CN103096336B - 认知无线电网络中基于QoS保障的高效能合作频谱感知方法 - Google Patents

认知无线电网络中基于QoS保障的高效能合作频谱感知方法 Download PDF

Info

Publication number
CN103096336B
CN103096336B CN201310027901.5A CN201310027901A CN103096336B CN 103096336 B CN103096336 B CN 103096336B CN 201310027901 A CN201310027901 A CN 201310027901A CN 103096336 B CN103096336 B CN 103096336B
Authority
CN
China
Prior art keywords
cognitive
spectrum sensing
cooperation
fusion
cognitive user
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310027901.5A
Other languages
English (en)
Other versions
CN103096336A (zh
Inventor
胡航
张杭
路威
陈乾
张江
辜方林
谭晓波
孙爱伟
于鸿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Army Engineering University of PLA
Original Assignee
Army Engineering University of PLA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Army Engineering University of PLA filed Critical Army Engineering University of PLA
Priority to CN201310027901.5A priority Critical patent/CN103096336B/zh
Publication of CN103096336A publication Critical patent/CN103096336A/zh
Application granted granted Critical
Publication of CN103096336B publication Critical patent/CN103096336B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

一种认知无线电网络中基于QoS保障的高效能合作频谱感知方法。第一部分构建系统模型并对感知性能与资源消耗权衡问题进行了分析。第二部分实现了合作频谱感知最优软信息融合策略,得到了最佳的能量检测器门限。在最优能量检测器门限的条件下,求得最佳的参与合作的认知用户数,最大化认知网络的效用。第三部分在合作频谱感知硬判决融合中心采用随机准则进行判决,优化最终判决门限,实现硬判决门限动态地调整。在最佳门限的条件下,求得最佳的参与合作的认知用户数,最大化认知网络的效用。优化策略与定门限策略相比,可以用较少的合作用户获得较大的效用。整个方法实现简单,易于推广。

Description

认知无线电网络中基于QoS保障的高效能合作频谱感知方法
技术领域
本发明设计了基于QoS保障的高效能合作频谱感知,实现了最优软信息融合策略和最优硬判决融合策略。通过加权感知性能和资源消耗,为使系统效用达到最大,得到了参与合作的最佳的认知用户数量,属于通信技术领域。
背景技术
认知无线电的概念最早是由J.Mitola提出的,他对认知无线电的定义基于软件无线电,并将其所研究的计算智能领域的知识融合到了软件无线电中。Mitola在其博士论文中提到认知无线电在具有软件无线电巨大灵活性的基础上,还具有“自知性(self-aware)”和“自适应性(self-adaptive)”,并且提出认知无线电系统通过认知环与环境进行交互。实际上,Mitola提出的理想的认知无线电系统是一个具有环境感知能力和自动学习能力,并且能够自适应地进行频谱接入、共享和管理的无线系统。
频谱感知作为认知无线电网络中的核心技术,是带有认知功能的终端用户通过各种检测技术对频带内的主用户信号进行检测的过程,一旦发现所检测的频带内不存在主用户,则接入该频带;同时,当发现主用户信号出现在某个频带时,则必须立刻退出该频带。
为了避免对主用户造成干扰,认知用户需要高效而且有效地检测出主用户的状态。然而,由于认知用户信噪比(SNR)低、主用户信息少以及多径衰落和阴影效应等因素的影响,单个认知用户通常无法精确地感知主用户存在与否。为此,需要在同频带上采用多用户分集的合作频谱感知技术来提高检测的有效性和可靠性。所以重点研究合作频谱感知中多个认知用户之间高效地合作,最大化认知网络的效用。
根据感知信息融合方式不同,可以将常见的融合算法分为软信息融合和硬判决融合两种。在软信息融合中认知(CR)用户将本地的检测统计量或者与通过检测统计量计算得到的值作为感知信息发送给融合中心或者其他负责数据融合的用户。在硬判决融合中,每个认知用户对主用户的状态做出判决,得到“1比特”的判决信息(1代表主用户存在,0代表主用户不存在),然后通过报告信道把判决信息发送给数据融合中心。
合作频谱感知中一个基本的权衡问题是:如果更多的认知用户参与感知,感知性能可以得到提升,但是信号测量所需要的传输功率和次级网络中的通信开销量也会随着合作用户数线性增长。因此,权衡两个方面并且保障认知网络的QoS需求是非常重要的。为了分析以上问题,首先定义了效用函数。如果认知用户成功地检测到主用户不存在,它就可以利用空闲频谱,从而获得收益;如果主用户存在,认知用户错误地检测到主用户不存在,由于它的接入会对主用户造成干扰,它应该支付罚金;每个认知用户在感知过程中需要消耗系统资源,为此要付出一定的代价。效用函数考虑了以上三个方面,为保障认知网络的QoS需求,通过使系统效用达到最大,得到了参与合作的最佳的认知用户数量。
分析侧重于两种策略:软信息融合和硬判决融合。在白高斯噪声信道、Nakagani衰落信道和Rayleigh衰落信道下,提出了基于QoS保障的高效能合作频谱感知方法。结果表明,当考虑认知网络的QoS需求时,确实存在最佳的合作认知用户数量。
发明内容
技术问题:本发明的提供参与合作的最佳的认知用户数量,使系统的效用达到最大,同时保障认知网络的QoS需求。分析并得到了最优软信息融合策略和最优硬判决融合策略,提出了基于QoS保障的高效能合作频谱感知方法。优化策略与定门限策略相比,可以用较少的合作用户获得较大的效用。
技术方案:为达到上述目的,本发明提供以下技术方案,包括如下三个部分:
第一部分:构建系统模型及频谱感知分析。
认知无线电网络中的合作频谱感知模型如图1所示,该网络包括一个主用户,K个认知用户和1个融合中心。其中,k个认知用户被用来进行合作感知,1≤k≤K。所有参与合作的认知用户接收到的主用户信号假设是独立同分布的。频谱感知的目的是根据接收到的信号统计量Y判断目标频带内主用户存在(H0)或是不存在(H1),进而决定是否接入该频带。
认知系统中,虚警概率表示主用户不存在但是却被认知系统判决为存在的概率。如果虚警概率增加,空闲的主信道的利用率就会下降,因此虚警概率决定了认知系统的吞吐量。漏检概率表示主用户存在但是却被认知系统判决为不存在的概率,因此漏检概率影响主用户链路的服务质量(QoS)。
如果更多的认知用户参与感知,感知性能可以得到提升,但是信号测量所需要的传输功率和次级网络中的通信开销量也会随着合作用户数线性增长。因此,权衡两个方面并且保障认知网络的QoS需求是非常重要的。为了分析以上问题,首先定义了效用函数。如果认知用户成功地检测到主用户不存在,它就可以利用空闲频谱,从而获得收益;如果主用户存在,认知用户错误地检测到主用户不存在,由于它的接入会对主用户造成干扰,它应该支付罚金;每个认知用户在感知过程中需要消耗系统资源,为此要付出一定的代价。效用函数定义为:
U(k)=α[1-Qf(k)]p(H0)-βQm(k)p(H1)-R·k
其中,U(k)为效用函数,Qf(k)和Qm(k)为k个认知用户参与合作时的虚警概率和漏检概率,p(H0)表示主用户不存在的概率,p(H1)表示主用户存在的概率,α为认知用户成功地利用空闲频谱所获得的收益的价格,β为认知用户对主用户干扰应支付的罚金的价格,R为认知系统消耗的资源的价格。
第二部分:合作频谱感知软信息融合策略。
在不考虑多径衰落和阴影效应的条件下,对于单个认知用户,在能量检测器采样次数较多的情况下,根据中心极限定理,接收信号近似服从高斯分布:
Yi~N(2u,4u)H0
Yi~N(2u+2γi,4u+8γi)H1
其中,u是能量检测器时间和带宽的乘积,Yi是认知用户i的检测统计量,γi是认知用户i的平均信噪比(SNR)。
在合作频谱感知软信息融合策略中,CR用户将本地的检测统计量或者与通过检测统计量计算得到的值作为感知信息发送给融合中心或者其他负责数据融合的用户。融合中心搜集来自所有参与感知的认知用户的软信息,即其中s代表软信息融合。与主网络和认知网络之间的距离相比,认知网络的规模相对较小。所以,每一个认知用户的路径损失几乎是相同的,它们接收到的主用户的信号可以认为是独立同分布的。则有:
Ys~N(2ku,4ku)H0
Ys~N(2ku+2kγ,4ku+8kγ)H1
通过优化能量检测器的门限,使合作频谱感知软信息融合的效用达到最大,为其提供一个理论上的边界。在最优能量检测器门限的条件下,求得最佳的参与合作的认知用户数,最大化认知网络的效用。使效用达到最大的能量检测器门限为
在最优能量检测器门限λs,opt的情况下,参与合作的最佳认知用户数ks,opts,opt)为
第三部分:合作频谱感知硬判决融合策略。
(1)在合作频谱感知硬判决策略中,每个认知用户将本地判决结果发送给融合中心或者其他负责数据融合的认知用户,该判决结果通常为用1比特表示的“0”或者“1”,融合中心或者其他负责数据融合的认知用户将收到的所有1比特判决结果累加起来得到全局结果。在融合中心采用随机准则进行判决并且分析了该准则的检测性能。
衰落环境下,单个认知用户的虚警概率pf和检测概率
其中,λ为单个认知用户能量检测器的门限,Г(·,·)为不完全伽马函数,为无衰落环境下单个认知用户的检测概率,Qu(·,·)为广义马库姆Q函数,f(γ)为衰落环境下γ的概率密度函数。
(2)随机准则
假设k个认知用户中有Λ个认知用户报告主用户存在,融合中心采用随机准则进行判决:
Λ>n,判决为H1
Λ=n,以概率θ判决为H1
Λ<n,判决为H0
其中,H1表示主用户存在,H0表示主用户不存在,n是融合中心的判决门限,它是整数且取值为n=0,1,...,k。
衰落环境下,对于合作频谱感知硬判决融合,基于随机准则,认知系统的虚警概率、检测概率和漏检概率分别为:
Qm,h=1-Qd,h
其中,θ为随机准则中的概率,n=0,1,...,k并且当n=k时,Qf,h和Qd,h中的第一项为0。对于不同能量检测器的门限,调整θ值和判决门限n的大小,使合作频谱感知硬判决融合的效用达到最大。在最佳门限的条件下,求得最佳的参与合作的认知用户数,最大化认知网络的效用。融合中心的最佳判决门限为:
其中,
参与合作的最佳认知用户数kh,opt(nopt)为:
有益效果:本发明设计了基于QoS保障的高效能合作频谱感知。第一部分构建系统模型并对感知性能与资源消耗权衡问题进行了分析。第二部分实现了合作频谱感知最优软信息融合策略,得到了最佳的能量检测器门限。在最优能量检测器门限的条件下,求得最佳的参与合作的认知用户数,最大化认知网络的效用。第三部分在合作频谱感知硬判决融合中心采用随机准则进行判决,优化最终判决门限,实现硬判决门限动态地调整。在最佳门限的条件下,求得最佳的参与合作的认知用户数,最大化认知网络的效用。优化策略与定门限策略相比,可以用较少的合作用户获得较大的效用。
附图说明
图1是合作频谱感知模型。
图2是衰落环境下检测概率随虚警概率变化曲线。
图3是加性高斯白噪声环境下软信息融合的效用函数和参与合作的认知用户数之间的关系。
图4是衰落环境下硬判决融合的效用函数和参与合作的认知用户数之间的关系。
具体实施方式
第一部分:分析系统模型并构建效用函数。
在认知无线电网络中,k个认知用户参与合作,从经济学的角度出发,效用函数U(k)可以定义如下:
U(k)=α[1-Qf(k)]p(H0)-βQm(k)p(H1)-R·k
其中,U(k)表示认知网络的效用,p(H0)表示主用户不存在的概率,p(H1)表示主用户存在的概率。第一部分表示认知用户成功地利用空闲频谱所获得的收益,第二部分表示认知用户应支付的罚金,因为漏检而对主用户造成干扰,第三部分表示消耗系统资源而需要付出的代价。其中,α,β和R分别表示每个部分的价格。
如果分配更多的认知用户来进行合作感知,就可获得更多的收益,支付更少的罚金。但是,认知网络中消耗系统资源的代价也会随着合作的认知用户数线性增长。例如,每个认知用户的信号测量所需要的传输功率需要投资价格R,在K个认知用户中,k个认知用户参与感知就可以节省(K-k).R的花费。在实际的感知系统中,利用所有认知用户进行感知并不能达到利益的最大化。因此,存在一个最佳的参与合作的认知用户数,使认知系统的效用达到最大,并且该最佳的用户数与各个QoS需求的价格有关。例如,如果主用户链路的QoS很重要,β应该设置大一点;如果感知所需的功率等资源有限,R应该设置为合理的值来满足相应的要求。
第二部分:合作频谱感知软信息融合中效用函数的最优化。
在基于能量检测的线性融合方法中,每一个认知用户只需放大接收到的主用户信号,然后转发给融合中心。融合中心收集来自所有认知用户的感知软信息,即其中s代表软信息融合。根据Ys的检测特性,得到合作频谱感知软信息融合的虚警概率、检测概率和漏检概率为:
Qm,s=1-Qd,s
其中,λs是软信息融合的判决门限,Q(·)是Q函数。
如果Qf,s是个固定的值,那么
此时,参与合作的最佳认知用户数为
如果Qf,s不是固定的,U(k)对λs求偏倒,得到
令得 到使效用最大的能量检测门限为
此时,参与合作的最佳认知用户数为
求得ks,opt和ks,opts,opt)的解析表达式比较困难,由于认知用户的数量一定,可以使用穷举法求解。
第三部分:合作频谱感知硬判决融合中效用函数的最优化。
在合作频谱感知硬判决策略中,每个认知用户将本地判决结果发送给融合中心,该判决结果通常为用1比特表示的“0”或者“1”,融合中心将收到的所有1比特判决结果累加起来得到全局结果。
根据随机准则,合作频谱感知硬判决融合的效用函数为:
其中,
假设k固定,判决门限n(n是整数,n=0,1,...,k)已知,Gn就是固定的值。为使效用函数的值达到最大,随机准则中的θ值应该满足:
如果
那么
对于无衰落的环境,有
因此,pd是pf的增函数。
又有
因此,pd是pf的凸函数。
对于衰落环境,其中,0<γ1<γ2<…<∞,因此,又因为对任意的γi (i=1,2,...,∞),都有因此是pf的凸函数。
从图2中可以看到,因此 所以有
因此得到n≥ρ,其中
同样,如果Gn<0时,n<ρ。那么,如果n<ρ,则θ=0;如果n≥ρ,则θ=1。从而,也就得到了最佳的判决门限:
此时,参与合作的最佳认知用户数为
下面结合附图对本发明进一步说明:
假设认知网络中共有20个CR用户,主用户不存在的概率为p(H0)=0.7,主用户存在的概率p(H1)=1-p(H0)=0.3。认知无线电系统的优先权是保护主用户链路的QoS,所以罚金的价格应比收益的价格高,假设α=2,β=3。
图3为合作频谱感知软信息融合策略下,效用函数与参与合作的认知用户数之间的关系。
(1)实线表示在不同的系统资源价格下,使用门限λs,opt所获得的最大效用。可以看到,当R=0.01时,ks,opts,opt)=10;当R=0.05时,ks,opts,opt)=4。虚线表示当虚警概率Qf为定值0.001时,当R=0.01时,ks,opt=13;当R=0.05时,ks,opt=7。说明在同样能量检测器门限的条件下,随着系统资源代价R的提升,最佳的参与合作的认知用户数会随之减少。
(2)在相同的系统资源代价R下,通过虚线和实线的比较,所得到的最优能量检测器门限λs,opt可使认知系统的效用达到最大,且有ks,opts,opt)<ks,opt。优化策略与定门限策略相比,可以用较少的合作用户获得较大的效用。
图4为合作频谱感知硬判决融合策略下,衰落环境下效用函数与参与合作的认知用户数之间的关系。
(1)实线表示Nakagami衰落环境下,对于不同的系统资源价格,使用判决门限nopt所获得的最大效用。可以看到,当R=0.01时,当R=0.05时,虚线表示在Rayleigh衰落环境下,当R=0.01时,当R=0.05时,说明在一定衰落环境下,随着系统资源代价R的提升,最佳的参与合作的认知用户数会随之减少。
(2)衰落的程度受Nakagami参数m值的影响,m增加,衰落的程度就下降。对于Rayleigh衰落m=1,而对于AWGN信道,m=∞。通过曲线可以看到,在相同资源代价的情况下,随着衰落程度的增加,认知系统的效用在减少。例如,当R=0.01,参与合作的认知用户数k=6时,在Nakagami衰落(m=5)环境下,U(k)≈1.21;而在Rayleigh衰落环境下,U(k)≈1.06。当R=0.05,参与合作的认知用户数k=6时,在Nakagami衰落(m=5)环境下,U(k)≈0.97;而在Rayleigh衰落环境下,U(k)≈0.82。最佳的参与合作的认知用户也和衰落程度有关系,kh,opt会随着衰落程度的增加而增加。

Claims (1)

1.一种认知无线电网络中基于QoS保障的高效能合作频谱感知方法,其特征在于包括:
第一部分:合作频谱感知软信息融合中效用函数的最优化:
合作频谱感知软信息融合的效用函数U(k)为:
U(k)=α[1-Qf(k)]p(H0)-βQm(k)p(H1)-R·k
其中U(k)为效用函数,Qf(k)和Qm(k)为k个认知用户参与合作时的虚警概率和漏检概率,p(H0)表示主用户不存在的概率,p(H1)表示主用户存在的概率,α为认知用户成功地利用空闲频谱所获得的收益的价格,β为认知用户对主用户干扰应支付的罚金的价格,R为认知系统消耗的资源的价格;
在合作频谱感知软信息融合策略中,如果虚警概率Qf,s是个固定的值,那么能量检测器门限λs
其中,k为参与合作的认知用户数,u为能量检测器时间和带宽的乘积,此时,参与合作的最佳认知用户数ks,opt
如果虚警概率Qf,s不是固定的值,使效用达到最大的能量检测门限λs,opt
在最优能量检测器门限λs,opt的条件下,参与合作的最佳认知用户数为
第二部分:合作频谱感知硬判决融合中效用函数的最优化:
根据随机准则,合作频谱感知硬判决融合的效用函数U(k)为:
其中,n为融合中心的判决门限,θ为随机准则中的概率,
其中,pf为衰落环境下单个认知用户的虚警概率和检测概率,
为使认知系统的效用达到最大,θ值应该满足:如果n<ρ,则θ=0;如果n≥ρ,则θ=1,其中,
融合中心的最佳的判决门限nopt为:
此时,参与合作的最佳认知用户数kh,opt(nopt)为
CN201310027901.5A 2013-01-15 2013-01-15 认知无线电网络中基于QoS保障的高效能合作频谱感知方法 Active CN103096336B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310027901.5A CN103096336B (zh) 2013-01-15 2013-01-15 认知无线电网络中基于QoS保障的高效能合作频谱感知方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310027901.5A CN103096336B (zh) 2013-01-15 2013-01-15 认知无线电网络中基于QoS保障的高效能合作频谱感知方法

Publications (2)

Publication Number Publication Date
CN103096336A CN103096336A (zh) 2013-05-08
CN103096336B true CN103096336B (zh) 2018-10-19

Family

ID=48208345

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310027901.5A Active CN103096336B (zh) 2013-01-15 2013-01-15 认知无线电网络中基于QoS保障的高效能合作频谱感知方法

Country Status (1)

Country Link
CN (1) CN103096336B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105375997B (zh) * 2015-11-25 2018-04-24 宁波大学 基于次用户数目优化的多用户协作频谱感知方法
CN105391505A (zh) * 2015-11-25 2016-03-09 宁波大学 基于能量判决门限调整的多用户协作频谱感知方法
CN106992939B (zh) * 2017-05-16 2023-10-10 新疆安迪星通信息科技有限公司 一种卫星IP网络QoS流控门限动态学习系统及方法
CN108631895B (zh) * 2018-03-15 2020-10-16 南京邮电大学 一种基于贝叶斯博弈的频谱感知次用户激励方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101951620A (zh) * 2010-09-03 2011-01-19 电子科技大学 一种合作频谱感知中认知用户节点的选择方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101951620A (zh) * 2010-09-03 2011-01-19 电子科技大学 一种合作频谱感知中认知用户节点的选择方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Energy-efficient Cooperative Sensing Scheduling for Heterogeneous Channel Access in Cognitive Radio;Xiangxia Sun等;《IEEE》;20121231;全文 *
协同频谱感知中的认知用户数优化;常帅 等;《军事通信技术》;20100930;全文 *

Also Published As

Publication number Publication date
CN103096336A (zh) 2013-05-08

Similar Documents

Publication Publication Date Title
Anandakumar et al. An efficient optimized handover in cognitive radio networks using cooperative spectrum sensing
Salameh et al. Spectrum assignment in cognitive radio networks for internet-of-things delay-sensitive applications under jamming attacks
Althunibat et al. Towards energy-efficient cooperative spectrum sensing for cognitive radio networks: An overview
Tsiropoulos et al. Radio resource allocation techniques for efficient spectrum access in cognitive radio networks
Lee et al. Energy efficient techniques for cooperative spectrum sensing in cognitive radios
Althunibat et al. Identification and punishment policies for spectrum sensing data falsification attackers using delivery-based assessment
CN103096336B (zh) 认知无线电网络中基于QoS保障的高效能合作频谱感知方法
Hamdaoui Adaptive spectrum assessment for opportunistic access in cognitive radio networks
US8948776B2 (en) Secondary user selection in cooperative sensing scheduling
Anand et al. Collaborative spectrum sensing in the presence of byzantine attacks in cognitive radio networks
Rajasekharan et al. Cooperative game-theoretic approach to spectrum sharing in cognitive radios
Sharma et al. A literature review on spectrum sensing in cognitive radio applications
Abeywardana et al. Spectrum sensing in cognitive radio enabled vehicular ad hoc networks: A review
Zhu et al. Enhanced robust cooperative spectrum sensing in cognitive radio
CN109981196A (zh) 一种网络结构评估方法及装置
Krishnakumar et al. Machine learning based spectrum sensing and distribution in a cognitive radio network
Preetha et al. Analysis of spectrum handoff schemes for cognitive radio networks considering secondary user mobility
Hu et al. Optimal strategies for cooperative spectrum sensing in multiple cross-over cognitive radio networks
Cai et al. Decoupling trust and wireless channel induced effects on collaborative sensing attacks
Zhang et al. Cluster‐based adaptive multispectrum sensing and access in cognitive radio networks
Banerjee et al. On optimal sample checkpoint for energy efficient cooperative spectrum sensing
Ye et al. Multimedia transmission over cognitive radio channels under sensing uncertainty
Khalid Efficient techniques for cooperative spectrum sensing in cognitive radio networks
Kannan et al. Throughput optimization for cognitive radios under sensing uncertainty
Matikolaei et al. Threshold optimization of collaborative spectrum sensing by maximizing the Sensing Reliability Index under Nakagami-m fading

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
DD01 Delivery of document by public notice

Addressee: Univ. of Science and Engineering, PLA

Document name: Notification of Publication of the Application for Invention

EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
DD01 Delivery of document by public notice

Addressee: Univ. of Science and Engineering, PLA

Document name: Notification of Patent Invention Entering into Substantive Examination Stage

CB02 Change of applicant information

Address after: Baixia District of Nanjing City, Jiangsu province 210007 camps No. 2 College of communication engineering PLA University of Science and Technology

Applicant after: PLA Military Engineering University

Address before: Baixia District of Nanjing City, Jiangsu province 210007 camps No. 2 College of communication engineering PLA University of Science and Technology

Applicant before: Univ. of Science and Engineering, PLA

CB02 Change of applicant information
GR01 Patent grant
GR01 Patent grant