CN103105869A - 三容单回路液位系统 - Google Patents
三容单回路液位系统 Download PDFInfo
- Publication number
- CN103105869A CN103105869A CN 201110385052 CN201110385052A CN103105869A CN 103105869 A CN103105869 A CN 103105869A CN 201110385052 CN201110385052 CN 201110385052 CN 201110385052 A CN201110385052 A CN 201110385052A CN 103105869 A CN103105869 A CN 103105869A
- Authority
- CN
- China
- Prior art keywords
- tank
- water tank
- liquid level
- lower header
- control
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Control Of Non-Electrical Variables (AREA)
Abstract
本发明公开了一种三容单回路液位系统。该三容单回路液位系统主要由储水箱(1)、设置在储水箱(1)上方的下水箱(2)、设置在下水箱(2)上方的中水箱(3)、以及设置在中水箱(3)上方的上水箱(4)构成,所述储水箱(1)、下水箱(2)、中水箱(3)、上水箱(4)之间互相连通,还包括电动控制阀(5),所述储水箱(1)、下水箱(2)和上水箱(4)均通过水管与电动控制阀(5)相连,且电动控制阀(5)与下水箱(2)之间的水管上设置有控制装置。本发明不仅具有良好的控制效果,且控制成本低,控制效果很好,具有较高的实用价值。
Description
技术领域
本发明涉及一种三容单回路液位系统。
背景技术
液位是工业过程生产中经常遇到的控制参数之一,对所需的控制对象进行精确的液位控制,关系到产品的质量,是保障生产效果和安全的重要问题。因而,液位的控制具有重要的现实意义和广泛的应用前景。
控制理论经历了经典控制理论、现代控制理论两个发展阶段,现在已进入了非线性智能控制理论发展时期。从控制理论解决的问题而论,很多重大的、根本的问题,如可控性、可观测性、稳定性等,在传统控制中都建立了比较完善的理论体系。应用传统控制理论基本能够满足工程技术及各种其它领域的需要。但是随着工业和现代科学技术的发展,各个领域中自动控制系统对控制精度、响应速度、系统稳定性与适应能力的要求也越来越高。自从上世纪80年代以来,电子计算机的快速更新换代和计算技术的高速度发展,推动了控制理论研究的深入开展,并进入了新的一段历程。随着控制理论的迅速发展,出现了许多先进的控制算法。但是,以PID为原理的各种控制器仍是过程控制中不可或缺的基本控制单元。至今,PID控制算法在世界范围内80%以上的工业过程中被采用,PID控制技术已经得到了很好的发展,研究者提出了许多控制系统设计方法和参数调整理论。这是因为PID控制具有结构简单、容易实现、控制效果好等特点,且PID算法原理简明,参数物理意义明确,理论分析体系完整,为广大控制工程师所熟悉。
液位控制系统是以液位为被控参数的系统,它在工业中的各个领域被广泛的涉及到。在工业生产过程中,有很多地方需要对控制对象进行液位控制,使液位高精度地保持在给定的数值,如在建材行业中,玻璃窑炉液位的稳定对窑炉的使用寿命和产品的质量起着至关重要的作用。还有在工业生产中,尤其是石油、化工以及冶金生产中也会经常遇到液位控制问题。因此,对所需的控制对象进行精确的液位控制,关系到控制目标的实现,是保障生产效果和安全的重要问题。
1939年,Taylor Instrument Company和Foxboro Instrument Company制造出完全具有PID控制功能的气动控制器。人们普遍认为PID应该被称之为智能控制,因为它是基于生产操作人员的控制经验。发明者通过观察认为,控制器应该象一个熟练的操作者那样去控制,减少直至消除系统中出现的误差。在当时PID控制面临的有三个主要问题:(1)寻找一种简单方法,能够计算PID控制器的三个调节参数。(2)判断生产过程是否可控。(3)PID控制器的操作不依赖于复杂易损的机械元件。理论研究主要集中在前两个问题,1942年,给予部分解决。第二个问题是系统的可控性。第三个问题由于工业革命的飞速发展,今天的PID控制器基本使用电子元件和微处理器,已经给予近乎完美的解决。
PID控制器作为最早实用化的控制器已有近70年的历史,现在仍然是应用最广泛的工业控制器。究其原因,是因为PID控制器有以下主要特点:(1)PID控制器简单易懂,使用中不需要特别精确的系统模型。(2)使用性灵活,只需设定三个参数即可。在很多情况下,并不一定需要全部三个单元,可以取其中的一到两个单元。(3)PID参数较易整定,也就是PID参数可以根据过程的动态特性及时整定。如果过程的动态特性变化,例如可能由负载的变化引起系统动态特性变化,PID参数就可以重新整定。而阶跃输入响应曲线是PID控制效果最重要的依据和标准。一般认为阶跃干扰是最严重的干扰,只要反馈控制系统能在此类干扰下在规定的时间内能恢复到给定值,系统就是基本满足要求的。
发明内容
本发明的目的在于克服上述现有技术的缺点和不足,提供一种三容单回路液位系统,该三容单回路液位系统不仅具有良好的控制效果,且控制成本低,控制效果很好,具有较高的实用价值。
本发明的目的通过下述技术方案实现:三容单回路液位系统,主要由储水箱、设置在储水箱上方的下水箱、设置在下水箱上方的中水箱、以及设置在中水箱上方的上水箱构成,所述储水箱、下水箱、中水箱、上水箱之间互相连通,还包括电动控制阀,所述储水箱、下水箱和上水箱均通过水管与电动控制阀相连,且电动控制阀与下水箱之间的水管上设置有控制装置。
所述控制装置主要由与下水箱相连的压力变送器、以及设置在压力变送器与电动控制阀间的控制器构成。
所述储水箱与电动控制阀之间的水管上设置有磁力泵。
所述储水箱与下水箱之间、下水箱与中水箱之间、以及中水箱与上水箱之间均设置有手动阀。
综上所述,本发明的有益效果是:不仅具有良好的控制效果,且控制成本低,控制效果很好,具有较高的实用价值。
附图说明
图1为本发明的结构示意图。
具体实施方式
下面结合实施例,对本发明作进一步的详细说明,但本发明的实施方式不仅限于此。
实施例:
如图1所示,本发明涉及的三容单回路液位系统,主要由储水箱1、设置在储水箱1上方的下水箱2、设置在下水箱2上方的中水箱3、以及设置在中水箱3上方的上水箱4构成,所述储水箱1、下水箱2、中水箱3、上水箱4之间互相连通,还包括电动控制阀5,所述储水箱1、下水箱2和上水箱4均通过水管与电动控制阀5相连,且电动控制阀5与下水箱2之间的水管上设置有控制装置。
所述控制装置主要由与下水箱2相连的压力变送器6、以及设置在压力变送器6与电动控制阀5之间的控制器7构成。
所述储水箱1与电动控制阀5之间的水管上设置有磁力泵8。
所述储水箱1与下水箱2之间、下水箱2与中水箱3之间、以及中水箱3与上水箱4之间均设置有手动阀9。
电动调节阀5用于调节上水箱4的进水量的大小,压力变送器6用于检测下水箱2中的液位,控制器7的输出量用于控制电动调节阀5的开度。
本发明的工作过程为:首先,压力变送器5检测到下水箱2中的液位,并将检测到的信号传送到控制器6中;控制器6根据送入的检测信号以及实际需求,输出调节指令至电动调节阀10;电动调节阀10根据控制器6输出的指令调节其开度,从而调节进入下水箱2、中水箱3和上水箱4的水流大小,进而调节下水箱2、中水箱3和上水箱4中的水位。
以上所述,仅是本发明的较佳实施例,并非对本发明做任何形式上的限制,凡是依据本发明的技术实质,对以上实施例所作的任何简单修改、等同变化,均落入本发明的保护范围之内。
Claims (4)
1.三容单回路液位系统,其特征在于,主要由储水箱(1)、设置在储水箱(1)上方的下水箱(2)、设置在下水箱(2)上方的中水箱(3)、以及设置在中水箱(3)上方的上水箱(4)构成,所述储水箱(1)、下水箱(2)、中水箱(3)、上水箱(4)之间互相连通,还包括电动控制阀(5),所述储水箱(1)、下水箱(2)和上水箱(4)均通过水管与电动控制阀(5)相连,且电动控制阀(5)与下水箱(2)之间的水管上设置有控制装置。
2.根据权利要求1所述的三容单回路液位系统,其特征在于,所述控制装置主要由与下水箱(2)相连的压力变送器(6)、以及设置在压力变送器(6)与电动控制阀(5)之间的控制器(7)构成。
3.根据权利要求1所述的三容单回路液位系统,其特征在于,所述储水箱(1)与电动控制阀(5)之间的水管上设置有磁力泵(8)。
4.根据权利要求1所述的三容单回路液位系统,其特征在于,所述储水箱(1)与下水箱(2)之间、下水箱(2)与中水箱(3)之间、以及中水箱(3)与上水箱(4)之间均设置有手动阀(9)。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110385052 CN103105869A (zh) | 2011-11-14 | 2011-11-14 | 三容单回路液位系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110385052 CN103105869A (zh) | 2011-11-14 | 2011-11-14 | 三容单回路液位系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103105869A true CN103105869A (zh) | 2013-05-15 |
Family
ID=48313805
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201110385052 Pending CN103105869A (zh) | 2011-11-14 | 2011-11-14 | 三容单回路液位系统 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103105869A (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104765388A (zh) * | 2015-01-30 | 2015-07-08 | 江苏农林职业技术学院 | 基于组态软件的水位自动控制系统 |
CN105065729A (zh) * | 2015-07-29 | 2015-11-18 | 东莞市三友联众电器有限公司 | 一种活动阀式引液机构 |
CN106855718A (zh) * | 2017-01-12 | 2017-06-16 | 防灾科技学院 | 无模型自适应控制水箱液位控制系统 |
-
2011
- 2011-11-14 CN CN 201110385052 patent/CN103105869A/zh active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104765388A (zh) * | 2015-01-30 | 2015-07-08 | 江苏农林职业技术学院 | 基于组态软件的水位自动控制系统 |
CN105065729A (zh) * | 2015-07-29 | 2015-11-18 | 东莞市三友联众电器有限公司 | 一种活动阀式引液机构 |
CN105065729B (zh) * | 2015-07-29 | 2017-05-31 | 东莞市三友联众电器有限公司 | 一种活动阀式引液机构 |
CN106855718A (zh) * | 2017-01-12 | 2017-06-16 | 防灾科技学院 | 无模型自适应控制水箱液位控制系统 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105674060B (zh) | 一种压缩空气系统压力流量联合控制节能装置及方法 | |
CN103105869A (zh) | 三容单回路液位系统 | |
CN202663351U (zh) | 基于模糊自适应pid控制器的伺服电机转速控制系统 | |
CN102156407A (zh) | 基于arm的嵌入式模型预测控制方法和装置 | |
CN103105870A (zh) | 三容单回路液位系统及其控制方法 | |
CN105700357A (zh) | 基于多变量pid-pfc的锅炉燃烧系统控制方法 | |
CN103105871A (zh) | 双容串级液位系统 | |
CN103105873A (zh) | 应用于三容单回路液位系统的控制方法 | |
CN103105868A (zh) | 基于双容串级液位系统的控制方法 | |
CN103105864A (zh) | 双容单回路液位系统的控制方法 | |
CN102230041B (zh) | 富氧调节系统的调试、投运方法 | |
CN104375458A (zh) | 一种平面轮廓轨迹跟踪控制方法 | |
CN103105865A (zh) | 双容单回路液位系统 | |
CN103105863A (zh) | 基于pid控制器的双容串级液位系统及其控制方法 | |
CN103105874A (zh) | 双容单回路液位系统及其控制方法 | |
CN103105861A (zh) | 基于pid控制器的双容串级液位控制方法 | |
CN103291689A (zh) | 基于液压试验台的被试阀的负载压力的控制方法 | |
CN103105872A (zh) | 双容串级液位系统及其控制方法 | |
CN201071325Y (zh) | 曝气池智能供氧系统 | |
CN103105860A (zh) | 计算机液位控制系统及其控制方法 | |
CN108132597B (zh) | 一种微分超前智能模型集pid控制器设计方法 | |
CN103105862A (zh) | 基于pid控制器的双容串级液位系统 | |
CN105950866B (zh) | 一种基于氧化还原电位的锌液净化除铜过程优化控制方法 | |
CN202087905U (zh) | 一种基于模糊控制的自动补偿磨削系统 | |
CN103105867A (zh) | 计算机液位控制系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20130515 |