CN103108585B - 用于自动处理血压信号的方法与装置 - Google Patents

用于自动处理血压信号的方法与装置 Download PDF

Info

Publication number
CN103108585B
CN103108585B CN201180042812.7A CN201180042812A CN103108585B CN 103108585 B CN103108585 B CN 103108585B CN 201180042812 A CN201180042812 A CN 201180042812A CN 103108585 B CN103108585 B CN 103108585B
Authority
CN
China
Prior art keywords
point
pressure
heartbeat
value
pressure signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201180042812.7A
Other languages
English (en)
Other versions
CN103108585A (zh
Inventor
萨尔瓦托雷·罗马诺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CN103108585A publication Critical patent/CN103108585A/zh
Application granted granted Critical
Publication of CN103108585B publication Critical patent/CN103108585B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/02108Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics
    • A61B5/02125Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics of pulse wave propagation time
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/02108Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/0215Measuring pressure in heart or blood vessels by means inserted into the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7239Details of waveform analysis using differentiation including higher order derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/725Details of waveform analysis using specific filters therefor, e.g. Kalman or adaptive filters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Cardiology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physics & Mathematics (AREA)
  • Physiology (AREA)
  • Vascular Medicine (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Psychiatry (AREA)
  • Signal Processing (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • External Artificial Organs (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

本发明涉及用于从检测到的压力信号处理血压的自动化方法、系统与模块,该方法在时间域中工作,以确定联系到所监测生物系统的能量效率的值(RES)。

Description

用于自动处理血压信号的方法与装置
技术领域
本发明涉及用于自动处理血压的方法、装置与程序,使得估计整个心血管系统的能量效率(RES)可靠、通用、有效、简单和廉价,从而提供对所监测的生物系统的熵的估计。
根据本发明估计出的RES值对于随时间监测被看作复杂生物系统的病人和这种系统的部分或组分(即,被监测的病人的器官或者器官组)的状态与演进都是有用的。
根据本发明估计出的RES值对于正确地测量血压也能够是有用的,而且关于血压的变化是自适应的,从而消除了常规系统的测量变化。
本发明还涉及相应的检测系统及允许执行该方法的模块。
背景技术
已知血压的测量可以是侵袭性的或者非侵袭性的。
侵袭性测量通常是通过链接到侵袭性导管的充盈(filling)线压力来执行的,在该导管的一端配备了将所测量到的压力转换成电势差的换能系统。
不像非侵袭性系统,例如Riva-Rocci腕式血压计,侵袭性测量不仅揭示最大和最小实测压力,而且还揭示所检测信号的形态。
因此,侵袭性测量比非侵袭性测量更可靠,而且可以揭示直接影响测试结果的心脏-动脉电路耦合的特性。事实上,收缩和舒张血压及心跳形态与心脏的收缩性和循环系统紧密相关,由链接到压力-容积曲线(P-V)并且由压力值与时间间隔之比给出的所谓动态阻抗Zd(t)识别。
但是,基于侵袭性血压测量的技术常常由于最大和最小压力测量中及由此引起的其形态中的显著不准确性而得出问题。事实上,许多作者都已经证明压力信号的不充分欠阻尼的存在会导致显著的测量误差,甚至有几十毫米汞柱(mm Hg)。
为了解决这些问题,已经提出了一些基于对信号压力应用低通滤波器(即,涉及使用截止频率的固定值的压力信号的频率处理)和/或使用能够阻尼(dampen)所检测压力波的频率成分的机械系统的解决方案。
特别地,目前用于确定所检测的信号具有或者没有正确欠阻尼的机械系统使用由RM Gardner在1981年3月Anesthesiology第54卷第3期第227-236页上发表的“Direct Blood Pressure Measurement–Dynamic Response Requirements”中所描述的机械方波测试,其需要由医师检测的压力信号的可视观察。例如,这是系统ROSETM(谐振过冲消除器,可以从美国公司Becton Dickinson Critical Care System LTD.获得)和系统(可以从HOSPIRA–ICU Medical获得)的情况。这些系统机械地起作用,强加机械阻尼:在系统 系统中,机械阻尼在小阻尼范围内是可以经小旋钮调节的,与该旋钮的旋转相关,该小旋钮推进穿入压力线的引脚;在ROSES系统中,机械阻尼设备是通过微泡和弹性膜设置的,其然后以固定方式作用于任何压力信号(预先固定的良好定义的阻尼)。
但是,所有这些系统都是对动态问题以预先固定(静态)的方式工作,因为它们只考虑由线压力分析的信号的频谱。这意味着某些条件下同一个病人的频谱是充分的,而在其他病理生理条件下是显然不充分的,这导致血压的过度估计。
事实上,欠阻尼的正确性是与所考虑的具体心率关联(及与所考虑的具体病人的心血管系统关联)的动态问题,因此,它会从心跳到心跳改变,因此压力线依赖它在其中使用的情形而不同地响应。
例如,图1示出了一种典型的血压信号,其中心跳的形态与收缩和舒张压的值都有变化(见图1a),而且该差异导致了用于测量血压的常规系统对于具体的心跳(尤其是靠近收缩压的心跳)不应用或者 应用三个不同的截止频率(无滤波器、15Hz、10Hz、6Hz)(见图1b)。图2示出了通过不应用或者应用三个不同的截止频率(无滤波器、15Hz、10Hz、6Hz)所获得的、涉及同一个血压信号的两次连续心跳的收缩压中的差异(见图2a和2b)。图3示出了常规测量系统在检测心跳并且不应用或者应用两个不同的截止频率时(无滤波器、15Hz、6Hz)(见图3a)及不应用或者应用一个截止频率时(无滤波器、10Hz)(见图3b)时如何工作,尤其是靠近收缩压;特别地,很显然,6Hz的截止频率造成过度阻尼或者过阻尼(见图3a),而截止频率在10Hz的滤波器是最适当的(见图3b)。图4示出了其中相同的滤波器不同地工作的两个血压信号:在图4a中,截止频率在10Hz的滤波器看起来是无效的,而在图4b中,同一个截止频率在10Hz的滤波器显著起作用;特别地,对于图4中所示的心跳,截止频率在6Hz的滤波器是最适当的。
此外,压力换能器的响应不仅依赖于长度、直径、材料类型和充盈线压力的液体的特性,而且依赖于它与导管直径、动脉音、脉搏频率及所监测病人血管的硬度的耦合。就此而言,近年来,为了限制测量变化,已经对优化最佳长度、直径、充盈液体、导管及材料类型的特性作出了很大的努力。特别地,已经做出了可以减少测量变化的光学压力线。
但是,所有的常规系统都没有解决血压的不正确测量的全部以上问题,而且这是非常常见的,尤其是在最需要检测的情况下,例如对于年老的、非常年轻的、败血病、心动过速病人及动脉音和节律都极端不稳定(例如,由于心房纤维性颤动)的病人。
发明内容
本发明的一个目标是提供用于随时间监测被看作复杂生物系统的病人和这种系统的部分或组分,即被监测的病人的器官或者器官组,的状态与演进的RES的可靠评估。
本发明的另一个目标是提供用于正确测量血压的方法,该方法关 于血压的变化是自适应的,从而消除了常规系统的测量变化。
根据本发明的方法与系统是由所附权利要求限定的。
根据本发明的方法涉及基于通过心跳中压力信号的形态获得的直达波压力和反射压力波的阻抗确定表征所监测病人的器官与器官集合的功能的值(RES)。
例如,根据本发明的方法还可以用于基本上基于应用到所检测动态压力信号(例如,来自桡动脉、股动脉、主动脉或者肺动脉)的低通滤波器实现这样的系统,其中,直接工作在时间域中的滤波器还考虑从压力信号(或者曲线)的时刻之间的分析获得的特性动态阻抗与压力线之间的耦合,以对所使用的压力线确定最适当的工作频率。换句话说,例如,根据本发明的方法还可以用于产生这样的系统,其基于链接到心血管系统的特性动态阻抗与压力检测系统的所得耦合的关于压力信号的各个参数的值的特性条件集合,而不是特性频谱。就此而言,可以根据本发明对其应用该方法的所检测到的压力信号还可以是记录的信号。
例如,根据本发明的方法允许确定关联心脏循环能量的正确阻抗,以便校正并确定真实的压力,并且因此,通过关联P-V(压力-容积),来确定链接到校正后的压力波形的正确血流和/或确定由于正确的所得波压力造成的心肌收缩性。这些目的在于获得适当压力值的校正对于基于充盈线和光学线的检测系统及对于非侵袭性示波压电检测器都是有效的(考虑所有这些系统总是致力于检测系统的阻抗与心血管系统的阻抗之间的耦合)。此外,这些校正对于在动脉中心和外围系统(例如肺动脉、主动脉、股动脉和桡动脉)中检测到的压力信号也是有效的。
根据本发明的方法提供了许多优点:关于根据本发明确定的RES值,有可能获得关于所监测病人的器官与器官集合的状态的可靠和有用信息;此外,通过测量测量线与病人心血管系统之间的耦合,有可能解决由于动脉压力线与测量其血压的病人的动态特性的耦合所造成的问题,其中动态特性常常在心跳之间变化;而且,通过应用适当的 动态阻尼,根据本发明的方法允许从检测到的压力信号中除去任何变化,从而获得动态阻抗和血压的正确测量,这使得有可能从外围压力获得对左心室内部压力的最大偏离([dP/dt]max)的估计,其中左心室内部的压力产生在外围检测到的脉搏。事实上,即使基于外围压力的最大偏离,根据本发明的方法也可以用于确定应用到所述外围压力以便估计心室压力的校正因子(即,低通滤波器),考虑测量线与病人心血管系统之间的耦合(例如,在刚性外围血管的情况下,必须应用大的校正)。这意味着,通过利用根据本发明的方法所应用的动态滤波,除去了与动脉硬度相关的贡献,只留下链接到已产生脉搏压力的心室的特性的基本成分。
换句话说,根据本发明的方法允许血压的适当测量,而且,除此之外,允许确定估计心室压的最大偏离dP/dtmax的校正因子,从而确定整个心血管系统的能量效率,并因此提供对生物系统的熵的估计;事实上,通过效率的概念,有可能考虑关联到例如心动周期的“不可恢复的”机械能量。这种效率描述了所考虑的有机体的生物系统的“储备”中有多少被消耗,因为储备的消耗意味着消耗生理系统的“组分”(例如,器官、腺(生化反应)、心脏的电系统,等)。
附图说明
现在将参考优选实施例,特别是参考附图,来描述本发明,这种描述是为了说明而不是限制,其关于血压测量方法的应用,其中:
图1示出了血压信号(图1a)和通过对具体的心跳不应用或者应用三个不同的截止频率由常规血压测量获得的不同结果(见图1b);
图2示出了通过应用不具有或者具有三个不同的截止频率的常规系统获得的同一血压信号中的两次连续心跳;
图3示出了通过应用不具有或者具有两个不同的第一截止频率的常规系统(图3a)和应用不具有或者具有第二截止频率的常规系统(图3b)获得的脉搏;
图4示出了通过对常规系统不应用或者应用两个相同滤波器获得 的两个血压信号;
图5示出了根据本发明的自动化方法的优选实施例的框图;及
图6示出了应用图5的方法的单个脉搏的压力信号。
具体实施方式
本发明人已经开发出了用于估计RES的方法,该方法还允许正确地从检测到的压力信号测量血压,该方法工作在时间域中,以区分所检测到的信号是否是适当的测量,而且如果不是适当的测量的话,时间域中的分析自动地选择低通滤波器来应用,从而具有正确的血压值和波形。就此而言,本发明人已经验证了根据本发明的方法还可以应用成在根据本发明方法应用滤波器之前或之后通过方波测试提供具有适当欠阻尼的压力信号。
优选地,所检测的压力信号是通过侵袭性检测技术可以获得的,该技术例如股动脉、桡动脉、肱动脉或肺动脉中或者主动脉中的所谓的充盈压力线或光纤压力线,或者是通过非侵袭性检测技术可以获得的,该技术例如压电或示波体积描记法。但是,要对其应用根据本发明的方法的所检测的压力信号还可以是被记录并且随后通过使其经受本发明的方法来分析的信号,因此,本发明的保护范围不包括对病人身体的任何侵袭性手术程序。
更具体而言,根据本发明的方法是基于脉搏频率的(即,它使用心跳的总时间间隔和心跳本身当中各个压力点的相对距离),心跳的一些特性点使用实测血压的一阶导数(dP/dt)和实测血压的二阶导数(d2P/dt2),并且一些使用直达波压力(其从心脏传播到外围)和反射压力波(其从外围传播到心脏)的具体时刻处的动态阻抗值Zd(t)。
从这样获得的动态阻抗的值,本方法涉及评估压力是否正确,而且,如果不正确的话,则该方法涉及选择低通滤波器的截止频率,优选地是在0.5Hz和100Hz之间,更优选地是2Hz和80Hz之间,进一步优选地是3Hz和60Hz之间,以应用到所检测到的信号,使得该截止频率是最适当的检测条件,因此本方法动态地适应可能在心跳之 间和时刻之间出现的检测的变化。
换句话说,根据本发明的方法允许使用所考虑的脉动心跳的独特特性,并且通过它们来确定具有可变截止频率的适当的低通滤波器,以便应用合适的欠阻尼。
参考图5,根据本发明的方法的实现与应用的可能形式包括以下步骤:
A.通过压力换能器(优选地是通过侵袭性动脉压力线,或者通过非侵袭性技术,例如通过体积描记示波方法)检测压力信号,所述信号优选地是利用1000Hz的采样频率采样的;
B.自动分析并区分针对每次心跳(从舒张血压的起点到舒张压的下一个点,考虑心跳的起点,即舒张压的起点,作为心跳的舒张压的点)的所采样的波(即信号)压力的形态;
C.对于每次心跳,确定包含(或者包括)直达压力波阻抗和反射压力波阻抗及作为结果的整个心血管系统的能量效率的评估值;
D.验证是否有必要应用低通滤波器,而且,在肯定的情况下执行步骤E,否则就执行步骤F,假设实测压力信号与采样的压力信号是相同的;
E.基于步骤B所进行的分析和步骤C所进行的评估来选择低通滤波器的截止频率,并且将低通滤波器应用到采样的压力信号,由此获得新的采样的压力信号,并且返回到步骤B;
F.提供实测压力信号,优选地是通过在显示器上显示它。
用于对心跳期间所检测到的压力波(即信号)的形态进行自动分析的步骤B区分并分析心跳的形状或形态,从而检测关于从心跳起点开始的具体点,尤其是单次心跳中舒张血压(心跳的初始)、收缩压、重搏和谐振的特性点,的压力与时间(如以下将公开的,其被看作从心跳起点——即初始舒张压时刻——开始的间隔,或者,反过来,从心跳结束时刻开始的间隔)的特性。
更具体地说,步骤B包括以下子步骤:
B.1确定舒张压点(对应于单次心跳中“初始”绝对最小压力信 号)、收缩压点(对应于单次心跳中压力信号的绝对最大值)和重搏点(对应于主动脉心脏瓣膜闭合而且从数学上对应于二阶导数的相对最大值或者压力曲线紧接着出现在收缩压点之后的相对最小值的点)的压力和时刻,
B.2确定在单次心跳的范围内(所采样)压力信号的一阶导数dP/dt的相对最大值(包括绝对最大值)的点的总数NdP-max
B.3确定在单次心跳的范围内(所采样)压力信号的二阶导数d2P/dt2的相对最大值(包括绝对最大值)的点,及
B.4确定具有最高值的二阶导数d2P/dt2的相对最大值的NdP-max个点(即,选择等于先前确定的一阶导数dP/dt的相对最大值的点的总数NdP-max的二阶导数d2P/dt2的相对最大值的多个点)并且确定它们在其中出现的NdP-max个时刻td2P_max(i)(i从1变到NdP-max),考虑所述NdP-max个时刻td2P_max(i)中压力信号的点作为谐振点。
特别地,单次心跳的范围内二阶导数d2P/dt2的相对最大值的个数NdP-max与一阶导数dP/dt的相对最大值点的总数之间的联系允许消除由于噪声造成的二阶导数d2P/dt2的相对最大值点。就此而言,舒张期峰值的点(即,重搏切迹——即重搏点——之后和跟随该重搏点的凸起(bump)之后的最高相对最大值)总是在步骤B.4中在谐振点中选择的。
作为非限制性例子,心跳和对应的压力特性点可以通过如WO2004/084088中所公开的方法来区分和个性化。
作为例子,图6示出了单次心跳的压力信号,其中:
-p0是心跳开始的时刻t0(即,心跳中初始舒张压的点的时刻)的舒张血压(心跳的初始)的值;
-p2是在收缩压点的时刻t2的收缩压的值;
-p4是在时刻t4出现的重搏点的压力;
-p1、p3、p5、p6和pf是在时刻t1、t3、t5、t6和tf出现的谐振点的压力值(基于一阶导数dP/dt的相对最大值的点的总数NdP-max(等于5)和对应的二阶导数d2P/dt2的相对最大值中具有较高值的5 个点的选择来确定的)。
在图6中,点p5是跟在重搏点之后的隆起,而点p6是舒张期峰值(重搏切迹之后的相对最大值和紧接在此之后的可能凸起)。
步骤C确定整个心血管系统的能量效率的估计值,从而提供生物系统的熵的估计。特别地,确定——并且优选地显示——根据直达压力波阻抗和反射压力波所获得的心血管系统的值,该值在这里定义为系统的所得能量比(Resulting of the Energy ratio)或者RES,其中直达压力波阻抗和反射压力波是通过心跳中压力信号的形态获得的。所述阻抗是考虑心跳的特性点的压力与时间值来确定的,不仅包括舒张压点(心跳的起始点)、收缩压和重搏(位于包括子范围舒张-收缩和收缩-舒张的时间范围内——即位于单次心跳的收缩期中),而且还包括以上公开的步骤B中(更精确地说是子步骤B.4中)单次心跳期间个性化的谐振点,所述谐振点之间总是存在舒张期峰值(即,单次心跳的舒张期中重搏切迹之后的峰值)。
更具体地说,步骤C包括以下子步骤:
C.1基于心跳中第一组点(set_1)的动态阻抗之和确定直达压力波的阻抗ZD,其中这第一组点包括以上公开的属于单次心跳的收缩期(即,从初始舒张压的点到重搏点的范围内)的特性点中的那些点,初始舒张点除外;
C.2反射压力波的阻抗ZR是基于心跳中第二组点(set_2)的动态阻抗之和确定的,这第二组点包括以上提到的全部特性点(属于整个心跳);
C.3作为直达波压力的阻抗ZD与反射波的阻抗ZR之比确定RES值。
特别地,关于直达波压力的阻抗ZD,对于第一组中的每个点,确定对应的动态直达阻抗Zd-D(t),这是由关于那个点的压力值与相应时刻离心跳初始时刻,即离初始舒张点的时刻,的距离之比给出的(这也是为什么在第一组点中排除了初始舒张点的原因,其动态阻抗的分母将具有值0)。直达波压力的阻抗ZD的值是通过对第一组的动态阻 抗以交替的符号相加获得的,这些动态阻抗根据它们从初始舒张压时刻开始到重搏时刻的时间顺序来排序,对第一组的第一个点的动态阻抗赋予正号。
类似地,关于反射压力波的阻抗ZR,对于第二组中的每个点,也确定由那个点处的压力与从最后心跳时刻到相应时刻的距离之比给出的对应的动态反射阻抗Zd-R(t)。反射压力波的阻抗ZR的值是通过对这样确定的第二组点的动态阻抗以交替的符号相加获得的,这些动态阻抗根据它们从最后心跳时刻开始到初始舒张压时刻的反向时间顺序来排序,对第二组的第一个点的动态阻抗赋予正号。
换句话说,直达压力波和反射压力波的阻抗ZD和ZR均是由振荡的(因为考虑它们具有交替的符号)相应的一系列项(即,它们的直达动态阻抗Zd-D(t)和反射阻抗Zd-R(t))给出的,这些项的值逐步变小(因为动态阻抗分母中的值逐步增大)。
如上所述,RES值是通过(基于第一组点确定的)直达压力波的阻抗ZD与(基于第二组点确定的)反射压力波的阻抗ZR之比确定的:
RES=ZD/ZR
RES的这个值代表用于获得整个心血管-呼吸系统的给定稳态的能量效率。
在图6的作为非限制性例子给出的图中,属于第一组(set_1)的点是由连续的垂直线指示的(从时间轴到对应于各个点的压力值),而属于第二组(set_2)的点是由虚的垂直线指示的,因此,既属于第一组又属于第二组的点是由一对垂直线(一个连续的,另一个虚的)指示的。如图所示,第一组包括由p1、p2、p3和p4指示的点(以从初始舒张压时刻开始到重搏的顺序),而第二组包括由pf、p6、p5、p4、p3、p2、p1、p0指示的点(以从心跳结束开始到初始舒张压时刻的反向时间顺序)。
对于图6中所示的心跳,直达压力波的阻抗ZD的值是
Z D = p 1 t 1 - p 2 t 2 + p 3 t 3 - p 4 t 4
假定图中所示单次心跳的周期为T,那么反射压力波的阻抗ZR 的值是
Z R = pf ( T - tf ) - p 6 ( T - t 6 ) + p 5 ( T - t 5 ) - p 4 ( T - t 4 ) + p 3 ( T - t 3 ) - p 2 ( T - t 2 ) + p 1 ( T - t 1 ) - p 0 ( T - t 0 )
如前面所提到的,验证步骤D使用关于在步骤B和C中获得的值的特性条件集合来确定单次心跳是否受欠阻尼的影响,即,收缩压是否被过度估计或者舒张压是否被估计不足,或者,相反,心跳的形态是否正确。如果通过这种估计发现心跳在由所述特性条件集合给出的限制内,就不应用频率滤波而且该方法暗示(步骤F中)对应于所采样信号压力的实测压力信号的复原关于其频率和幅值没有改变。相反,如果所监测的心跳的特性在由所述特性条件集合定义的区间内,步骤E就借助通过应用具有确定的截止频率的低通滤波器修改所采样压力信号的频谱来提供校正,而且分析这样滤波后的采样压力信号的步骤B和确定评估值的步骤C再次运行,并且在另一个阶段D中检查这样获得的值是否在从所述特性条件集合强加的限制内。换句话说,所采样和滤波后的心跳压力信号再一次被分析:如果所获得的值与由所述特性条件集合定义的区间一致,则该方法(在步骤F中)返回对应于通过上一次滤波(而不应用附加滤波)获得的采样压力信号的实测压力信号;但是,如果所获得的值不在由所述特性条件集合强加的限制内,则以合适选择的截止频率重复进行滤波,而且该方法迭代地执行步骤B,直到获得其值与由所述特性条件集合定义的区间一致的信号。
更具体地说,步骤D验证:对于步骤C中确定的RES的值,整个心跳中压力信号的一阶导数dP/dt的值与压力信号的二阶导数d2P/dt2的值是否低于各自的最大阈值Td和Td2(RES值的函数),而且,在肯定的情况下,没有必要对压力信号应用任何滤波器而且该方法涉及直接执行步骤F,否则的话该方法就涉及步骤E的执行,对压力信号应用具有确定的截止频率的低通滤波器,而且所有步骤的执行从步骤B开始。
特别地,RES的可能的值被再分成三个或者更多个,优选地是四个以下(pre-four),相邻变化区间,而且值Td和Td2是步骤C中确定的RES所属于的区间的函数。优选地:
-如果RES的值不小于(或者甚至大于)不小于0.3,优选地不小于0.4,更优选地不小于0.5,的最小阈值TRES_min
-压力信号的一阶导数dP/dt的最大阈值Td不大于1.2mmH/ms,优选地不大于1.1mmH/ms,更优选地不大于1.0mmH/ms,而且
-压力信号的二阶导数d2P/dt2的最大阈值Td2不大于0.2mmH/ms2,优选地不大于0.17mmH/ms2,更优选地不大于0.15mmH/ms2
-如果RES的值在其下限大于0而且其上限不大于最小阈值TRES_min的第一区间内可变,该第一区间优选地是从0.3到0.5,
-压力信号的一阶导数dP/dt的最大阈值Td不大于1.6mmH/ms,优选地不大于1.4mmH/ms,更优选地不大于1.2mmH/ms,而且
-压力信号的二阶导数d2P/dt2的最大阈值Td2不大于0.25mmH/ms2,优选地不大于0.22mmH/ms2,更优选地不大于0.20mmH/ms2
-如果RES的值在与第一区间相邻而且在其之前(第一区间的下限与第二区间的上限重合)的第二范围(数学上开放或闭合)内可变,第二范围的下限不小于0,优选地是0,
-压力信号的一阶导数dP/dt的最大阈值Td不大于1.6mmH/ms,优选地不大于1.4mmH/ms,更优选地不大于1.2mmH/ms,而且
-压力信号的二阶导数d2P/dt2的最大阈值Td2不大于0.35mmH/ms2,优选地不大于0.30mmH/ms2,更优选地不大于0.27mmH/ms2,而且更优选地不大于0.25mmH/ms2
-如果RES的值小于(或者甚至不大于)与第二区间的下限重 合的最大阈值TRES_max
-压力信号的一阶导数dP/dt的最大阈值Td不大于2.0mmH/ms,优选地不大于1.8mmH/ms,更优选地不大于1.6mmH/ms,而且
-压力信号的二阶导数d2P/dt2的最大阈值Td2不大于0.45mmH/ms2,优选地不大于0.40mmH/ms2,更优选地不大于0.37mmH/ms2,而且更优选地不大于0.35mmH/ms2
验证步骤D测试了当满足以下四组条件中的任何一组时不需要对压力信号应用任何滤波器:
-RES≥0.5,一阶导数dP/dt在整个心跳期间都小于1.0mmH/ms,而且二阶导数d2P/dt2在整个心跳期间都小于0.15mmH/ms2
-0.3≤RES<0.5,一阶导数dP/dt在整个心跳期间都小于1.2mmH/ms,而且二阶导数d2P/dt2在整个心跳期间都小于0.2mmH/ms2
-0.0≤RES<0.3,一阶导数dP/dt在整个心跳期间都小于1.2mmH/ms,而且二阶导数d2P/dt2在整个心跳期间都小于0.25mmH/ms2
-RES<0.0,一阶导数dP/dt在整个心跳期间都小于1.6mmH/ms,而且二阶导数d2P/dt2在整个心跳期间都小于0.35mmH/ms2
如以上所提到的,步骤E基于步骤B的分析和步骤C的确定选择低通滤波器的截止频率,并且对所采样的压力信号应用该低通滤波器。特别地,步骤E如下地基于整个心率中RES的值和压力信号的一阶导数与二阶导数的值选择低通滤波器的截止频率:RES值被区分成三个或更多个,优选地是四个,相邻变化区间(优选地对应于验证步骤D中所使用的那些),对于这些区间中的每一个,压力信号的一阶导数dP/dt的值被区分成三个或更多个,优选地是六个,相邻变化区间,而且,对于一阶导数dP/dt的值的范围中的至少一个,压力信号的二阶导数d2P/dt2的值被区分成三个或更多个,优选地是四个,不 重叠的变化区间(彼此相邻而且,在适用的地方,与根据该方法不应用低通滤波器的二阶导数d2P/dt2的值的范围相邻),从而选择要应用的低通滤波器的对应的截止频率。
步骤E在四个相邻变化区间(对应于验证步骤D的那些)中区分RES值,对于这些区间中的每一个,在六个相邻变化区间中区分压力信号的一阶导数dP/dt的值,而且,对于一阶导数dP/dt的值的第一区间,在四个相邻变化区间(这些区间与对应于不对其应用低通滤波器的条件集合的区间是连续的)中区分二阶导数d2P/dt2的值。更具体地说,根据优选实施例,滤波器的截止频率是如下确定的:
1.如果RES的值满足条件RES≥0.5
1.1如果一阶导数的值在整个心跳期间都满足条件
dP/dt<1.0mmH/ms
1.1.1如果二阶导数的值在整个心跳期间都满足条件
0.15mmH/ms2≤d2P/dt2<0.25mmH/ms2
就应用截止频率为15Hz的低通滤波器;
1.1.2如果二阶导数的值在整个心跳期间都满足条件
0.25mmH/ms2≤d2P/dt2<0.30mmH/ms2
就应用截止频率为12Hz的低通滤波器;
1.1.3如果二阶导数的值在整个心跳期间都满足条件
0.30mmH/ms2≤d2P/dt2<0.35mmH/ms2
就应用截止频率为8Hz的低通滤波器;
1.1.4如果二阶导数的值在整个心跳期间都满足条件
d2P/dt2≥0.35mmH/ms2
就应用截止频率为7Hz的低通滤波器;
1.2如果一阶导数的值在整个心跳期间都满足条件
mmH/ms≤dP/dt<1.3mmH/ms
就应用截止频率为12Hz的低通滤波器;
1.3如果一阶导数的值在整个心跳期间都满足条件
1.3mmH/ms≤dP/dt<1.5mmH/ms
就应用截止频率为8Hz的低通滤波器;
1.4如果一阶导数的值在整个心跳期间都满足条件
mmH/ms≤dP/dt<2.5mmH/ms
就应用截止频率为7Hz的低通滤波器;
1.5如果一阶导数的值在整个心跳期间都满足条件
mmH/ms≤dP/dt<3.0mmH/ms
就应用截止频率为6Hz的低通滤波器;
1.6如果一阶导数的值在整个心跳期间都满足条件
dP/dt≥3.0mmH/ms
就应用截止频率为3Hz的低通滤波器;
2.如果RES的值满足条件0.3≤RES<0.5
2.1如果一阶导数的值在整个心跳期间都满足条件
dP/dt<1.2mmH/ms
2.1.1如果二阶导数的值在整个心跳期间都满足条件
0.2mmH/ms2≤d2P/dt2<0.25mmH/ms2
就应用截止频率为15Hz的低通滤波器;
2.1.2如果二阶导数的值在整个心跳期间都满足条件
0.25mmH/ms2≤d2P/dt2<0.35mmH/ms2
就应用截止频率为12Hz的低通滤波器;
2.1.3如果二阶导数的值在整个心跳期间都满足条件
0.35mmH/ms2≤d2P/dt2<0.45mmH/ms2
就应用截止频率为8Hz的低通滤波器;
2.1.4如果二阶导数的值在整个心跳期间都满足条件
d2P/dt2≥0.45mmH/ms2
就应用截止频率为7Hz的低通滤波器;
2.2如果一阶导数的值在整个心跳期间都满足条件
1.2mmH/ms≤dP/dt<1.5mmH/ms
就应用截止频率为13Hz的低通滤波器;
2.3如果一阶导数的值在整个心跳期间都满足条件
1.5mmH/ms≤dP/dt<1.8mmH/ms
就应用截止频率为10Hz的低通滤波器;
2.4如果一阶导数的值在整个心跳期间都满足条件
1.8mmH/ms≤dP/dt<2.5mmH/ms
就应用截止频率为8Hz的低通滤波器;
2.5如果一阶导数的值在整个心跳期间都满足条件
2.5mmH/ms≤dP/dt<3.5mmH/ms
就应用截止频率为6Hz的低通滤波器;
2.6如果一阶导数的值在整个心跳期间都满足条件
dP/dt≥3.5mmH/ms
就应用截止频率为3Hz的低通滤波器;
3.如果RES的值满足条件0.0≤RES<0.3
3.1如果一阶导数的值在整个心跳期间都满足条件
dP/dt<1.2mmH/ms
3.1.1如果二阶导数的值在整个心跳期间都满足条件
0.25mmH/ms2≤d2P/dt2<0.30mmH/ms2
就应用截止频率为15Hz的低通滤波器;
3.1.2如果二阶导数的值在整个心跳期间都满足条件
0.30mmH/ms2≤d2P/dt2<0.40mmH/ms2
就应用截止频率为12Hz的低通滤波器;
3.1.3如果二阶导数的值在整个心跳期间都满足条件
0.40mmH/ms2≤d2P/dt2<0.50mmH/ms2
就应用截止频率为8Hz的低通滤波器;
3.1.4如果二阶导数的值在整个心跳期间都满足条件
d2P/dt2≥0.50mmH/ms2
就应用截止频率为5Hz的低通滤波器;
3.2如果一阶导数的值在整个心跳期间都满足条件
1.2mmH/ms≤dP/dt<1.5mmH/ms
就应用截止频率为13Hz的低通滤波器;
3.3如果一阶导数的值在整个心跳期间都满足条件
1.5mmH/ms≤dP/dt<1.8mmH/ms
就应用截止频率为10Hz的低通滤波器;
3.4如果一阶导数的值在整个心跳期间都满足条件
1.8mmH/ms≤dP/dt<2.5mmH/ms
就应用截止频率为8Hz的低通滤波器;
3.5如果一阶导数的值在整个心跳期间都满足条件
2.5mmH/ms≤dP/dt<3.5mmH/ms
就应用截止频率为6Hz的低通滤波器;
3.6如果一阶导数的值在整个心跳期间都满足条件
dP/dt≥3.5mmH/ms
就应用截止频率为3Hz的低通滤波器;
4.如果RES的值满足条件RES<0.0
4.1如果一阶导数的值在整个心跳期间都满足条件
dP/dt<1.6mmH/ms
4.1.1如果二阶导数的值在整个心跳期间都满足条件
0.35mmH/ms2≤d2P/dt2<0.40mmH/ms2
就应用截止频率为15Hz的低通滤波器;
4.1.2如果二阶导数的值在整个心跳期间都满足条件
0.40mmH/ms2≤d2P/dt2<0.45mmH/ms2
就应用截止频率为12Hz的低通滤波器;
4.1.3如果二阶导数的值在整个心跳期间都满足条件
0.45mmH/ms2≤d2P/dt2<0.50mmH/ms2
就应用截止频率为8Hz的低通滤波器;
4.1.4如果二阶导数的值在整个心跳期间都满足条件
d2P/dt2≥0.50mmH/ms2
就应用截止频率为10Hz的低通滤波器;
4.2如果一阶导数的值在整个心跳期间都满足条件
1.6mmH/ms≤dP/dt<1.8mmH/ms
就应用截止频率为13Hz的低通滤波器;
4.3如果一阶导数的值在整个心跳期间都满足条件
1.8mmH/ms≤dP/dt<2.0mmH/ms
就应用截止频率为10Hz的低通滤波器;
4.4如果一阶导数的值在整个心跳期间都满足条件
2.0mmH/ms≤dP/dt<2.4mmH/ms
就应用截止频率为8Hz的低通滤波器;
4.5如果一阶导数的值在整个心跳期间都满足条件
2.4mmH/ms≤dP/dt<3.2mmH/ms
就应用截止频率为6Hz的低通滤波器;
4.6如果一阶导数的值在整个心跳期间都满足条件
dP/dt≥3.2mmH/ms
就应用截止频率为3Hz的低通滤波器。
以上为用于RES的各个相邻区间、一阶导数dP/dt的各个区间和二阶导数d2P/dt2的各个区间的下和/或上限指定的值及为截止频率所选择的值都仅仅是指示性的而不是详尽的,而且可以增大或减小优选地不多于25%,更优选地不多于20%,再优选地不多于15%,甚至更优选地不多于10%。
本发明人已经根据本发明的方法通过在频域中对心跳中所采样的压力信号的频谱及其在频率域中的一阶和二阶导数的分析检查了低通滤波器的效率。
最后,步骤F允许在显示器上显示最终通过最后一次滤波所获得的所采样的压力信号,从而示出这样获得的压力信号的测量值与形态。
如前面所提到的,以上提供的具体描述涉及用于确定RES的方法的应用,以便提供血压的正确测量值。
但是,如前面所提到的,RES的确定对于其他目的也是有用的。例如,在具有正常血压和心率的年轻病人中,RES≈0.3。如果RES>0.3(例如,RES=0.5至0.6),则指示病人存在由于可能败血性休克及随之而来的差肾灌注所导致的极端血管扩张。关于心血管系统的血 管的硬度,负的RES值(例如,-0.5或-0.6)将可以归因于差的心肌收缩性。或者,在从自然呼吸到呼吸暂停的过渡中,RES的快速增大指示次大面积的肺栓塞。还有,在重症护理中的心脏监测中,通过RES的确定,有可能控制计数-脉冲器(counter-pulser)(IABP)的效率:事实上,适当计数脉冲的心跳比未计数脉冲或者未适当计数脉冲的心跳使RES值上升更高。此外,在体外循环期间,RES假定非常负的值随这种状态的延长逐步变得更负。因此,RES可以突出应用这些机制的病人的心肺功能的机械支持机制的有效性。
RES的所述值可以依赖取得压力信号的点(桡动脉、股动脉、主动脉弓、肺动脉)而变化。在桡动脉取得的信号产生比基于在更大动脉中取得的信号所确定的那些更高的RES值。随时间,即在监测病人期间,RES的演进提供了关于生物系统对各种刺激和应力的响应的指示,其中所述刺激和应力包括药理应力和刺激。
从以上描述,很显然,根据本发明的RES确定可以具有几种实践应用。以上给出的适用例子不应当从任何限制的意义来解释。
以上描述说明了本发明的一些实施例和变体,但是,在不背离由所附权利要求限定的所准予的保护的情况下,本领域任何技术人员都可以进行修改和变化。

Claims (5)

1.一种用于自动处理血压信号的方法,至少包括以下步骤:
A.对于一次或多次心跳采样检测到的压力信号P(t),每次心跳在与初始舒张压的初始时刻重合的初始时刻开始并且在与后续舒张压的最后时刻重合的最后时刻结束而且包括重搏点,每次心跳具有包括在初始舒张点与重搏点之间的收缩期;及
B.对于每次心跳自动分析并区分所采样的压力信号P(t)的形态,从而确定选自包括以下项的组中的压力信号P(t)的一个或多个特性点的时刻和压力值:初始舒张压的点;收缩压的点;重搏点;及一个或多个谐振点,每个谐振点都在压力信号P(t)的二阶导数d2P/dt2具有相对最大值时出现,其中压力信号P(t)的至少一个特性点属于心跳的收缩期而且与初始舒张压的点不同;
该方法的特征在于还包括以下步骤:
C.对于每次心跳,通过以下子步骤确定能量效率值
C.1对于属于所考虑的心跳的收缩期的所述一个或多个特性点中的每一个,除初始舒张压的点之外,确定直达动态压力波阻抗Zd-D(t),所述直达动态压力波阻抗Zd-D(t)是由该特性点中压力信号P(t)的值与该时刻距所考虑的心跳的初始时刻的距离之比给出的,而且通过将根据从所考虑的心跳的初始时刻开始直到重搏时刻的直接时间顺序排序的直达动态压力波阻抗Zd-D(t)的值以交替的符号相加来确定直达压力波的阻抗ZD,对根据该直接时间顺序的第一直达动态压力波阻抗Zd-D(t)赋予正号;
C.2对于所述一个或多个特性点中的每一个,确定由该特性点的压力与相应时刻距最后心跳的时刻的距离之比给出的动态反射阻抗Zd-R(t),并且确定反射压力波的阻抗ZR的值是通过将这样确定的、根据其从最后心跳的时刻开始到初始舒张压的时刻的反向时间顺序排序的第二组点的动态反射阻抗以交替的符号相加来获得的,对根据该反向时间顺序的第一动态反射阻抗Zd-R(t)赋予正号;
C.3作为直达压力波的阻抗ZD与反射压力波的阻抗ZR之比来确定所述能量效率值RES∶RES=ZD/ZR
2.如权利要求1所述的方法,其特征在于,所述一个或多个谐振点是在步骤B中通过以下子步骤确定的:
B.2确定在单次心跳的范围内采样的压力信号的一阶导数dP/dt的相对最大值的点的总数NdP-max
B.3确定在单次心跳的范围内压力信号的二阶导数d2P/dt2的相对最大值的点;及
B.4确定具有最高值的二阶导数d2P/dt2的相对最大值的NdP-max个点,并且确定它们在其中出现的NdP-max个时刻td2P_max(i),考虑所述NdP-max个时刻td2P_max(i)中的压力信号的点作为谐振点。
3.如权利要求1或者2所述的方法,其特征在于,在步骤B中,确定压力信号P(t)的以下特性点:
-初始舒张压的点,
-收缩压的点,
-重搏点,及
-一个或多个谐振点。
4.如权利要求1或者2所述的方法,其特征在于,在步骤C中,RES被示出在显示器上。
5.一种用于处理血压信号的自动化装置,其特征在于,它包括用于执行如权利要求1或者2所述的方法的步骤的处理模块。
CN201180042812.7A 2010-09-06 2011-09-02 用于自动处理血压信号的方法与装置 Active CN103108585B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
ITRM2010A000468 2010-09-06
ITRM2010A000468A IT1402427B1 (it) 2010-09-06 2010-09-06 Metodo automatico di misura ed elaborazione della pressione sanguigna.
PCT/IB2011/002025 WO2012032386A1 (en) 2010-09-06 2011-09-02 Method, apparatus and program for the automatic processing of blood pressure signals

Publications (2)

Publication Number Publication Date
CN103108585A CN103108585A (zh) 2013-05-15
CN103108585B true CN103108585B (zh) 2015-04-29

Family

ID=43739087

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201180042812.7A Active CN103108585B (zh) 2010-09-06 2011-09-02 用于自动处理血压信号的方法与装置
CN201180053466.2A Active CN103200864B (zh) 2010-09-06 2011-09-05 用于测量和处理血压的自动方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201180053466.2A Active CN103200864B (zh) 2010-09-06 2011-09-05 用于测量和处理血压的自动方法

Country Status (12)

Country Link
US (3) US20130172761A1 (zh)
EP (2) EP2613691B1 (zh)
CN (2) CN103108585B (zh)
AU (1) AU2011300338B2 (zh)
BR (2) BR112013005065B1 (zh)
CA (1) CA2809930C (zh)
ES (2) ES2578998T3 (zh)
HK (1) HK1187225A1 (zh)
IT (1) IT1402427B1 (zh)
PL (2) PL2613691T3 (zh)
RU (1) RU2552685C2 (zh)
WO (2) WO2012032386A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1402427B1 (it) 2010-09-06 2013-09-04 Romano Metodo automatico di misura ed elaborazione della pressione sanguigna.
ES2810801T3 (es) * 2015-02-27 2021-03-09 Preventicus Gmbh Aparato y método para determinar la presión sanguínea
WO2017013020A1 (en) * 2015-07-17 2017-01-26 Koninklijke Philips N.V. Devices, systems, and methods for assessing a vessel
KR20180010847A (ko) * 2016-07-22 2018-01-31 엘지전자 주식회사 와치 타입의 이동 단말기 및 그 제어방법
US20220400959A1 (en) * 2021-06-22 2022-12-22 Apple Inc. Non-invasive blood pressure measurement techniques based on wave shape change during an external pressure cycle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5743267A (en) * 1995-10-19 1998-04-28 Telecom Medical, Inc. System and method to monitor the heart of a patient
CN1348341A (zh) * 1999-04-27 2002-05-08 萨尔瓦多·罗马诺 测量心脏血流输出量的方法和装置
CN1759387A (zh) * 2003-03-17 2006-04-12 马泰奥·波那尼 用于辨别心跳的自动化方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5810734A (en) * 1994-04-15 1998-09-22 Vital Insite, Inc. Apparatus and method for measuring an induced perturbation to determine a physiological parameter
US7025718B2 (en) * 2002-11-19 2006-04-11 Jonathan Williams Method and device for correcting in-vivo sensor drift
RU2241373C1 (ru) * 2003-12-29 2004-12-10 Зао "Вниимп-Вита" Автоматический измеритель артериального давления
US20060064021A1 (en) * 2004-09-20 2006-03-23 David Hefele Detection and correction of catheter line distortion in blood pressure measurements
RU2378984C2 (ru) * 2008-03-31 2010-01-20 Закрытое Акционерное Общество "Поликониус-Центр" Устройство контроля и оценки физиологических процессов
IT1402427B1 (it) * 2010-09-06 2013-09-04 Romano Metodo automatico di misura ed elaborazione della pressione sanguigna.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5743267A (en) * 1995-10-19 1998-04-28 Telecom Medical, Inc. System and method to monitor the heart of a patient
CN1348341A (zh) * 1999-04-27 2002-05-08 萨尔瓦多·罗马诺 测量心脏血流输出量的方法和装置
CN1759387A (zh) * 2003-03-17 2006-04-12 马泰奥·波那尼 用于辨别心跳的自动化方法

Also Published As

Publication number Publication date
EP2613691A1 (en) 2013-07-17
CN103200864B (zh) 2015-03-25
BR112013005200A2 (pt) 2016-05-03
WO2012032386A1 (en) 2012-03-15
PL2613690T3 (pl) 2015-03-31
EP2613690A1 (en) 2013-07-17
PL2613691T3 (pl) 2016-11-30
US20130150736A1 (en) 2013-06-13
CA2809930C (en) 2021-05-04
WO2012032553A1 (en) 2012-03-15
AU2011300338A1 (en) 2013-03-14
CA2809930A1 (en) 2012-03-15
AU2011300338B2 (en) 2014-08-21
US20170086685A1 (en) 2017-03-30
EP2613690B9 (en) 2014-09-24
HK1187225A1 (zh) 2014-04-04
ITRM20100468A1 (it) 2012-03-07
ES2503572T3 (es) 2014-10-07
US20130172761A1 (en) 2013-07-04
CN103200864A (zh) 2013-07-10
RU2013115364A (ru) 2014-10-20
US10271742B2 (en) 2019-04-30
EP2613690B1 (en) 2014-07-23
ES2578998T3 (es) 2016-08-03
RU2552685C2 (ru) 2015-06-10
IT1402427B1 (it) 2013-09-04
CN103108585A (zh) 2013-05-15
RU2013115110A (ru) 2014-10-20
BR112013005065B1 (pt) 2022-12-06
BR112013005065A2 (pt) 2016-06-07
EP2613691B1 (en) 2016-05-11

Similar Documents

Publication Publication Date Title
CN102740902B (zh) 用于监测心血管系统中的流体流速的装置和方法
CN104135914B (zh) 通过患者的动脉导管插入来监测血压测量的方法和装置
CA2785764C (en) Monitoring a property of the cardiovascular system of a subject
CN102791306B (zh) 用于检测抽出和返回装置的构造的方法和装置
US10314965B2 (en) Separation of interference pulses from physiological pulses in a pressure signal
Kaniusas et al. Method for continuous nondisturbing monitoring of blood pressure by magnetoelastic skin curvature sensor and ECG
CN103108585B (zh) 用于自动处理血压信号的方法与装置
CN104189968A (zh) 用于处理时间相关的测量信号的方法及装置
CN102579024A (zh) 用于改进的血压估计的自适应时域滤波
JP2015523150A (ja) 周期的パルスを抑制するための圧力信号のフィルタ処理
CN102686252A (zh) 用于预测快速症状性血压降低的装置和方法
Sobotnicki et al. Evaluation of volumetric parameters of the ventricular assist device using bioimpedance method
KR20090127517A (ko) 혈액의 점도를 고려한 심장 모니터링 장치
Tang et al. Heart valve closure timing intervals in response to left ventricular blood pressure
RU2575308C2 (ru) Автоматический способ измерения и обработки кровяного давления
Bikia et al. Estimation of patient-specific central hemodynamic indices from brachial pressure and pulse wave velocity
Siewnicka et al. Extreme membrane position detection and pump output estimation in pulsatile VADs

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant