CN103105531B - 微电子机械在线式微波频率检测器及其检测方法 - Google Patents
微电子机械在线式微波频率检测器及其检测方法 Download PDFInfo
- Publication number
- CN103105531B CN103105531B CN201310026874.XA CN201310026874A CN103105531B CN 103105531 B CN103105531 B CN 103105531B CN 201310026874 A CN201310026874 A CN 201310026874A CN 103105531 B CN103105531 B CN 103105531B
- Authority
- CN
- China
- Prior art keywords
- microwave
- transmission line
- signal
- mems
- measured
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Testing Or Calibration Of Command Recording Devices (AREA)
- Micromachines (AREA)
Abstract
一种微电子机械在线式微波频率检测器及其检测方法,检测器制备在GaAs衬底上,包括共面波导CPW传输线、四个完全相同的MEMS悬臂梁结构、功合器以及三个结构完全相同的MEMS间接式微波功率传感器。本发明的微电子机械在线式微波频率检测器不但具有结构新颖,尺寸较小的优点,而且可以实现微波信号频率的在线检测,与GaAs单片微波集成电路兼容。
Description
技术领域
本发明属于微电子机械系统MEMS技术领域,为一种微电子机械在线式微波频率检测器及其检测方法。
背景技术
在微波技术研究中,频率是表征微波信号的三大参数(幅度、频率和相位)之一,是微波信号的一个重要参数。微波信号频率检测器在军事、个人通信和科学研究等方面都有非常广泛的应用。现有的微波频率检测技术主要基于外差法、计数法和谐振法原理,它们具有精度高和宽频带的优点,但其最大的缺点是无法实现在线频率检测。随着科学技术的不断发展,现代个人通信系统和雷达系统要求越来越高:简单的结构,小的体积以及在线式的微波频率检测器成为一种趋势。近年来,随着MEMS技术的快速发展,并对MEMS悬臂梁结构进行了深入的研究,使微电子机械在线式微波频率检测器成为可能。
发明内容
本发明要解决的问题是:现有的微波信号频率检测存在无法在线检测的缺点,用户需要简单的结构,较小的体积以及可在线检测的微波频率检测器。
本发明的技术方案为:微电子机械在线式微波频率检测器,在GaAs衬底上设有待测信号传输线、四个结构完全相同的MEMS悬臂梁结构、一个功合器以及三个结构完全相同的MEMS间接式微波功率传感器,待测信号传输线为CPW传输线,所述CPW传输线由信号线和地线构成,待测微波信号通过待测信号传输线,四个MEMS悬臂梁结构分为两对,对称悬于待测信号传输线的信号线上方,其中位于待测信号传输线的信号线同一侧两个MEMS悬臂梁结构分别连接一个MEMS间接式微波功率传感器,另一侧对称的两个MEMS悬臂梁结构分别连接至功合器,功合器的输出端连接一个MEMS间接式微波功率传感器。
作为优选,沿待测信号传输线方向,两对MEMS悬臂梁结构之间的距离L为中心频率点所对应波长的1/4,所述中心频率点指所述微波频率检测器的频率检测范围的中心频率点。
MEMS悬臂梁结构与功合器以及MEMS间接式微波功率传感器之间通过CPW传输线连接,功合器与MEMS间接式微波功率传感器之间通过CPW传输线连接;悬臂梁结构包括悬臂梁和锚区,悬臂梁与下方的待测信号传输线的信号线之间设有绝缘介质层。
功合器包括不对称共面带线ACPS信号线、地线和隔离电阻,功合器的输入端和输出端之间为不对称共面带线ACPS信号线,隔离电阻设置在两个输入端之间。
一种上述微电子机械在线式微波频率检测器的检测方法,待测微波信号从待测信号传输线中经过时,位于待测信号传输线的信号线同一侧的两个MEMS悬臂梁结构在线耦合出两支幅度相等、存在一定相位差的微波信号,分别输入一个MEMS间接式微波功率传感器,测量由悬臂梁结构各自耦合出的微波信号功率P1、P2;位于所述信号线另一侧的两个MEMS悬臂梁结构在线耦合出两支同样的微波信号,输入功合器进行矢量合成,再输入一个MEMS间接式微波功率传感器,测量由合成信号的功率P3;所述两支微波信号存在一个与待测微波信号频率成正比的相位差功合器的合成信号的功率P3与该相位差存在一个余弦函数的关系:
MEMS间接式微波功率传感器基于Seebeck原理检测功率P1、P2和P3的大小,并以直流电压V1、V2和V3形式输出测量结果,基于式(1),待测微波信号的频率为:
其中,c为光速,εer为CPW传输线的有效介电常数。
本发明提供一种微电子机械在线式微波频率检测器及检测方法,位于CPW传输线上方且相距一段距离的四个结构完全相同的MEMS悬臂梁在线耦合出来两对幅度相等、存在一个相位差的微波信号,取其中每对中的一支信号经过功合器进行矢量合成。由三个结构完全相同的MEMS间接式微波功率传感器检测合成后微波信号和另外两支微波信号的功率大小。根据输出的直流电压的大小,推断出待测信号的频率。本发明的微电子机械在线式微波频率检测器不但具有结构新颖,易于测量的优点,而且能够实现对微波信号频率的在线检测,易于集成以及与GaAs单片微波集成电路兼容的优点。
附图说明
图1是本发明微电子机械在线式微波频率检测器的结构示意图。
图2是图1中的A-A'剖面图。
图3是图1中的B-B'剖面图。
具体实施方式
本发明制作在GaAs衬底1上,在其上有共面波导CPW传输线、四个结构完全相同的MEMS悬臂梁结构、功合器以及三个结构完全相同的MEMS间接式微波功率传感器。CPW传输线作为本发明频率检测器的信号传输线,用于待测微波信号的传输,以及MEMS悬臂梁结构、功合器和MEMS间接式微波功率传感器之间信号的传输,CPW传输线由信号线和地线构成。
四个结构完全相同MEMS悬臂梁位于待测信号传输线的信号线2上的绝缘介质层6的上方。当待测微波信号经过待测信号传输线时,沿着待测信号传输线相隔一定距离的两个悬臂梁结构耦合出两支幅度相同但存在一定相位差的微波信号,再经过功合器矢量合成,合成信号的功率与待测微波信号相位差存在余弦函数关系。为了测量出由悬臂梁结构耦合出的微波信号功率的大小,在待测信号传输线的信号线的另一侧对称地设计了两个结构完全相同悬臂梁结构,其后分别接有MEMS间接式微波功率传感器,测量悬臂梁结构耦合出的信号功率。利用间接式微波功率传感器检测合成功率的大小,最终实现待测微波信号频率的检测。
本发明的微电子机械在线式微波频率检测器的具体实施方案如下:
如图1,包括:GaAs衬底1,CPW信号线2,地线3,MEMS悬臂梁4,锚区5,绝缘介质层6,功分器隔离电阻7,ACPS信号线8,终端电阻9,金属热偶臂10,半导体热偶臂11,金属连接线12,直流输出块13。在砷化镓衬底1上设有共面波导CPW传输线、MEMS悬臂梁、功合器以及MEMS间接式微波功率传感器。
CPW传输线包括信号线2和地线3。待测信号传输线采用CPW传输线,待测微波信号从待测信号传输线的输入端进入CPW传输线,再由输出端输出。
MEMS悬臂梁结构包括悬臂梁4和锚区5。沿着待测信号传输线,两对相距一定距离L的悬臂梁4悬于待测信号传输线的信号线2上绝缘介质层6的上方,作为优选,距离L为中心频率点所对应波长的1/4,所述中心频率点指所述微波频率检测器的频率检测范围的中心频率点。当待测信号从待测信号传输线的信号线经过时,四个结构完全相同MEMS悬臂梁4在线耦合出两对幅度相等、存在一定相位差的微波信号,取每对微波信号中的一支输入功合器矢量合成。为了测量出由悬臂梁4耦合出的微波信号功率,每对微波信号中的另一支分别连接一个MEMS间接式微波功率传感器。
功合器包括不对称共面带线ACPS信号线8、地线3和隔离电阻7。功合器的作用是将MEMS悬臂梁结构耦合出的两支微波信号矢量合成。待测微波信号通过待测信号传输线的信号线时,由于信号线上的同一侧的两个悬臂梁有一定的距离L,耦合出的两支微波信号存在一个与待测微波信号频率成正比的相位差,所述相位差与是L对应的,L固定时相位差是一个定值,功合器输出的合成信号的功率P3与该相位差存在一个余弦函数的关系:
其中,P1、P2分别为信号线上的另一侧MEMS悬臂梁耦合出的微波信号的功率。因此MEMS间接式微波功率传感器得到的功率与待测微波信号是对应的。
MEMS间接式微波功率传感器包括终端电阻9、金属热偶臂10、半导体热偶臂11、金属连接线12和直流输出块13。MEMS间接式微波功率传感器基于Seebeck原理检测功率P1、P2和P3的大小,并以直流电压V1、V2和V3形式输出测量结果。基于等式(1),待测信号的频率可表示为,
其中,c为光速,εer为CPW传输线的有效介电常数。
本发明微电子机械在线式微波频率检测器的制备方法为:
1)准备砷化镓衬底:选用外延的半绝缘砷化镓衬底,其中外延N+砷化镓的掺杂浓度为1018cm-3,其方块电阻值为100~130Ω/□;
2)光刻并隔离外延的N+砷化镓,形成热电堆的半导体热偶臂的图形和欧姆接触区;
3)反刻N+砷化镓,形成其掺杂浓度为1017cm-3的热电堆的半导体热偶臂;
4)光刻:去除将要保留金锗镍/金地方的光刻胶;
5)溅射金锗镍/金,其厚度共为
6)剥离,形成热电堆的金属热偶臂;
7)光刻:去除将要保留氮化钽地方的光刻胶;
8)溅射氮化钽,其厚度为1μm;
9)剥离;
10)光刻:去除将要保留第一层金的地方的光刻胶;
11)蒸发第一层金,其厚度为0.3μm;
12)剥离,形成CPW信号线、ACPS信号线、地线、MEMS悬臂梁的锚区、直流输出块和金属连接线;
13)反刻氮化钽,形成终端电阻,其方块电阻为25Ω/□;
14)淀积氮化硅:用等离子体增强型化学气相淀积法工艺(PECVD)生长厚的氮化硅介质层;
15)光刻并刻蚀氮化硅介质层:保留在MEMS悬臂梁下方CPW信号线上的氮化硅;
16)淀积并光刻聚酰亚胺牺牲层:在砷化镓衬底上涂覆1.6μm厚的聚酰亚胺牺牲层,要求填满凹坑,聚酰亚胺牺牲层的厚度决定了MEMS悬臂梁与其下方在主线CPW上氮化硅介质层之间的距离;光刻聚酰亚胺牺牲层,仅保留悬臂梁下方的牺牲层;
17)蒸发钛/金/钛,其厚度为蒸发用于电镀的底金;
18)光刻:去除要电镀地方的光刻胶;
19)电镀金,其厚度为2μm;
20)去除光刻胶:去除不需要电镀地方的光刻胶;
21)反刻钛/金/钛,腐蚀底金,形成CPW信号线、ACPS信号线、地线、MEMS悬臂梁、直流输出块和金属连接线;
22)将该砷化镓衬底背面减薄至100μm;
23)释放聚酰亚胺牺牲层:显影液浸泡,去除MEMS悬臂梁下的聚酰亚胺牺牲层,去离子水稍稍浸泡,无水乙醇脱水,常温下挥发,晾干。
上述步骤采用MEMS技术中的公知工艺,不再详述。
区分是否为本发明结构的标准如下:
本发明的微电子机械在线式微波频率检测器具有四个完全相同的MEMS悬臂梁结构和三个完全相同的MEMS间接式微波功率传感器。当待测微波信号经过CPW传输线时,相隔一定距离且悬于CPW传输线信号线上方的两个完全相同悬臂梁耦合出两支幅度相同但存在一定相位差的微波信号,再经过一个功合器,合成信号的功率与相位差存在余弦函数关系。为了测量出由悬臂梁耦合出的微波信号功率的大小,在信号线的另一侧对称地设计了两个结构完全相同悬臂梁结构,其后分别接有MEMS间接式微波功率传感器。利用间接式微波功率传感器检测耦合功率及合成功率的大小,最终实现待测微波信号频率的检测。
满足以上条件的结构即视为本发明的微电子机械在线式微波频率检测器及检测方法。
Claims (6)
1.微电子机械在线式微波频率检测器,其特征是在GaAs衬底上设有待测信号传输线、四个结构完全相同的MEMS悬臂梁结构、一个功合器以及三个结构完全相同的MEMS间接式微波功率传感器,待测信号传输线为CPW传输线,所述CPW传输线由信号线和地线构成,待测微波信号通过待测信号传输线,四个MEMS悬臂梁结构分为两对,对称悬于待测信号传输线的信号线上方,其中位于待测信号传输线的信号线同一侧两个MEMS悬臂梁结构分别连接一个MEMS间接式微波功率传感器,另一侧对称的两个MEMS悬臂梁结构分别连接至功合器,功合器的输出端连接一个MEMS间接式微波功率传感器。
2.根据权利要求1所述的微电子机械在线式微波频率检测器,其特征是沿待测信号传输线方向,两对MEMS悬臂梁结构之间的距离L为中心频率点所对应波长的1/4,所述中心频率点指所述微波频率检测器的频率检测范围的中心频率点。
3.根据权利要求1或2所述的微电子机械在线式微波频率检测器,其特征是MEMS悬臂梁结构与功合器以及MEMS间接式微波功率传感器之间通过CPW传输线连接,功合器与MEMS间接式微波功率传感器之间通过CPW传输线连接;悬臂梁结构包括悬臂梁和锚区,悬臂梁与下方的待测信号传输线的信号线之间设有绝缘介质层。
4.根据权利要求1或2所述的微电子机械在线式微波频率检测器,其特征是功合器包括不对称共面带线ACPS信号线、地线和隔离电阻,功合器的输入端和输出端之间为不对称共面带线ACPS信号线,隔离电阻设置在两个输入端之间。
5.根据权利要求3所述的微电子机械在线式微波频率检测器,其特征是功合器包括不对称共面带线ACPS信号线、地线和隔离电阻,功合器的输入端和输出端之间为不对称共面带线ACPS信号线,隔离电阻设置在两个输入端之间。
6.一种权利要求1-5任一项所述的微电子机械在线式微波频率检测器的检测方法,其特征是待测微波信号从待测信号传输线中经过时,位于待测信号传输线的信号线同一侧的两个MEMS悬臂梁结构在线耦合出两支幅度相等、存在一定相位差的微波信号,分别输入一个MEMS间接式微波功率传感器,测量由悬臂梁结构各自耦合出的微波信号功率P1、P2;位于所述信号线另一侧的两个MEMS悬臂梁结构在线耦合出两支同样的微波信号,输入功合器进行矢量合成,再输入一个MEMS间接式微波功率传感器,测量合成信号的功率P3;所述两支微波信号存在一个与待测微波信号频率成正比的相位差功合器的合成信号的功率P3与该相位差存在一个余弦函数的关系:
MEMS间接式微波功率传感器基于Seebeck原理检测功率P1、P2和P3的大小,并以直流电压V1、V2和V3形式输出测量结果,基于式(1),待测微波信号的频率为:
其中,c为光速,εer为CPW传输线的有效介电常数,L指信号线上同一侧的两个悬臂梁之间的距离。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310026874.XA CN103105531B (zh) | 2013-01-18 | 2013-01-18 | 微电子机械在线式微波频率检测器及其检测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310026874.XA CN103105531B (zh) | 2013-01-18 | 2013-01-18 | 微电子机械在线式微波频率检测器及其检测方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103105531A CN103105531A (zh) | 2013-05-15 |
CN103105531B true CN103105531B (zh) | 2015-09-30 |
Family
ID=48313535
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310026874.XA Expired - Fee Related CN103105531B (zh) | 2013-01-18 | 2013-01-18 | 微电子机械在线式微波频率检测器及其检测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103105531B (zh) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103257268B (zh) * | 2013-05-20 | 2015-06-03 | 东南大学 | 一种翘板式智能检测微波功率传感器 |
CN103818871B (zh) * | 2014-02-20 | 2015-09-16 | 东南大学 | 物联网射频收发组件中的热和电磁能自供电微传感器 |
CN103840707B (zh) * | 2014-02-20 | 2016-04-13 | 东南大学 | 物联网射频收发组件中悬臂梁振动电磁自供电微传感器 |
CN106199173A (zh) * | 2016-07-19 | 2016-12-07 | 南京邮电大学 | 基于悬臂梁级联结构的高精度微波功率检测系统及方法 |
CN106698326B (zh) * | 2017-01-24 | 2018-04-03 | 东南大学 | 基于硅基微机械悬臂梁t型结直接加热式毫米波信号检测器 |
CN106645922A (zh) * | 2017-01-24 | 2017-05-10 | 东南大学 | 悬臂梁t形结在线式微波相位检测器 |
CN106841801A (zh) * | 2017-01-24 | 2017-06-13 | 东南大学 | 基于缝隙结构的在线式微波相位检测器 |
CN106841770B (zh) * | 2017-01-24 | 2019-03-05 | 东南大学 | Si基微机械悬臂梁耦合间接加热式毫米波信号检测器 |
CN106698325B (zh) * | 2017-01-24 | 2018-02-23 | 东南大学 | 硅基悬臂梁耦合直接加热式毫米波信号检测仪器 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61120973A (ja) * | 1984-11-19 | 1986-06-09 | Meguro Denpa Sokki Kk | 周波数測定における信号検出方法 |
JP2005177985A (ja) * | 2003-12-22 | 2005-07-07 | Samsung Electronics Co Ltd | 単一電極を用いたmems構造物の駆動、駆動検知装置およびその方法 |
CN101726661A (zh) * | 2009-12-02 | 2010-06-09 | 东南大学 | 微电子机械微波频率响应补偿式微波功率检测装置 |
CN101788605A (zh) * | 2010-02-01 | 2010-07-28 | 东南大学 | 无线接收式微电子机械微波频率检测系统及其制备方法 |
CN102175909A (zh) * | 2011-03-08 | 2011-09-07 | 东南大学 | 微电子机械悬臂梁式微波功率自动检测系统及其检测方法和制备方法 |
CN102735927A (zh) * | 2012-06-20 | 2012-10-17 | 东南大学 | 基于微机械硅基悬臂梁的频率检测器及检测方法 |
CN102735926A (zh) * | 2012-06-20 | 2012-10-17 | 东南大学 | 基于微机械砷化镓基固支梁的频率检测器及检测方法 |
-
2013
- 2013-01-18 CN CN201310026874.XA patent/CN103105531B/zh not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61120973A (ja) * | 1984-11-19 | 1986-06-09 | Meguro Denpa Sokki Kk | 周波数測定における信号検出方法 |
JP2005177985A (ja) * | 2003-12-22 | 2005-07-07 | Samsung Electronics Co Ltd | 単一電極を用いたmems構造物の駆動、駆動検知装置およびその方法 |
CN101726661A (zh) * | 2009-12-02 | 2010-06-09 | 东南大学 | 微电子机械微波频率响应补偿式微波功率检测装置 |
CN101788605A (zh) * | 2010-02-01 | 2010-07-28 | 东南大学 | 无线接收式微电子机械微波频率检测系统及其制备方法 |
CN102175909A (zh) * | 2011-03-08 | 2011-09-07 | 东南大学 | 微电子机械悬臂梁式微波功率自动检测系统及其检测方法和制备方法 |
CN102735927A (zh) * | 2012-06-20 | 2012-10-17 | 东南大学 | 基于微机械硅基悬臂梁的频率检测器及检测方法 |
CN102735926A (zh) * | 2012-06-20 | 2012-10-17 | 东南大学 | 基于微机械砷化镓基固支梁的频率检测器及检测方法 |
Non-Patent Citations (3)
Title |
---|
MEMS frequency detector at X-band based on MMIC technology;Di Hua等;《Solid-State Sensors, Actuators and Microsystems Conference, 2009》;20090625;第1405页右栏第2段至1406页右栏第3段 * |
MEMS微波频率检测器的研究;张俊;《中国学位论文全文数据库》;20101125;全文 * |
一种新型MEMS微波功率传感器的设计与模拟;田涛等;《传感技术学报》;20080415;第21卷(第4期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN103105531A (zh) | 2013-05-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103048540B (zh) | 基于悬臂梁和直接式功率传感器的在线式微波频率检测器及其检测方法 | |
CN103105531B (zh) | 微电子机械在线式微波频率检测器及其检测方法 | |
CN103116073B (zh) | 基于悬臂梁和直接式功率传感器的微波检测系统及其检测方法 | |
CN103048536B (zh) | 基于固支梁和直接式功率传感器的在线式微波频率检测器及其检测方法 | |
CN103344831B (zh) | 基于微机械直接热电式功率传感器的相位检测器及制法 | |
CN103116067B (zh) | 基于固支梁和间接式功率传感器的在线式微波频率检测器及其检测方法 | |
CN101788605B (zh) | 无线接收式微电子机械微波频率检测系统及其制备方法 | |
CN203310915U (zh) | 基于微机械直接热电式功率传感器的相位检测器 | |
CN102243268B (zh) | 微电子机械定向耦合式微波功率传感器及其制备方法 | |
CN103116071B (zh) | 微电子机械微波频率和功率检测系统及其检测方法 | |
CN102735928A (zh) | 基于微机械砷化镓基的悬臂梁频率检测器及检测方法 | |
CN103116070B (zh) | 基于固支梁和直接式功率传感器的微波检测系统及其检测方法 | |
CN103116072B (zh) | 基于固支梁和间接式功率传感器的微波检测系统及其检测方法 | |
CN102411086B (zh) | 五端口基于微机械固支梁电容型微波功率传感器及制备 | |
CN103336175B (zh) | 基于微机械固支梁电容式功率传感器的相位检测器及制法 | |
CN103344833B (zh) | 一种基于微机械间接热电式功率传感器的相位检测器及制法 | |
CN106841792B (zh) | 基于悬臂梁的在线式微波相位检测器及检测方法 | |
CN103346785B (zh) | 基于微机械直接热电式功率传感器的锁相环及其制备方法 | |
CN203310918U (zh) | 一种基于微机械间接热电式功率传感器的相位检测器 | |
CN106841782B (zh) | 硅基悬臂梁耦合直接加热式未知频率毫米波相位检测器 | |
CN203310916U (zh) | 基于微机械悬臂梁电容式功率传感器的相位检测器 | |
CN106814252A (zh) | 基于固支梁的在线式微波相位检测器 | |
CN106841781B (zh) | 基于硅基悬臂梁t型结直接加热在线式毫米波相位检测器 | |
CN106698325A (zh) | 硅基悬臂梁耦合直接加热式毫米波信号检测仪器 | |
CN106771601B (zh) | 硅基悬臂梁t型结直接加热式未知频率毫米波相位检测器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150930 Termination date: 20180118 |