CN1031119A - The annealing technology of the yag crystal of neodymium-doped and cerium - Google Patents

The annealing technology of the yag crystal of neodymium-doped and cerium Download PDF

Info

Publication number
CN1031119A
CN1031119A CN 88104642 CN88104642A CN1031119A CN 1031119 A CN1031119 A CN 1031119A CN 88104642 CN88104642 CN 88104642 CN 88104642 A CN88104642 A CN 88104642A CN 1031119 A CN1031119 A CN 1031119A
Authority
CN
China
Prior art keywords
temperature
annealing
yag
heating
described method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN 88104642
Other languages
Chinese (zh)
Other versions
CN1006815B (en
Inventor
翟清永
应佐庆
梁泽荣
石全州
邓永华
孙洪建
肖宗朝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South West Institute of Technical Physics
Original Assignee
South West Institute of Technical Physics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South West Institute of Technical Physics filed Critical South West Institute of Technical Physics
Priority to CN 88104642 priority Critical patent/CN1006815B/en
Publication of CN1031119A publication Critical patent/CN1031119A/en
Publication of CN1006815B publication Critical patent/CN1006815B/en
Expired legal-status Critical Current

Links

Images

Abstract

The present invention has provided yttrium aluminum garnet [(Nd, Ce): the YAG] annealing process safely and effectively that a kind of equipment of crystalline is simple, easy to implement of neodymium-doped and cerium.Comprising annealing temperature, constant temperature time, warming and cooling rate, aspects such as temperature-controlled precision and protective atmosphere.Utilize Technology of the present invention, the colour center that both can eliminate growth inducing absorbs, and can keep Ce again 3+Valence state.Thereby utilized Ce fully 3+ Nd 3+Energy shift, under the condition of not damaging the crystal optics quality, obtained lasing efficiency and improved more than 70% than high-quality Nd:YAG crystal, laser threshold reduce by 0.5~erg-ten (Nd, Ce): the YAG laser crystals.

Description

The annealing technology of the yag crystal of neodymium-doped and cerium
The present invention relates to crystalline postheat treatment technology, particularly improve the neodymium-doped of pulling method growth and cerium
Figure 881046426_IMG1
Aluminium garnet ((Nd, Ce): the annealing treating process of crystal laser performance YAG).
Though as far back as Holloway in 1969 [1]Just observe Ce in the yttrium aluminum garnet (YAG) 3+→ Nd 3+Energy transfer phenomenon, К о в а л e в а [2]Further proposition can utilize Ce 3+→ Nd 3+Energy shift and improve neodymium-doped yttrium-aluminum garnet (Nd: YAG) crystalline laser output, but scrutinize still the mid-80 by Mares what this energy shifted [3]Carry out.Though Kvapil [4.5]Deng beginning (Nd, Ce): YAG crystalline laser activity is studied, but Kvapil thinks, though can utilize Ce at the mid-80 3+→ Nd 3+Energy shift and improve laser output, but because energy transfer efficiency is not high, and mix a large amount of Ce can grievous injury crystalline optical qualities, thereby they think Ce 3+Mix Nd as sensitized ions: the total benefit of YAG is not high.But, Kvapil points out at Nd: YAG and (Nd, Cr): mix extremely low concentration in the YAG crystal and (be lower than 10 -2Wt%) Ce is favourable to the formation stable and instantaneous colour center that suppresses growth inducing, but also can strengthen inequivalent site Nd 3+Between energy shift, thereby can make laser output improve about 10%.Document [6] has been reported and can have been effectively utilized Ce under the condition of not damaging the crystal optics quality 3+→ Nd 3+Energy shift, (Nd, Ce): the pulse laser output of YAG improves more than 60% than present high-quality Nd: YAG thereby make.
As everyone knows, the Nd of growth: YAG and (Nd in reducing atmosphere, drawing, Ce): YAG and the Nd that is mixed with other the second or the 3rd impurity: the YAG crystal must be exported otherwise stable colour center that forms in process of growth and instantaneous colour center will seriously influence crystalline laser through suitable anneal [4]For being mixed with Ce ionic crystal, when utilizing anneal to eliminate colour center, must keep Ce ionic three valence states, because Ce ionic tetravalence attitude is more stable in oxidizing atmosphere.And to Nd 3+That sensibilized is arranged is Ce 3+The existence of problem just because of this appraises at the current rate, (Nd, Ce): the YAG crystal should be grown in reducing atmosphere.
Holloway [1], К о в а л e в а [2], and MARES [3]Work be Ce to be discussed from spectral response curve 3+→ Nd 3+Energy shifts and research energy transfer mechanism, do not relate to (Nd, Ce): growth of AG crystalline and annealing process.Kvapil [4]Once studied annealing process to Nd: YAG, (Nd, Ce): YAG, (Nd, Cr, Ce): YAG and be mixed with other ionic Nd: YAG crystal laser Effect on Performance.Compared these crystal in detail respectively in vacuum, the effect of oxygen and hydrogen annealing, used annealing temperature are 1750 ℃, and constant temperature time is 4 hours.In [7], Kvapil provided Nd under the different annealing conditions: YAG and (Nd, Ti): the laser activity of YAG and the experimental result of instantaneous colour center.Used annealing conditions is 1500 ℃ of constant temperature 10 hours and 1700 ℃ of constant temperature 5 hours, and protective atmosphere is respectively oxygen, hydrogen, vacuum and earlier in oxygen annealing again at hydrogen annealing etc.Document [6] is not mentioned its annealing process.
The objective of the invention is to seek and to eliminate that (Nd, Ce): the growth inducing colour center in the YAG crystal can keep Ce again 3+The best annealing process of valence state, provide a kind of simple and effectively (Nd, Ce) YAG crystalline annealing conditions.
The present invention is a kind of (Nd; Ce): YAG crystalline annealing process technology; comprise annealing temperature, constant temperature time, warming and cooling rate; temperature-controlled precision and protective atmosphere; it is characterized by annealing temperature is 1100~1600 ℃, and constant temperature time is 10~80 hours, and warming and cooling rate is 20~300 ℃/h; temperature-controlled precision is ± 10 ℃, directly anneals in atmosphere without special protection atmosphere simultaneously.
As everyone knows, the Nd that grows in reducing atmosphere: YAG and contain other adulterated Nd: the YAG crystal has the absorption peak of the last one near 370nm, and near 300nm, absorb beginning with wavelength reduce increase sharply.The wavelength that this absorption begins to increase be longer than YAG crystal intrinsic ultraviolet absorption edge (~250nm) [7]It has been generally acknowledged that this is due to the O-colour center that forms owing to the crystal anoxic of growing in reducing atmosphere.Except this permanent colour center, also form instantaneous colour center [7]These all have a strong impact on the crystalline laser activity.Must pass through the annealing oxygenating with elimination O-colour center, otherwise crystal just can not use.To (Nd, Ce): the YAG crystal, in annealing process, also must manage to avoid Ce 3+Oxidation because have only Ce 3+Could play sensibilized, and Ce 4+Not only do not have sensibilized, but also, in crystal, introduce defectives such as divalence impurity or cationvacancy because of the needs of charge balance.The present invention utilizes to change velocity of diffusion and the diffusing capacity of oxygen in crystal that annealing temperature and constant temperature time are controlled oxygen in atmosphere, not only eliminates the O-colour center in the crystal but also avoid Ce thereby reach 3+Oxidized purpose.
Now that the detailed description of the invention is as follows:
Principle of device used in the present invention as shown in Figure 1.Wherein 1. is power supplys, 2. is annealing furnaces, 3. is temp measuring systems, 4. is preface setters, 5. is temperature controlling systems.
The annealing furnace that the present invention uses can be a SiC rod process furnace, also can be SiC pipe process furnace, or MoSi 2The electric furnace of rod heating and alternate manner heating.No matter adopt which kind of process furnace, the length of its flat-temperature zone should be greater than 10cm, more preferably greater than 20cm.That is to say that the fluctuating of temperature is not higher than 10 ℃ in this length range, preferably less than 5 ℃, to guarantee whole crystalline annealing temperature unanimity.Temp measuring system P t-P tR hThermocouple, also other thermocouple or other temperature measuring equipment that meet the demands of available energy.Temperature controlling system adopts the DWT702 temperature controller, or other temperature controller, but its temperature-controlled precision all should be less than ± 5 ℃, preferably less than ± 0.5 ℃.The temperature control set(ting)value is provided by the Program for precision setter.
The front was mentioned, and basic thought of the present invention is to utilize the length of the height of annealing temperature and constant temperature time to come oxygen in the control air to the speed and the diffusing capacity of crystal internal diffusion, has not only eliminated the O-colour center but also avoided Ce thereby reach 3+Further oxidation, reach and make full use of Ce 3+→ Nd 3+Sensibilized, make that (Nd, Ce): the YAG crystal has higher lasing efficiency.In general, when annealing temperature was hanged down, the velocity of diffusion of oxygen was slow, therefore needed long constant temperature time; When annealing temperature was high, the oxygen velocity of diffusion was fast, and constant temperature time should suitably shorten.If, annealing temperature too high and (or) constant temperature time is long, then can cause Ce 3+Further oxidation and bring adverse influence.Must select appropriate annealing temperature and cooperate suitable constant temperature time just can obtain satisfied effect.The used annealing temperature of the present invention is 1100~1600 ℃, is preferably 1180~1280 ℃, and constant temperature time is 10~80 hours, is preferably 24~60 hours.
In temperature-rise period, need prevent that crystal is heated suddenly and ftractures, therefore, heat-up rate is unsuitable too fast.In temperature-fall period, too fast cooling rate will not reach the effect of the phase of giving, and this point is from the report of Kvapil in 79 years [7]In also can obviously see.The warming and cooling rate that the present invention adopts is 20~300 ℃/h, and the different steps that is preferably in heating and cooling adopts different speed both can obtain satisfied annealing effect, can save time again and the energy.
Utilize technology of the present invention to (Nd, Ce): the YAG crystal carries out anneal, both can eliminate the O-colour center of growth inducing effectively, can keep Ce ionic three valence states again.See the contrast of the absorption spectrum that this ideal effect can be drawn from accompanying drawing 2.Accompanying drawing 2 is that Spectrophotometric (Nd, Ce): YAG crystalline absorption curve, sample are the thick sheet of 5mm with day island proper Tianjin UV-365 type.The two sides is through polished finish.Wherein curve 1 be annealing before (Nd, Ce): YAG sample, curve 2 be annealing after measuring result.From scheming as seen, near 380nm, the absorption of sample increases sharply before the annealing, and forms an absorption peak near 370nm, it is generally acknowledged that this absorption peak is the typical absorption peak of O-colour center.Near the 370nm of annealing back absorption peak completely dissolve, last is and Nd 3+Absorb the relevant a series of spikes and the wide absorption peak at 450nm and 340nm place, these two broad peaks then are Ce 3+Characteristic absorbance in the YAG crystal.Not because of anneal changes, this explanation Ce ion its three original valence states after anneal do not change from visible its absorption intensity of the comparison of the 450nm of curve 1 and 2 and 340nm absorption peak.
Before and after annealing, also can see the effect of the annealing technology that the present invention provides the contrast of crystalline laser activity.Table one be two φ 5 * 80mm's (Nd, Ce): the comparison of the pulse laser output before and after the YAG laser bar annealing.The laser pump cavity that test is used be chamber, ellipse garden (2a=24,2b=21mm), the chamber is long to be 70mm, xenon lamp is φ 5.3 * 60mm, the reflectivity of outgoing mirror is 45%, the energy of use is counted U.S. Boulder company 365 types.Laser bar end face in this contrast experiment does not plate anti-reflection film.
The comparison of pulse laser output before and after table one, the annealing
Sample number into spectrum Intake (j) Output energy (mj)
Before the annealing After the annealing
16161 10.8 19.2 55 194 113 317
16171 10.8 19.2 0 112 184 500
Accompanying drawing 3 provides be adopt after the present technique annealing (Nd, Ce): YAG laser bar and high-quality Nd: the comparison that the pulse laser of YAG laser bar is exported, test condition is identical with the explanation of table two.Curve 1~5th among Fig. 3, (Nd, Ce): the static pulse curve of output of YAG, the size 1~3rd of laser bar, φ 5 * 80mm, the 4th, φ 5 * 65mm, the 5th, φ 4 * 50mm, curve 6 is national Nd in 1986: the Nd that the YAG qulity appraisal is prize-winning: the YAG(comparation and assessment are numbered H510, and it is of a size of the curve of output of φ 5 * 76mm).As seen from the figure, curve 1 and 2 higher more than 70% than the output of curve 6 10 joules of whens input.
(Nd before and after the annealing that provides from above, Ce): the annealing process that visible the present invention of contrast of the contrast of YAG crystalline absorption curve and pulse laser output provides is very effective, can eliminate effectively that (Nd, Ce): the growth inducing colour center in the YAG crystal can keep Ce again 3+Valence state, thereby can make full use of Ce 3+→ Nd 3+Energy shift, improve the crystalline lasing efficiency.
Below be example of the present invention:
Example 1.
The heating of employing carborunbum tube, carborunbum tube is the outside that is contained in resistant to elevated temperatures recrystallize alumina tube, also available other refractory ceramics pipe, but can not contain low melting point impurity in the vitrified pipe.The annealed crystal is placed in the alumina tube, and its position should be in the flat-temperature zone.The two ends of alumina tube, heat insulation with the stopper shutoff that foam refractory material is made, from joyous Shun Jia Ruin t-P tThe R thermocouple.The measurement of temperature and control device are shown in accompanying drawing one.Speed with 300 ℃/h is warming up to 600 ℃, and the speed with 200 ℃/h is raised to 1320 ℃ then, and under this temperature, constant temperature begins cooling after 25 hours, and cooling rate is 150 ℃/h, finishes anneal thereby reduce to 600 ℃ time outage naturally cools to room temperature.
Example 2.
Use the box High Temperature Furnaces Heating Apparatus of Si-Mo rod heating to anneal, annealed crystal places on the high temperature oxidation resisting aluminium sheet, is placed on then in the flat-temperature zone in the stove.Begin to heat up after closing fire door, its warming and cooling rate and temperature regulating device are identical with example 1, but annealing temperature is 1550 ℃, and constant temperature time is 12 hours.
Example 3. uses the box-type furnace of globars heating to anneal, and annealing temperature is 1250 ℃, and constant temperature time is 30 hours.Other condition is all identical with example 2.
The type of heating and the annealing conditions of other example of the present invention see Table two, and other situation is identical with 3 with example 1,2 respectively.
In a word, from above to technical descriptioon of the present invention with to the introduction of the effect of this technology and the introduction of example. Can see that fully the present invention is (Nd, Ce): YAG laser crystal a kind of simple, annealing technology safely and effectively, it has the advantages such as equipment is simple easy to implement.
Reference
(1)W.W.Holloway et.al.J.Opt.Soc.Am.V59,60(1969)
(2)Н.С.Ковалеваидр.Ж.ПРцк.Спект.Т27.546(1977)
(3)J.A.Mares;Czech.J.phys.B35.883(1985)
B36,1079(1986)and Rev phys
Appl.V22,145(1987)
(4)J.Kvapil et.al.Czech.J.phys.B34,581(1984)
(5) B.Pemer et.al. Czech patents 240641.
(6) Zhai Qingyong etc.Chinese patent (awaiting the reply) application number 88102651,4
(7)J.Kvapil et.al.Czech.J.Phys.B29,1282

Claims (9)

1, the yttrium aluminum garnet [(Nd of a kind of neodymium-doped and cerium; Ce): YAG] crystalline annealing process technology; comprise annealing temperature, constant temperature time, warming and cooling rate; temperature-controlled precision and protective atmosphere; it is characterized by annealing temperature is 1100~1600 ℃, and constant temperature time is 10~80 hours, and warming and cooling rate is 20~300 ℃/h; temperature-controlled precision is ± 10 ℃, directly anneals in atmosphere.
2,, it is characterized in that annealing temperature is 1210~1250 ℃ according to the described method of claim 1.
3,, it is characterized in that constant temperature time is 20~60 hours according to claim 1 and 2 described methods.
4, according to the described method of claim 1~3, the speed that it is characterized in that heating and cooling changes, 300 ℃/the h of heat-up rate during from low temperature reduces to 30 ℃/h gradually, and the 20 ℃/h of cooling rate during from high temperature is increased to 150 ℃/h gradually, and outage below 600 ℃ naturally cools to room temperature.
5, according to the described method of claim 1~4, it is characterized in that using M OSi 2The rod heating.
6,, it is characterized in that using the heating of SiC rod according to the described method of claim 2~4.
7,, it is characterized in that using the heating of SiC pipe according to the described method of claim 2~4.
8,, it is characterized in that using instead other any heating unit or heating means that can reach the Heating temperature requirement according to the described method of above-mentioned each claim.
9, according to the described method of above-mentioned each claim, it is characterized in that temperature-controlled precision in ± 5 ℃, be preferably in ± 1 ℃ in.
CN 88104642 1988-08-02 1988-08-02 Technique for annealing of yal garnet crystal containing nd and ce Expired CN1006815B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 88104642 CN1006815B (en) 1988-08-02 1988-08-02 Technique for annealing of yal garnet crystal containing nd and ce

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 88104642 CN1006815B (en) 1988-08-02 1988-08-02 Technique for annealing of yal garnet crystal containing nd and ce

Publications (2)

Publication Number Publication Date
CN1031119A true CN1031119A (en) 1989-02-15
CN1006815B CN1006815B (en) 1990-02-14

Family

ID=4833089

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 88104642 Expired CN1006815B (en) 1988-08-02 1988-08-02 Technique for annealing of yal garnet crystal containing nd and ce

Country Status (1)

Country Link
CN (1) CN1006815B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103409805A (en) * 2013-08-13 2013-11-27 安徽环巢光电科技有限公司 Yttrium aluminum garnet crystal doped with neodymium, cerium and chromium, and preparation method thereof
CN103409806A (en) * 2013-08-13 2013-11-27 安徽环巢光电科技有限公司 Annealing method of neodymium, cerium and chromium doped yttrium aluminum garnet crystal
CN104577699A (en) * 2014-12-31 2015-04-29 西南技术物理研究所 Diffusion bonding method of recombination laser media
CN114149259A (en) * 2021-11-24 2022-03-08 海南钇坤智能科技有限公司 Laser ceramic material for inhibiting ion conversion

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1243137C (en) * 2003-03-28 2006-02-22 中国科学院上海光学精密机械研究所 Annealing process of Yb: YAG crystal

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103409805A (en) * 2013-08-13 2013-11-27 安徽环巢光电科技有限公司 Yttrium aluminum garnet crystal doped with neodymium, cerium and chromium, and preparation method thereof
CN103409806A (en) * 2013-08-13 2013-11-27 安徽环巢光电科技有限公司 Annealing method of neodymium, cerium and chromium doped yttrium aluminum garnet crystal
CN104577699A (en) * 2014-12-31 2015-04-29 西南技术物理研究所 Diffusion bonding method of recombination laser media
CN114149259A (en) * 2021-11-24 2022-03-08 海南钇坤智能科技有限公司 Laser ceramic material for inhibiting ion conversion

Also Published As

Publication number Publication date
CN1006815B (en) 1990-02-14

Similar Documents

Publication Publication Date Title
US4490183A (en) Method of reactivating implanted dopants and oxidation semiconductor wafers by microwaves
CN1079783C (en) Transparent devitroceram
Fleuster et al. Optical and structural properties of MeV erbium‐implanted LiNbO3
Buchal et al. Solid-phase epitaxy of ion-implanted LiNbO3 for optical waveguide fabrication
US5858891A (en) Glass-ceramic materials especially for lasers and optical amplifiers, doped with rare earths
CN1031119A (en) The annealing technology of the yag crystal of neodymium-doped and cerium
US4547256A (en) Method for thermally treating a semiconductor substrate
CN107268086B (en) A method of improving Bismuth silicate scintillation crystal near ultraviolet band transmitance
CA1274753A (en) Process for enhancing ti:a1.sub.20.sub.3 tunable laser crystal fluorescence by annealing
Fleuster et al. Rapid thermal annealing of MeV erbium implanted LiNbO3 single crystals for optical doping
CN101545143B (en) Annealing method for improving luminous efficiency of cerium-doped yttrium aluminum garnet crystal
TW543092B (en) Heat-treating method of silicon wafer
CN114318536B (en) Bismuth-doped rare earth iron garnet single crystal film, preparation method thereof and optical device
CN1243137C (en) Annealing process of Yb: YAG crystal
CN1030798A (en) The growing technology of the Yttrium aluminium garnet laser crystal of neodymium-doped and cerium
CN1029694C (en) Heat treating method of straightly pulled monocrystalline silicon in nitrogen-containing atmosphere
CN216514244U (en) Halide scintillation crystal growth device
Höger et al. Thickening of thin laser crystallized silicon films by solid phase epitaxy for photovoltaic applications
Zhu et al. Heat treatment and its effects on the optical quality of AgGaSe2 single crystals
CN115044373B (en) Al, ga/Ce codoped yttrium lutetium silicate scintillation crystal material and annealing method
JPS6473000A (en) Heat treatment of gallium arsenide single crystal
Kolybayeva et al. Increase of the laser damage threshold of KDP single crystals by their heat treatment
Shepilov et al. Structure and optical properties of Er-doped transparent glass–ceramics based on ZnO nanocrystals with anomalous light scattering
SU1638221A1 (en) Method of processing garnet single crystals
Williams et al. Study of the Effects of MeV Ag, Cu, Au and Sn Implantation on the Optical Properties of LiNbO 3

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C13 Decision
GR02 Examined patent application
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee