CN103111850A - 仿生耦合铸铁导轨及其制作方法、废旧机床导轨再生方法 - Google Patents

仿生耦合铸铁导轨及其制作方法、废旧机床导轨再生方法 Download PDF

Info

Publication number
CN103111850A
CN103111850A CN2013100039558A CN201310003955A CN103111850A CN 103111850 A CN103111850 A CN 103111850A CN 2013100039558 A CN2013100039558 A CN 2013100039558A CN 201310003955 A CN201310003955 A CN 201310003955A CN 103111850 A CN103111850 A CN 103111850A
Authority
CN
China
Prior art keywords
guide rail
laser
cell cube
bionic
surface texture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013100039558A
Other languages
English (en)
Other versions
CN103111850B (zh
Inventor
周倜
周宏�
庞作波
任露泉
张志辉
王传伟
丛大龙
孟超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN201310003955.8A priority Critical patent/CN103111850B/zh
Publication of CN103111850A publication Critical patent/CN103111850A/zh
Application granted granted Critical
Publication of CN103111850B publication Critical patent/CN103111850B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laser Beam Processing (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

本发明涉及一种仿生耦合铸铁导轨及其制作方法,以及一种废旧机床导轨的再生方法。所述的铸铁导轨由导轨主体及其表面组织细化层构成;表面组织细化层上分布有纳米级马氏体单元体。所述仿生耦合铸铁导轨的制作方法、废旧机床导轨的再生方法主要包括下述步骤:利用高频电脉冲对导轨进行处理,得到表面组织细化层;采用激光熔凝方法,在表面组织细化层上制备纳米级马氏体单元体。本发明单元体与导轨母体共同构成软硬相间的类似生物体结构的仿生耦合区域,单元体如同在导轨表层增加了坚固的桩钉或者加强筋,而母体材料将单元体包围连成一体,使导轨表面局部压力峰值分散受力更加均匀。本发明具有优异的力学性能和抗疲劳磨损性能。

Description

仿生耦合铸铁导轨及其制作方法、废旧机床导轨再生方法
技术领域
本发明属于铸铁导轨技术领域,涉及一种仿生耦合铸铁导轨及其制作方法,以及一种废旧机床导轨的再生方法。
背景技术
在机械工业中,机床通常被称为工作母机,是机械制造业的基本加工设备,它的品种、性能、质量和技术水平直接影响着其他机电产品的性能、质量、生产技术水平和企业的经济效益。我国是世界上最大的机床消费市场,目前拥有约800万台机床,依照国际通用的3%的裁减率,每年裁减的旧机床约25万台,其金属总份量超越150万吨。对于一台老旧机床,一般有45%~80%以上的残留价值,主要是耐久性较强的床身、立柱、底座等。重新制造这些主体部件,需要消耗大量钢铁和能源。如果保留主体,修复或更换损坏部件,则可制造出与新设备同等质量甚至性能更好的设备。机床导轨作为机床中的重要部件同时也是易磨损的部件,它的再生对整个机床的再制造具有重大的意义。机床导轨失效多为疲劳磨损失效,导轨在数以万计的往复运动中,在工件载荷的压力下,会产生一定的弧度不再保持水平,从而无法保证加工精度;同时在机床的使用过程中,在导轨表面不可避免的将会出现点蚀,也将会影响机床的加工精度,造成机床的报废。
发明内容
本发明要解决的一个技术问题是提供一种具有优异力学性能和抗疲劳磨损性能的仿生耦合铸铁导轨。
为了解决上述技术问题,本发明的仿生耦合铸铁导轨由导轨主体及其表面组织细化层构成;所述表面组织细化层上分布有纳米级马氏体单元体。
本发明的表面组织细化层共晶团尺寸小,性能好。表面组织细化层上分布有组织细密、高硬度的纳米级马氏体单元体,单元体与导轨母体共同构成软硬相间的类似生物体结构的仿生耦合区域,单元体如同在导轨表层增加了坚固的桩钉或者加强筋,抵抗轨道的碾压,在导轨表面形成了保护导轨的抗压耐磨层,而母体材料将单元体包围连成一体,使导轨表面局部压力峰值分散受力更加均匀。本发明具有优异的力学性能和抗疲劳磨损性能。
所述表面组织细化层的共晶团平均尺寸为0.01~0.3mm。
所述表面组织细化层的深度d1为0.8-2mm。
所述单元体为圆柱状,其直径D为0.5~4mm,间距s为0.5~4mm,深度d2为0.1~0.8mm。
所述单元体均匀分布或随机分布在表面组织细化层上。
所述单元体呈条纹交叉分布构成的网格状;网格状单元体的条纹宽度w为0.5~4mm,间距s为0.5~4mm,倾斜角度α为0~90°,深度d2为0.1~1.5mm。
所述单元体的分布可以为圆柱状单元体或网格状单元体的单一分布,也可以为圆柱形单元体与网格形单元体混合分布。
本发明要解决的另一个技术问题是提供一种上述仿生耦合铸铁导轨的制作方法。
为了解决上述技术问题,本发明的仿生耦合铸铁导轨制作方法包括下述步骤:
步骤一,利用高频电脉冲对导轨进行处理,得到表面组织细化层2;
步骤二,采用激光熔凝方法,在表面组织细化层上制备纳米级马氏体单元体。(权6)
所述高频电脉冲触发电压为1000~6000mV,循环次数为5~25次,单脉冲循环时间为5~25ms。
所述单元体为圆柱状,激光熔凝方法采用激光器功率为300W,离焦量±5.5mm,激光电流100~350mA,激光出光频率1Hz,激光光束驻留时间为1~2s,激光脉宽4~15ms。
所述单元体为网格状,激光熔凝方法采用激光器功率为300W,离焦量±5.5mm,激光电流100~350mA,激光出光频率5~15Hz,激光脉宽4~15ms,激光光束扫描速度为0.5~6mm/s。
本发明要解决的第三个技术问题是提供一种废旧机床导轨的再生方法。
为了解决上述技术问题,本发明的废旧机床导轨再生方法包括下述步骤:
步骤一,对废旧机床导轨的表面进行机械切削获得一个平整的表面;
步骤二,利用高频电脉冲对平整表面进行电脉冲预处理得到表面组织细化层;所述高频电脉冲触发电压为1000~6000mV,循环次数为5~25次,单脉冲循环时间为5~25ms;
步骤三,利用激光器对预处理过的导轨表面的设定区域进行扫描,使激光扫描区域的导轨表面材料快速熔化和凝结,得到纳米级马氏体单元体,最终在导轨表面形成分布有纳米级马氏体单元体的表面组织细化层;所述激光器功率为300W,离焦量±5.5mm,激光电流100~350mA,激光脉宽4~15ms。
当单元体为圆柱状时,激光出光频率为1Hz。
当单元体为网格状时,激光出光频率为5~15Hz,激光光束扫描速度为0.5~6mm/s。
在预想的修复过程中,首先处理不工整的导轨表面,在处理过程中,将会切削掉表面组织细密的部分,如果不对加工过的表面进行一定的处理手段,那么使用寿命将会大打折扣,故此处本发明采用高频电脉冲处理,使表面组织细化,达到甚至超过原先表面组织的性能,然后在其表面进行激光熔凝处理,获得组织更好,性能优良,高硬度的单元体,与表面组织形成软硬相间的仿生耦合区域。
本发明的技术效果:通过对废旧机床导轨进行电脉冲处理,机床导轨表面组织的片状石墨变得卷曲,共晶团尺寸变小,达到细化晶粒,提高组织性能的目的,然后通过采用激光熔凝的方法,在处理过的废旧导轨表面制备按一定规律分布、具有细密组织、高硬度的圆柱形或网格形单元体,由这些单元体和机床导轨的母体共同构成软硬相间的类似生物体结构的仿生耦合区域,作为导轨面的轨道,从而达到对废旧机床导轨的修复再生目的。采用激光熔凝制备的单元体其组织为纳米级的马氏体不同于母体,其机械性能、硬度等大大高于母体组织,软硬相见的仿生物体结构相互衬托发挥作用,单元体如同在导轨表层增加了坚固的桩钉或者加强筋,抵抗轨道的碾压,在导轨表面形成了保护机床导轨的抗压耐磨层,而母体材料将单元体包围连成一体,使导轨表面局部压力峰值分散受力更加均匀,避免了机床在导轨报废后整体报废,或者更换新型导轨的损失,而且大大简化了机床导轨再生的生产工艺,降低了生产成本,提高生产效率,在废旧机床再生中有巨大的优势。
附图说明
下面结合附图和具体实施方式对作进一步详细说明。
图1是本发明的仿生耦合铸铁导轨剖面图。
图2是单元体为圆柱状时的导轨俯视图。
图3是单元体为网格状时的导轨俯视图。
具体实施方式
如图1所示,本发明的仿生耦合铸铁导轨由导轨主体1及其表面组织细化层2构成;所述表面组织细化层2上分布有纳米级马氏体单元体3。表面组织细化层2的共晶团平均尺寸为0.01~0.3mm。表面组织细化层2的深度d1范围为0.8-2mm。单元体3可以为圆柱状(如图2所示),其直径D为0.5~4mm,间距s为0.5~4mm,深度d2为0.1~0.8mm,圆柱状单元体均匀分布或随机分布在表面组织细化层2上。单元体3还可以呈条纹交叉分布构成的网格状(如图3所示),网格状单元体的条纹宽度w为0.5~4mm,间距s为0.5~4mm,倾斜角度α(即条纹单元体与导轨轴线4之间的夹角)为0~90°,深度d2为0.1~1.5mm。单元体3的分布还可以为圆柱状单元体与网格状单元体混合分布。
上述仿生耦合铸铁导轨的制作方法详细步骤如下:
步骤一,利用高频电脉冲对导轨进行处理,得到表面组织细化层2。高频电脉冲触发电压为1000~6000mV,循环次数(即通入电脉冲的次数)为5~25次,单脉冲循环时间(即单个电脉冲的持续时间)为5~25ms。得到的表面组织细化层2的共晶团平均尺寸为0.01~0.3mm,深度d1范围为0.8-2mm。
步骤一,采用激光熔凝技术,对预处理过的导轨表面进行激光扫描,使扫描过的区域母体材料快速熔化和凝结,最终在导轨表面形成纳米级马氏体单元体3;采用的激光器功率为300W,离焦量±5.5mm,激光电流100~350mA,激光脉宽4~15ms;当单元体3为圆柱状时,激光出光频率为1Hz,激光光束驻留时间为1~2s;当单元体3为网格状时,激光出光频率为5~15Hz,激光扫描速度为0.5~6mm/s。
所述废旧机床导轨的再生方法具体包括下述步骤:
步骤一,对废旧机床导轨的表面进行简单的机械切削获得一个平整的表面;
步骤二,利用高频电脉冲对平整表面进行电脉冲预处理;经过高频电脉冲处理,导轨表面组织细化,组织性能提高,获得一个深度范围在0.8-2mm、共晶团平均尺寸为0.01~0.3mm的表面组织细化层2。所述高频电脉冲触发电压为1000~6000mV,循环次数(即通入电脉冲的次数)为5~25次,单脉冲循环时间(即每个电脉冲的持续时间)为5~25ms。
步骤三,利用激光器对预处理过的导轨表面的设定区域进行扫描,使激光扫描区域的导轨表面材料快速熔化和凝结,得到纳米级马氏体单元体3,最终在导轨表面形成分布有纳米级马氏体单元体的表面组织细化层2;所述激光器功率为300W,离焦量±5.5mm,激光电流100~350mA,激光脉宽4~15ms;当单元体3为圆柱状时,激光出光频率为1Hz,激光光束驻留时间为1~2s;当单元体3为网格状时,激光出光频率为5~15Hz,激光扫描速度为0.5~6mm/s。
本发明可以通过对原导轨进行多元高能量束仿生耦合,不用更换废旧机床的导轨,也能够使废旧机床导轨能够继续保持加工精度要求。
本发明的废旧机床导轨再生方法是在废旧机床导轨上经过简单的磨削,获得一个平整的表面,在组织细化层上采用激光熔凝技术,制备规律分布、具有碳化物组织、高硬度的圆柱形和网格形单元体,这些单元体和机床导轨母体共同构成软硬相间的仿生物体结构的仿生耦合区域,从而达到废旧机床导轨的再生的目的。
生物体的进化是其自身适应自然并且趋向最优化的进化方向,通过对自然界中的一些具有优异抗疲劳磨损的生物的观察研究,我们发现它们具有如下的特征:
1.它们都具有软硬相间的结构;
2.该结构的硬质单元自身可以有不同的分布形态;
3.硬质单元的相对高硬度均来自其与软质单元的组成材料或组织结构差别。这种形态、结构和组成材料的有机耦合似的生物体具有优异的力学性能和抗疲劳磨损性能。
由此本发明提出了采用激光熔凝技术来改善和修复废旧机床导轨,在其表面形成类似生物体中的硬质单元,获得其组织不同于母体,机械性能、硬度等大大高于母体的单元体,在部件表层增加了坚固的桩钉或加强筋的特殊结构。然而由于废旧机床导轨在修复过程中将不可避免的去除表面的组织细密部分,会导致机床导轨母体的机械性能、硬度等大大的降低,故先采取高频电脉冲处理,使的母体材料的组织细化,从而达到甚至超过原母体的机械性能、硬度等指标。
表1.C6140B型废旧机床导轨再生应用实例
Figure BDA00002708966900061
表2.Z3140A万向摇臂钻床再生应用实例
Figure BDA00002708966900062
Figure BDA00002708966900071
表3.TPX6111B卧式铣镗床再生应用实例
Figure BDA00002708966900072
Figure BDA00002708966900081
注:使用效果均是与新机床导轨的使用寿命比较所得。
表中所示的试验实例均是在高频电脉冲参数触发电压为1000~6000mV,循环次数为5~25次,循环时间为5~25ms。激光熔凝参数采用激光器功率为300W,离焦量±5.5mm,激光电流100~350mA,激光脉宽4~15ms,当单元体3为圆柱状时,激光出光频率为1Hz,激光光束驻留时间为1~2s;当单元体3为网格状时,激光出光频率为5~15Hz,激光扫描速度为0.5~6mm/s的条件下完成的(单元体深度都为0.2mm)。

Claims (10)

1.一种仿生耦合铸铁导轨,其特征在于由导轨主体(1)及其表面组织细化层(2)构成;所述表面组织细化层(2)上分布有纳米级马氏体单元体(3)。
2.根据权利要求1所述的仿生耦合铸铁导轨,其特征在于所述表面组织细化层(2)的共晶团平均尺寸为0.01~0.3mm。
3.根据权利要求1或2所述的仿生耦合铸铁导轨,其特征在于所述表面组织细化层(2)的深度d1为0.8-2mm。
4.根据权利要求3所述的仿生耦合铸铁导轨,其特征在于所述单元体(3)为圆柱状,其直径D为0.5~4mm,间距s为0.5~4mm,深度d2为0.1~0.8mm。
5.根据权利要求3所述的仿生耦合铸铁导轨,其特征在于所述单元体(3)呈条纹交叉分布构成的网格状;网格状单元体的条纹宽度w为0.5~4mm,间距s为0.5~4mm,倾斜角度α为0~90°,深度d2为0.1~1.5mm。
6.一种如权利要求1所述的仿生耦合铸铁导轨的制作方法,包括下述步骤:
步骤一,利用高频电脉冲对导轨进行处理,得到表面组织细化层(2);
步骤二,采用激光熔凝方法,在表面组织细化层上制备纳米级马氏体单元体。
7.根据权利要求6所述的仿生耦合铸铁导轨,其特征在于所述高频电脉冲触发电压为1000~6000mV,循环次数为5~25次,单脉冲循环时间为5~25ms。
8.根据权利要求6所述的仿生耦合铸铁导轨,其特征在于所述单元体为圆柱状,激光熔凝方法采用激光器功率为300W,离焦量±5.5mm,激光电流100~350mA,激光出光频率1Hz,激光光束驻留时间为1~2s,激光脉宽4~15ms。
9.根据权利要求6所述的仿生耦合铸铁导轨,其特征在于所述单元体为网格状,激光熔凝方法采用激光器功率为300W,离焦量±5.5mm,激光电流100~350mA,激光出光频率5~15Hz,激光脉宽4~15ms,激光光束扫描速度为0.5~6mm/s。
10.一种废旧机床导轨再生方法,包括下述步骤:
步骤一,对废旧机床导轨的表面进行机械切削获得一个平整的表面;
步骤二,利用高频电脉冲对平整表面进行电脉冲预处理得到表面组织细化层;所述高频电脉冲触发电压为1000~6000mV,循环次数为5~25次,单脉冲循环时间为5~25ms;
步骤三,利用激光器对预处理过的导轨表面的设定区域进行扫描,使激光扫描区域的导轨表面材料快速熔化和凝结,得到纳米级马氏体单元体,最终在导轨表面形成分布有纳米级马氏体单元体的表面组织细化层;所述激光器功率为300W,离焦量±5.5mm,激光电流100~350mA,激光脉宽4~15ms,当单元体3为圆柱状时,激光出光频率为1Hz,激光光束驻留时间为1~2s;当单元体3为网格状时,激光出光频率为5~15Hz,激光扫描速度为0.5~6mm/s。
CN201310003955.8A 2013-01-06 2013-01-06 仿生耦合铸铁导轨及其制作方法、废旧机床导轨再生方法 Expired - Fee Related CN103111850B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310003955.8A CN103111850B (zh) 2013-01-06 2013-01-06 仿生耦合铸铁导轨及其制作方法、废旧机床导轨再生方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310003955.8A CN103111850B (zh) 2013-01-06 2013-01-06 仿生耦合铸铁导轨及其制作方法、废旧机床导轨再生方法

Publications (2)

Publication Number Publication Date
CN103111850A true CN103111850A (zh) 2013-05-22
CN103111850B CN103111850B (zh) 2015-07-29

Family

ID=48410264

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310003955.8A Expired - Fee Related CN103111850B (zh) 2013-01-06 2013-01-06 仿生耦合铸铁导轨及其制作方法、废旧机床导轨再生方法

Country Status (1)

Country Link
CN (1) CN103111850B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104759791A (zh) * 2014-09-23 2015-07-08 上海船舶工艺研究所 一种用于切割与焊接自动化小车的全位置导轨的制备方法
CN105081577A (zh) * 2015-09-24 2015-11-25 吉林大学 一种激光仿生耦合导轨及其再生方法
CN106893970A (zh) * 2017-02-24 2017-06-27 吉林大学 一种使用激光渗碳强化处理铁路钢轨的方法
CN108115283A (zh) * 2017-12-12 2018-06-05 吉林大学 根据成分与工况制备耦合仿生表面的方法及热镦模具
CN108941561A (zh) * 2018-08-07 2018-12-07 吉林大学 一种耐高温冲蚀磨损的耦合仿生零部件
CN111390136A (zh) * 2020-04-23 2020-07-10 江苏拜欧尼克智能科技有限公司 一种仿生梯度表面球铁冲头及其加工方法
CN115430840A (zh) * 2022-08-29 2022-12-06 中南大学 一种基于激光增材制造的弱刚度零件多功能表面改性方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010015348A1 (en) * 1999-07-12 2001-08-23 Christmas Darryl L. Laser hardened steel cutting rule
CN1598003A (zh) * 2004-08-10 2005-03-23 万向钱潮股份有限公司 一种花键轴加工预处理工艺
CN101117654A (zh) * 2007-09-13 2008-02-06 沈阳大陆激光成套设备有限公司 机床导轨宽带激光淬火工艺
CN102121217A (zh) * 2011-01-30 2011-07-13 武汉华工激光工程有限责任公司 一种用于钢轨表面强化处理的在线激光淬火工艺
KR101158697B1 (ko) * 2004-04-21 2012-06-22 인덕터히트 인코포레이티드. 유도 가열에 의한 가공품의 다중?주파수 열처리

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010015348A1 (en) * 1999-07-12 2001-08-23 Christmas Darryl L. Laser hardened steel cutting rule
KR101158697B1 (ko) * 2004-04-21 2012-06-22 인덕터히트 인코포레이티드. 유도 가열에 의한 가공품의 다중?주파수 열처리
CN1598003A (zh) * 2004-08-10 2005-03-23 万向钱潮股份有限公司 一种花键轴加工预处理工艺
CN101117654A (zh) * 2007-09-13 2008-02-06 沈阳大陆激光成套设备有限公司 机床导轨宽带激光淬火工艺
CN102121217A (zh) * 2011-01-30 2011-07-13 武汉华工激光工程有限责任公司 一种用于钢轨表面强化处理的在线激光淬火工艺

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
吕然超 等: "金属材料应用电脉冲处理技术的研究现状", 《热加工工艺》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104759791A (zh) * 2014-09-23 2015-07-08 上海船舶工艺研究所 一种用于切割与焊接自动化小车的全位置导轨的制备方法
CN105081577A (zh) * 2015-09-24 2015-11-25 吉林大学 一种激光仿生耦合导轨及其再生方法
CN106893970A (zh) * 2017-02-24 2017-06-27 吉林大学 一种使用激光渗碳强化处理铁路钢轨的方法
CN108115283A (zh) * 2017-12-12 2018-06-05 吉林大学 根据成分与工况制备耦合仿生表面的方法及热镦模具
CN108115283B (zh) * 2017-12-12 2020-06-09 吉林大学 根据成分与工况制备耦合仿生表面的方法及热镦模具
CN108941561A (zh) * 2018-08-07 2018-12-07 吉林大学 一种耐高温冲蚀磨损的耦合仿生零部件
CN111390136A (zh) * 2020-04-23 2020-07-10 江苏拜欧尼克智能科技有限公司 一种仿生梯度表面球铁冲头及其加工方法
CN111390136B (zh) * 2020-04-23 2021-10-08 江苏拜欧尼克智能科技有限公司 一种仿生梯度表面球铁冲头及其加工方法
CN115430840A (zh) * 2022-08-29 2022-12-06 中南大学 一种基于激光增材制造的弱刚度零件多功能表面改性方法
CN115430840B (zh) * 2022-08-29 2023-07-25 中南大学 一种基于激光增材制造的弱刚度零件多功能表面改性方法

Also Published As

Publication number Publication date
CN103111850B (zh) 2015-07-29

Similar Documents

Publication Publication Date Title
CN103111850B (zh) 仿生耦合铸铁导轨及其制作方法、废旧机床导轨再生方法
CN102302964B (zh) 一种具有仿生耦合耐磨表层的水泥磨辊及其制作方法
Kuo et al. Multi-objective optimisation in vibration-assisted drilling of CFRP/Al stacks
CN105108503B (zh) 一种多结构异距仿生表面组合的铸铁导轨及其再生方法
Jain Nanofinishing science and technology: basic and advanced finishing and polishing processes
CN102152068A (zh) 活塞杆的制造方法
CN105081577A (zh) 一种激光仿生耦合导轨及其再生方法
CN103111793A (zh) 在壁厚部件表面制备大深度仿生异质体的方法
CN104259759A (zh) 螺纹环规制造方法
CN103357854B (zh) 一种陶瓷强化耐磨钢球
Varpe et al. Optimization of Burnishing process by Taguchi method for surface enhancement of EN31 steel
US20180257150A1 (en) Sawtooth structure with reversed cutting function and its drill series
CN107574287A (zh) 一种表面激光淬火具有非光滑单元体的模具加工工艺
CN106893970A (zh) 一种使用激光渗碳强化处理铁路钢轨的方法
CN207071798U (zh) 一种用于模具钢加工的高稳定性铣床
Pan et al. Influence of different textures on machining performance of a milling tool
CN104175074A (zh) 利于螺纹环规制造效率的生产方法
CN202192310U (zh) 一种粗精一体铣刀
Li et al. [Retracted] Numerical Simulation of Fine Blanking Die Wear and Die Performance Analysis
CN201896934U (zh) 液压缸用活塞销焊接组件
CN202192311U (zh) 一种螺旋立铣刀
Liu et al. Study of surface quality and cutting parameter optimization in side milling CFRP with diamond coated carbide tool
CN104148911A (zh) 直缝焊管扩径头扩径模具及其制作工艺
CN103071822A (zh) 高强度钢高性能切削用超硬刀具
Liu et al. Performance evaluation of coated cemented carbide inserts milling 508III steel

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150729

Termination date: 20210106