中,a(n)为发射信号,c(n)为信道的脉冲响应向量,且c(n)=[c(n),…,c(n-M+1)]T(上标T表示转置,M表示信道长度),b(n)为经过信道输出的信号向量,w(n)是α稳定分布噪声,y(n)是经过信道并混有噪声后的信号向量,vr(n)与vi(n)分别是y(n)的实部yr(n)与虚部yi(n)经过正交小波变换后对应的信号向量,Rr(N)与Ri(N)分别是vr(n)与vi(n)经过快速傅里叶变换后的信号向量,Zr(N)和Zi(N)为频域均衡器输出信号,zr(n)和zi(n)分别为Zr(N)与Zi(N)经过快速傅里叶反变换后的信号,zrt(n)和zit(n)为经过模值变换后的信号向量zt(n)的实部与虚部,ert(n)与eit(n)为经过模值变换后的时域误差函数的实部和虚部,Ert(N)与Eit(N)分别为ert(n)与eit(n)经过傅里叶变换后的误差函数E(N)的实部与虚部,z(n)为最后经过合并输出的时域均衡器输出信号。由图1可知Before the signal enters the FLOSMTFMMA equalizer, after the orthogonal wavelet transform, a fractional low-order statistic modulus transform wavelet frequency-domain multi-mode blind equalization method WT-FLOSMTFMMA is invented. Its principle, as shown in Figure 1. In Figure 1, a(n) is the transmitted signal, c(n) is the impulse response vector of the channel, and c(n)=[c(n),…,c(n-M+1)] T (superscript T represents the transpose, M represents the length of the channel), b(n) is the signal vector output through the channel, w(n) is the α stable distribution noise, y(n) is the signal vector after passing through the channel and mixed with noise, v r (n) and v i (n) are the signal vectors corresponding to the real part y r (n) and imaginary part y i (n) of y(n) after orthogonal wavelet transformation, R r (N) and R i (N) are the signal vectors of v r (n) and v i (n) after fast Fourier transform respectively, Z r (N) and Z i (N) are the output signals of the frequency domain equalizer, z r ( n) and z i (n) are the inverse fast Fourier transformed signals of Z r (N) and Zi (N) respectively, and z rt (n) and z it (n) are the signals after modulus transformation The real and imaginary parts of the signal vector z t (n), e rt (n) and e it (n) are the real and imaginary parts of the time-domain error function after modulus transformation, E rt (N) and E it (N) is the real part and imaginary part of the error function E(N) after e rt (n) and e it (n) are Fourier transformed, and z(n) is the time domain equalization of the final combined output output signal. It can be seen from Figure 1

y(n)=cT(n)a(n)+w(n)                                   (11)y(n)=c T (n)a(n)+w(n) (11)

vr(n)=Qyr(n),vi(n)=Qyi(n)                             (12)v r (n)=Qy r (n), v i (n)=Qy i (n) (12)

ee rtrt (( nno )) == RR rtrt (( pp )) -- || zz rtrt (( nno )) || pp ,, ee itit (( nno )) == RR itit (( pp )) -- || zz itit (( nno )) || pp -- -- -- (( 1313 ))

式中,Q为正交小波变换矩阵,小波频域均衡器输出为In the formula, Q is the orthogonal wavelet transform matrix, and the output of the wavelet frequency domain equalizer is

Zr(N)=Rr(N)Fr(N),Zi(N)=Ri(N)Fi(N)                    (14)Z r (N)=R r (N)F r (N), Z i (N)=R i (N)F i (N) (14)

此时,WT-FLOSMTFMMA的权向量迭代公式为At this time, the weight vector iteration formula of WT-FLOSMTFMMA is

Ff rr (( NN ++ 11 )) == Ff rr (( NN )) ++ &mu;&mu; RR ^^ -- 11 (( NN )) || EE. rtrt (( NN )) ||

&CenterDot; sign ( E rt ( N ) ) | Z rt ( N ) | p - 1 sign ( Z rt ( N ) ) R r * ( N ) (15) &Center Dot; sign ( E. rt ( N ) ) | Z rt ( N ) | p - 1 sign ( Z rt ( N ) ) R r * ( N ) (15)

Ff ii (( NN ++ 11 )) == Ff ii (( NN )) ++ &mu;&mu; RR ^^ -- 11 (( NN )) || EE. itit (( NN )) ||

&CenterDot;&CenterDot; signsign (( EE. itit (( NN )) )) || ZZ itit (( NN )) || pp -- 11 signsign (( ZZ itit (( NN )) )) RR ii ** (( NN ))

式中,

Figure BDA00002794256800097
Figure BDA00002794256800098
表示频域均衡器输入信号R(N)的实部Rr(N)与虚部Ri(N)的共轭,
Figure BDA00002794256800099
Figure BDA000027942568000910
的快速傅里叶变换,且
Figure BDA000027942568000911
的获取公式为In the formula,
Figure BDA00002794256800097
and
Figure BDA00002794256800098
Represents the conjugate of the real part R r (N) and the imaginary part R i (N) of the frequency domain equalizer input signal R(N),
Figure BDA00002794256800099
for
Figure BDA000027942568000910
The fast Fourier transform of , and
Figure BDA000027942568000911
The acquisition formula is

RR ^^ -- 11 (( nno )) == diagdiag [[ &sigma;&sigma; jj ,, 00 22 (( nno )) ,, &sigma;&sigma; jj ,, 11 22 (( nno )) ,, &CenterDot;&CenterDot; &CenterDot;&Center Dot; &CenterDot;&Center Dot; ,, &sigma;&sigma; jj ,, kk 22 (( nno )) ,, &sigma;&sigma; jj ,, kk 22 (( nno )) ,, &sigma;&sigma; JJ ++ 1,01,0 22 (( nno )) ,, &CenterDot;&Center Dot; &CenterDot;&Center Dot; &CenterDot;&Center Dot; ,, &sigma;&sigma; JJ ++ 11 ,, kk JJ -- 11 22 (( nno )) ]]

其中,diag[·]表示对角阵,

Figure BDA000027942568000914
分别表示对uj,k(n)与
Figure BDA000027942568000915
的平均功率估计,可由下式递推得到Among them, diag[ ] represents a diagonal matrix, and
Figure BDA000027942568000914
Respectively for u j, k (n) and
Figure BDA000027942568000915
The average power estimate of can be recursively obtained by the following formula

&sigma; j , m 2 ( n + 1 ) = &beta; &sigma; &sigma; j , m 2 ( n ) + ( 1 - &beta; &sigma; ) | u j , m ( n ) | 2 (16) &sigma; j , m 2 ( no + 1 ) = &beta; &sigma; &sigma; j , m 2 ( no ) + ( 1 - &beta; &sigma; ) | u j , m ( no ) | 2 (16)

&sigma;&sigma; JJ ++ 11 ,, mm 22 (( nno ++ 11 )) == &beta;&beta; &sigma;&sigma; &sigma;&sigma; JJ ++ 11 ,, mm 22 (( nno )) ++ (( 11 -- &beta;&beta; &sigma;&sigma; )) || sthe s JJ ,, mm (( nno )) || 22

式中,uj,m(n)是尺度参数为j,平移参数为m的小波变换系数,sJ,m(n)为尺度参数为J,平移参数为m的尺度变换系数,j为尺度参数,m∈Z为平移参数,J为小波分解的最大尺度,k为尺度参数j下对应小波函数的平移参数,kJ为尺度J下小波函数的最大平移,βσ是平滑因子,且0<βσ<1。In the formula, u j, m (n) is the wavelet transform coefficient with scale parameter j and translation parameter m, s J, m (n) is the scale transformation coefficient with scale parameter J and translation parameter m, and j is the scale Parameters, m∈Z is the translation parameter, J is the maximum scale of wavelet decomposition, k is the translation parameter of the corresponding wavelet function under the scale parameter j, k J is the maximum translation of the wavelet function under the scale J, β σ is the smoothing factor, and 0 <β σ <1.

经过正交小波变换后,信号的自相关矩阵更接近对角矩阵,此时信号能量主要集中在对角线附近,即信号的相关性变小了。因此,本发明方法WT-FLOSMTFMMA具有收敛速度快、均方误差小的特点,性能得到了提高。After the orthogonal wavelet transform, the autocorrelation matrix of the signal is closer to the diagonal matrix. At this time, the energy of the signal is mainly concentrated near the diagonal, that is, the correlation of the signal becomes smaller. Therefore, the WT-FLOSMTFMMA method of the present invention has the characteristics of fast convergence speed and small mean square error, and its performance is improved.

实施实例Implementation example

为了验证本发明方法WT-FLOSMTFMMA的有效性,以FLOSFCMA和FLOSMTFMMA方法作为比较对象,进行实验。实验中,FLOSFCMA、FLOSMTFMMA和WT-FLOSMTFMMA的步长分别为0.0002、0.0002、0.004,采用Db2小波进行分解,分解层次为两层,小波功率初始值为4,信道脉冲响应向量c=[0.9656,-0.0906,0.0578,0.2368],均衡器抽头数为16,FLOSMTFMMA和WT-FLOSMTFMMA均采用第12个抽头初始化为1,FLOSFCMA采用第8个抽头初始化为1,广义信噪比(generalized signal-noise-ratio,GSNR)为25dB。在α稳定分布噪声中,当WT-FLOSMTFMMA与FLOSMTFMMA中的p=0.8499时,700次蒙特卡罗仿真结果如图7所示;当WT-FLOSMTFMMA中的p=0.63与FLOSMTFMMA中的p=0.6时,700次蒙特卡罗仿真结果如图8所示。In order to verify the effectiveness of the WT-FLOSMTFMMA method of the present invention, experiments were carried out with FLOSFCMA and FLOSMTFMMA methods as comparison objects. In the experiment, the step sizes of FLOSFCMA, FLOSMTFMMA and WT-FLOSMTFMMA are 0.0002, 0.0002, and 0.004 respectively, and the Db2 wavelet is used for decomposition. The decomposition level is two layers. The initial value of wavelet power is 4, and the channel impulse response vector c=[0.9656,- 0.0906, 0.0578, 0.2368], the number of equalizer taps is 16, both FLOSMTFMMA and WT-FLOSMTFMMA use the 12th tap to initialize to 1, FLOSFCMA uses the 8th tap to initialize to 1, the generalized signal-noise-ratio (generalized signal-noise-ratio , GSNR) is 25dB. In α-stable distributed noise, when p=0.8499 in WT-FLOSMTFMMA and FLOSMTFMMA, the 700 Monte Carlo simulation results are shown in Figure 7; when p=0.63 in WT-FLOSMTFMMA and p=0.6 in FLOSMTFMMA , 700 Monte Carlo simulation results are shown in Figure 8.

图7(a)表明,本发明方法WT-FLOSMTFMMA的收敛速度比FLOSFCMA和FLOSMTFMMA快约3000步,并且本发明方法WT-FLOSMTFMMA的稳态误差比FLOSFCMA减小约2dB。图8(a)表明本发明方法WT-FLOSMTFMMA的收敛速度比FLOSMTFMMA快约2500步。Figure 7(a) shows that the convergence speed of the inventive method WT-FLOSMTFMMA is about 3000 steps faster than FLOSFCMA and FLOSMTFMMA, and the steady-state error of the inventive method WT-FLOSMTFMMA is about 2dB smaller than that of FLOSFCMA. Fig. 8(a) shows that the convergence speed of the method WT-FLOSMTFMMA of the present invention is about 2500 steps faster than that of FLOSMTFMMA.

图7(b)~(d)和图8(b)~(d)表明本发明方法WT-FLOSMTFMMA与FLOSMTFMMA的眼图张开效果相同,但都比方法FLOSFCMA的眼图张开效果清晰。Figure 7(b)~(d) and Figure 8(b)~(d) show that the eye diagram opening effect of the method WT-FLOSMTFMMA and FLOSMTFMMA of the present invention is the same, but both are clearer than the eye diagram opening effect of the method FLOSFCMA.

由图7和图8可知,在α稳定分布噪声中,本发明方法WT-FLOSMTFMMA的适应能力最强。It can be seen from Fig. 7 and Fig. 8 that in the α-stable distributed noise, the adaptability of the method WT-FLOSMTFMMA of the present invention is the strongest.

Claims (2)

1. a fractional lower-order statistics mould value transform wavelet frequency domain multimode blind balance method, is characterized in that, comprises the steps:
Steps A, a (n) that will transmit obtains channel output vector b (n) through impulse response channel c (n), and wherein n is time series;
Step B adopts α to stablize partition noise w (n) and the described channel output vector of steps A b (n) obtains the front equalizer input signal y (n) of orthogonal wavelet transformation: y (n)=w (n)+b (n);
Step C gets its real part y to the described equalizer input signal y of step B (n) r(n) and imaginary part y i(n), then to real part y r(n) and imaginary part y i(n) carry out respectively orthogonal wavelet transformation, through the signal after orthogonal wavelet transformation be
v r(n)=Qy r(n),v i(n)=Qy i(n)
In formula, Q is the orthogonal wavelet transformation matrix, v r(n) and v i(n) be respectively the real part y of time-domain equalizer input signal y (n) r(n) and imaginary part y i(n) through the signal component after orthogonal wavelet transformation, the real part Z of frequency-domain equalizer output Z (N) r(N) and imaginary part Z i(N) be respectively
Z r(N)=R r(N)F r(N),Z i(N)=R i(N)F i(N)
In formula, N represents that length is the piece number of the data block of L, and L is equalizer weight vector length, F r(N) and F i(N) be respectively real part and the imaginary part of frequency-domain equalizer weight vector F (N), R r(N) and R i(N) be respectively v r(n) and v i(n) through frequency domain real part and imaginary part after fast Fourier transform;
Step D is to the real part Z of step C frequency-domain equalizer output signal Z (N) r(N) and imaginary part Z i(N) obtain respectively the real part z of time-domain equalizer output signal z (n) as Fourier inversion r(n) and imaginary part z i(n).
2. a kind of fractional lower-order statistics mould value transform wavelet frequency domain multimode blind balance method according to claim 1, is characterized in that, in described step C, the calculation procedure of frequency-domain equalizer weight vector F (N) is as follows:
Step C-1 calculates mould value transform time domain error function e t(n) real part e rt(n) with imaginary part e it(n), computing formula is as follows:
e rt ( n ) = R rt ( p ) - | z rt ( n ) | p , e it ( n ) = R it ( p ) - | z it ( n ) | p
R rt ( p ) = E { | a rt ( n ) | 2 p } E { | a rt ( n ) | p } , R it ( p ) = E { | a it ( n ) | 2 p } E { | a it ( n ) | p }
In formula, || be modulo operation, p be greater than zero less than 1 positive number, E{} represents to ask mathematic expectaion, a rt(n) and a it(n) be respectively the real part a of a that transmits (n) r(n) with imaginary part a i(n) pass through respectively signal component after the mould value transform,
Figure FDA00002794256700023
With
Figure FDA00002794256700024
Be respectively a rt(n) and a it(n) p rank statistics mould value, z rt(n) and z it(n) be respectively the real part z of time-domain equalizer output signal z (n) r(n) with imaginary part z i(n) through real part and imaginary part after the mould value transform; Step C-2 is to mould value transform time domain error function e t(n) real part e rt(n) with imaginary part e it(n) make Fourier transform after, obtain mould value transform error of frequency domain function E t(N) real part E rt(N) with imaginary part E it(N);
Step C-3 calculates frequency-domain equalizer weight vector F (N), and the formula of its iterative process is:
F r ( N + 1 ) = F r ( N ) + &mu; R ^ - 1 ( N ) | E rt ( N ) |
&CenterDot; sign ( E rt ( N ) ) | Z rt ( N ) | p - 1 sign ( Z rt ( N ) ) R r * ( N )
F i ( N + 1 ) = F i ( N ) + &mu; R ^ - 1 ( N ) | E it ( N ) |
&CenterDot; sign ( E it ( N ) ) | Z it ( N ) | p - 1 sign ( Z it ( N ) ) R i * ( N )
In formula, μ is iteration step length, and symbolic operation, Z are got in sign () expression rt(N) and Z it(N) be respectively through the frequency-domain equalizer output signal Z after the mould value transform t(N) real part and imaginary part; With The real part R of expression frequency-domain equalizer input signal R (N) r(N) with imaginary part R i(N) conjugation;
Figure FDA000027942567000211
For
Figure FDA000027942567000212
Fast Fourier transform, and
Figure FDA000027942567000213
The formula that obtains be
R ^ - 1 ( n ) = diag [ &sigma; j , 0 2 ( n ) , &sigma; j , 1 2 ( n ) , &CenterDot; &CenterDot; &CenterDot; , &sigma; j , k 2 ( n ) , &sigma; J + 1,0 2 ( n ) , &CenterDot; &CenterDot; &CenterDot; , &sigma; J + 1 , k J - 1 2 ( n ) ]
Wherein, diag[] the expression diagonal matrix,
Figure FDA000027942567000215
With
Figure FDA000027942567000216
Represent u respectively J, k(n) with
Figure FDA000027942567000217
Average power estimate, can be obtained by the following formula recursion:
&sigma; j , m 2 ( n + 1 ) = &beta; &sigma; &sigma; j , m 2 ( n ) + ( 1 - &beta; &sigma; ) | u j , m ( n ) | 2
&sigma; J + 1 , m 2 ( n + 1 ) = &beta; &sigma; &sigma; J + 1 , m 2 ( n ) + ( 1 - &beta; &sigma; ) | s J , m ( n ) | 2
In formula, u J, m(n) be that scale parameter is that j, translation parameters are the wavelet conversion coefficient of m, s J, m(n) for scale parameter is that J, translation parameters are the change of scale coefficient of m, J is the out to out of wavelet decomposition, and k is the translation parameters of corresponding wavelet function under scale parameter j, k JThe expression out to out is the maximal translation of wavelet function under J, β σSmoothing factor, and 0<β σ<1.
CN201310036113.2A 2013-01-30 2013-01-30 A kind of fractional lower-order statistics mould value transform wavelet frequency domain multimode blind balance method Expired - Fee Related CN103117969B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310036113.2A CN103117969B (en) 2013-01-30 2013-01-30 A kind of fractional lower-order statistics mould value transform wavelet frequency domain multimode blind balance method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310036113.2A CN103117969B (en) 2013-01-30 2013-01-30 A kind of fractional lower-order statistics mould value transform wavelet frequency domain multimode blind balance method

Publications (2)

Publication Number Publication Date
CN103117969A true CN103117969A (en) 2013-05-22
CN103117969B CN103117969B (en) 2016-05-11

Family

ID=48416246

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310036113.2A Expired - Fee Related CN103117969B (en) 2013-01-30 2013-01-30 A kind of fractional lower-order statistics mould value transform wavelet frequency domain multimode blind balance method

Country Status (1)

Country Link
CN (1) CN103117969B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104144139A (en) * 2014-08-18 2014-11-12 西安烽火电子科技有限责任公司 Improved time domain self-adaptation blind equalization method
CN110572220A (en) * 2019-06-30 2019-12-13 哈尔滨工业大学(威海) Joint Blind Frequency Domain Equalization and Rateless Decoding Algorithm for Rateless Underwater Acoustic Communication
CN114172767A (en) * 2021-12-10 2022-03-11 西安电子科技大学 Channel blind equalization method based on fractional multimode

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102223329A (en) * 2011-06-14 2011-10-19 南京信息工程大学 WT-FLOSCMA (Orthogonal Wavelet Transform and Fraction Lower Order Statistics Based Constant Modulus Algorithm)
CN102355435A (en) * 2011-07-25 2012-02-15 南京信息工程大学 Wavelet weighted multi-modulus blind equalization algorithm based on fractional lower order statistics (WT-FLOSWMMA)

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102223329A (en) * 2011-06-14 2011-10-19 南京信息工程大学 WT-FLOSCMA (Orthogonal Wavelet Transform and Fraction Lower Order Statistics Based Constant Modulus Algorithm)
CN102355435A (en) * 2011-07-25 2012-02-15 南京信息工程大学 Wavelet weighted multi-modulus blind equalization algorithm based on fractional lower order statistics (WT-FLOSWMMA)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104144139A (en) * 2014-08-18 2014-11-12 西安烽火电子科技有限责任公司 Improved time domain self-adaptation blind equalization method
CN104144139B (en) * 2014-08-18 2017-09-01 西安烽火电子科技有限责任公司 A kind of improved time-domain adaptive blind balance method
CN110572220A (en) * 2019-06-30 2019-12-13 哈尔滨工业大学(威海) Joint Blind Frequency Domain Equalization and Rateless Decoding Algorithm for Rateless Underwater Acoustic Communication
CN110572220B (en) * 2019-06-30 2021-11-23 哈尔滨工业大学(威海) Combined blind frequency domain equalization and no-rate decoding algorithm for no-rate underwater acoustic communication
CN114172767A (en) * 2021-12-10 2022-03-11 西安电子科技大学 Channel blind equalization method based on fractional multimode

Also Published As

Publication number Publication date
CN103117969B (en) 2016-05-11

Similar Documents

Publication Publication Date Title
CN102724147B (en) A kind of channel estimation methods of underwater sound OFDM
CN102289719A (en) Orthogonal wavelet blind equalization method based on optimization of simulated annealing genetic algorithm (SA-GA-WTCMA)
CN106130936B (en) A kind of non linear channel equalization method under Alpha Stable distritation noise circumstance
CN103117969B (en) A kind of fractional lower-order statistics mould value transform wavelet frequency domain multimode blind balance method
CN104506465A (en) Power line communication channel estimation method
CN103957177B (en) Multi-stage time domain blind equalization method for OFDM signal
CN102355435B (en) Wavelet weighted multi-modulus blind equalization algorithm based on fractional lower order statistics (WT-FLOSWMMA)
CN101656697B (en) Frequency-domain blind equalization method (T/2FF-CMA) based on T/2 fraction space
CN103763228B (en) Combination optimization self-adaptive frequency domain blind equalization method and system
CN103475608B (en) Simulated annealing and fruit bat hybrid optimization small echo GENERALIZED DISCRETE LINEAR RANDOM SYSTEM multi-mode blind equalization method
CN102413080B (en) Method for estimating channel in high-speed moving TDD-LTE (time division duplex-long time evolution) uplink
CN102025459B (en) Nonparametric estimation ICA-based MIMO-OFDM system blind deconvolution method
CN104092633A (en) A Multiwavelet Feedback Blind Equalization Method for Nonlinear Satellite Channels
CN101656696A (en) Frequency-domain small wave blind equalization method based on united combining space-time diversity
CN106656879A (en) High speed and higher-order variable step size self-adaptive equalization method
CN102164106A (en) Fractionally spaced decision feedback Rayleigh Renyi entropy wavelet blind equalization method
CN105978609A (en) Massive MIMO linear detection hardware architecture and method under correlated channels
CN102035610B (en) Blind detection method based on full feedback neural network based on initial state vector control
CN102299875B (en) A Wavelet Multi-mode Blind Equalization Method Introducing Immune Optimization Support Vector Machine
CN102231720B (en) Wavelet blind equalization method for fusing spline function Renyi entropy and time diversity
CN101989964A (en) Low-complexity Wiener filtering channel estimation method
CN104144139B (en) A kind of improved time-domain adaptive blind balance method
KR101641437B1 (en) Method for transmission based on time reversal, and apparatuse operating the same
CN101651500B (en) Improved Blind Equalization Method for T/2 Fractional Interval Coordinate Transformation
CN101924718A (en) Hybrid wavelet neural network blind equalization method controlled by fuzzy neural network

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160511

Termination date: 20190130

CF01 Termination of patent right due to non-payment of annual fee