CN103091769B - A kind of annular microstructured optical fibers - Google Patents
A kind of annular microstructured optical fibers Download PDFInfo
- Publication number
- CN103091769B CN103091769B CN201210582476.1A CN201210582476A CN103091769B CN 103091769 B CN103091769 B CN 103091769B CN 201210582476 A CN201210582476 A CN 201210582476A CN 103091769 B CN103091769 B CN 103091769B
- Authority
- CN
- China
- Prior art keywords
- dielectric
- center
- optical fiber
- column
- fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000013307 optical fiber Substances 0.000 title claims abstract description 44
- 239000000835 fiber Substances 0.000 claims abstract description 43
- 239000011159 matrix material Substances 0.000 claims abstract description 18
- 238000005253 cladding Methods 0.000 claims description 9
- 238000005452 bending Methods 0.000 abstract description 20
- 230000005540 biological transmission Effects 0.000 abstract description 17
- 239000010410 layer Substances 0.000 description 15
- 239000004038 photonic crystal Substances 0.000 description 9
- 239000011799 hole material Substances 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 239000010453 quartz Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Lasers (AREA)
Abstract
本发明公开一种环形微结构光纤,该光纤由基质材料(1)和第一介质柱(2)和第二折射率介质柱(3)组成。其中纤芯(4)位于光纤的中心,由基质材料组成。第一介质柱(2)的中心等间距地排布在以光纤中心为圆心的一个圆周上;第二介质柱(3)的中心等间距地排布在以光纤中心为圆心的另一个圆周上;第一介质柱(2)中心与光纤中心的距离为L1,第二介质柱(3)中心与光纤中心的距离为L2,且有L1>15μm和L2>L1。该光纤利用直径较小的第一介质柱(2)对光纤基模形成束缚,利用直径较大的第二介质柱(3)降低光纤基模的弯曲损耗,实现了单模、大模场、低弯曲损耗传输的目的。
The invention discloses an annular microstructure optical fiber, which is composed of a matrix material (1), a first dielectric column (2) and a second refractive index medium column (3). Wherein the fiber core (4) is located at the center of the optical fiber and is composed of a matrix material. The centers of the first dielectric columns (2) are equally spaced on a circle centered on the center of the optical fiber; the centers of the second dielectric columns (3) are equally spaced on the other circle centered on the center of the optical fiber ; The distance between the center of the first dielectric column (2) and the center of the optical fiber is L 1 , the distance between the center of the second dielectric column (3) and the center of the optical fiber is L 2 , and L 1 >15 μm and L 2 >L 1 . The optical fiber uses the first dielectric column (2) with a smaller diameter to bind the fundamental mode of the fiber, and uses the second dielectric column (3) with a larger diameter to reduce the bending loss of the fundamental mode of the fiber, realizing single-mode, large-mode field, The purpose of low bending loss transmission.
Description
技术领域 technical field
本发明涉对称光纤结构尤其涉及大模场、低弯曲损耗特性的且有效保持单模工作的微结构光纤。 The invention relates to a symmetrical optical fiber structure, in particular to a microstructured optical fiber with large mode field, low bending loss characteristics and effective single-mode operation.
背景技术 Background technique
光子晶体光纤与二氧化硅微空气在1995年第一次被提出,由于这种光纤在超宽带传输、超连续谱生成、高功率光传输,光放大和其他功能性器件仪器中的特殊应用,因此引起了众多研究者的兴趣。弯曲损耗通常被认为是在光传输方面的一个不利因素。 Photonic crystal fiber and silica micro-air were first proposed in 1995. Due to the special application of this fiber in ultra-broadband transmission, supercontinuum generation, high-power optical transmission, optical amplification and other functional devices, Therefore, it has aroused the interest of many researchers. Bending loss is generally considered to be a disadvantage in light transmission.
自光子晶体光纤被提出并制作成功之后,人们开始尝试采用光子晶体光纤结构来制作大模场光纤。由于理论上光子晶体光纤可以实现无休止单模传输,因此,采用光子晶体光纤结构可以实现超大模场面积的单模传输。目前,实验上已经制成功的单模光子晶体光纤的模场直径可达100 μm。但它的弯曲性能很差。虽然理论上可以实现单模传输,但是实际上,现在大部分都是通过损耗衰减差,来去除高阶模,即高阶模损耗较大(一般在1 dB/m以上),而基模损耗较低(一般在0.1 dB/m以下)。一种有效实现LMA的单模传输的方法就是用通道泄露光纤,如Dong提出的用一层空气孔包围纤芯的LCF,但是对于空气孔的制作工艺很难。K. Iizawa等人通过在纤芯掺杂镱和耦合的方法来获得单模传输,但是这种光纤的高阶模损耗小于1dB/m,不能完全消除达到单模传输。 Since the photonic crystal fiber was proposed and successfully manufactured, people began to try to use the photonic crystal fiber structure to make large mode field fiber. Since the photonic crystal fiber can realize endless single-mode transmission in theory, the single-mode transmission with super large mode field area can be realized by using the photonic crystal fiber structure. At present, the mode field diameter of single-mode photonic crystal fibers that have been successfully fabricated in experiments can reach 100 μm. But its bending performance is poor. Although single-mode transmission can be realized in theory, in fact, most of the high-order modes are removed through the loss attenuation difference, that is, the high-order mode loss is large (generally above 1 dB/m), while the fundamental mode loss is low (generally below 0.1 dB/m). An effective way to achieve single-mode transmission of LMA is to use channel leaky fiber, such as LCF with a layer of air holes surrounding the fiber core proposed by Dong, but it is difficult to manufacture the air holes. K. Iizawa et al obtained single-mode transmission by doping ytterbium in the fiber core and coupling, but the high-order mode loss of this fiber is less than 1dB/m, which cannot completely eliminate single-mode transmission.
专利申请号为200610119574.6的“大模场双包层单模光纤”公开了一种单模大模场光纤,纤芯半径可达72 μm,但未解决光纤的弯曲损耗问题,且结构比较复杂,不利于制作。 The patent application number is 200610119574.6 "Large mode field double-clad single-mode fiber" discloses a single-mode large mode field fiber, the core radius can reach 72 μm, but the bending loss problem of the fiber is not solved, and the structure is relatively complicated. Not good for production.
发明内容 Contents of the invention
针对现有技术的不足,本发明的目的是提供一种有效地滤除高阶模,具有较低的弯曲损耗的大模场微结构光纤。 Aiming at the deficiencies of the prior art, the object of the present invention is to provide a large mode field microstructured optical fiber which effectively filters out high-order modes and has relatively low bending loss.
本发明的技术方案为:一种环形微结构光纤,包括纤芯和包层,所述包层由基质材料、第一介质柱和第二介质柱组成;所述纤芯为基质材料组成,位于光纤的中心;所述第一介质柱的中心等间距地排布在以光纤中心为圆心的圆周上,所述第二介质柱的中心等间距地排布在以光纤中心为圆心的另一圆周上;所述第一介质柱的中心与光纤中心的距离为L1,第二介质柱中心与光纤中心的距离为L2,则L1>15 μm且L2>L1;所述第一介质柱的直径d1和所述第二介质柱的直径d2满足d1< d2;所述第一介质柱和所述第二介质柱的折射率相同,且低于基质材料的折射率。 The technical solution of the present invention is: a ring-shaped microstructure optical fiber, including a core and a cladding, the cladding is composed of a matrix material, a first dielectric column and a second dielectric column; the core is composed of a matrix material, located at The center of the optical fiber; the centers of the first dielectric columns are arranged at equal intervals on a circle centered on the center of the optical fiber, and the centers of the second dielectric columns are arranged at equal intervals on another circle centered on the center of the optical fiber above; the distance between the center of the first dielectric column and the center of the optical fiber is L 1 , the distance between the center of the second dielectric column and the center of the optical fiber is L 2 , then L 1 >15 μm and L 2 >L 1 ; the first The diameter d 1 of the dielectric column and the diameter d 2 of the second dielectric column satisfy d 1 < d 2 ; the refractive index of the first dielectric column and the second dielectric column are the same and lower than the refractive index of the matrix material .
所述第一介质柱的数量N1≥12,所述第二介质柱的数量N2为4~12。 The number N 1 of the first medium columns is ≥12, and the number N 2 of the second medium columns is 4-12.
所述第一介质柱的直径d1满足 5≥d1≥2 μm;所述第二介质柱(3)的直径d2满足1.5πL2 /N2≥d2≥0.4πL2 /N2。 The diameter d 1 of the first dielectric column satisfies 5≥d 1 ≥2 μm; the diameter d 2 of the second dielectric column (3) satisfies 1.5πL 2 /N 2 ≥d 2 ≥0.4πL 2 /N 2 .
所述第一介质柱中心与光纤中心的距离L1与所述第二介质柱中心与光纤中心的距离L2之间满足:4L1>L2>1.5L1。 The distance L 1 between the center of the first dielectric column and the center of the optical fiber and the distance L 2 between the center of the second dielectric column and the center of the optical fiber satisfy: 4L 1 >L 2 >1.5L 1 .
所述第一介质柱和所述第二介质柱的折射率nrod与基质材料的折射率nclad之差满足: nclad-nrod=0.001~0.01。 The difference between the refractive index n rod of the first dielectric column and the second dielectric column and the refractive index n clad of the matrix material satisfies: n clad −n rod =0.001˜0.01.
本发明的技术效果为:在纤芯周围排布一层直径较小的低折射率介质柱,形成较低的折射率层,从而有效地束缚光,使光纤基模具有较低的弯曲损耗。将低折射率介质柱排布在以纤芯为中心的周围上,从而使光纤基模模场更具圆对称性。同时,在此低折射率介质柱外侧排布一层直径较大、介质柱之间间隙也较大的低折射率介质柱,以降低基模的束缚损耗和弯曲损耗,同时,由于介质柱之间的间隙大,从而保证光纤高阶模光能够被有效泄露,达到单模传输的目的。从而实现了单模、大模场、低弯曲损耗传输的目的。由于包层仅采用两层孔,结构简单对称,保证了包层具有较小的尺寸。 The technical effect of the invention is that a layer of low-refractive-index dielectric columns with smaller diameters is arranged around the fiber core to form a lower-refractive-index layer, thereby effectively confining light and making the optical fiber base mold have lower bending loss. Arranging the low-refractive-index dielectric cylinders around the center of the fiber core makes the fundamental mode field of the fiber more circularly symmetrical. At the same time, a layer of low-refractive-index dielectric pillars with larger diameters and larger gaps between the dielectric pillars is arranged outside the low-refractive-index dielectric pillars to reduce the binding loss and bending loss of the fundamental mode. The gap between them is large, so as to ensure that the high-order mode light of the fiber can be effectively leaked to achieve the purpose of single-mode transmission. Thus, the purpose of single-mode, large-mode-field, and low-bending-loss transmission is achieved. Since the cladding only adopts two layers of holes, the structure is simple and symmetrical, which ensures that the cladding has a small size.
附图说明 Description of drawings
图1为本发明的实施例的横截面示意图; Fig. 1 is a schematic cross-sectional view of an embodiment of the present invention;
图2为图1第一介质柱2的直径变化时光纤基模与高阶模的束缚损耗曲线。 FIG. 2 is the confinement loss curves of the fundamental mode and higher-order modes of the optical fiber when the diameter of the first dielectric column 2 in FIG. 1 changes.
图3为图1第一介质柱2取不同圆心角时光纤基模与高阶模的束缚损耗曲线。 FIG. 3 is the confinement loss curves of the fundamental mode and higher-order modes of the optical fiber when the first dielectric column 2 in FIG. 1 takes different central angles.
图4为图1所示结构中第二介质柱3取不同直径的基模和高阶模的损耗曲线。 FIG. 4 is the loss curves of the fundamental mode and high-order mode of the second dielectric column 3 with different diameters in the structure shown in FIG. 1 .
图5为图(1)所示结构光纤基模的弯曲损耗随光纤弯曲半径的变化曲线。 Fig. 5 is a graph showing the variation curve of the bending loss of the fundamental mode of the optical fiber with the structure shown in Fig. (1) as a function of the bending radius of the optical fiber.
其中:1-基质材料,2-第一介质柱2,3-第二介质柱3,4-纤芯。 Among them: 1-matrix material, 2-first dielectric column 2, 3-second dielectric column 3, 4-fiber core.
具体实施方式 Detailed ways
图1给出了本发明的一种实施例的横截面示意图,纤芯4被两层直径不同的低折射率介质柱包围。其中第一介质柱2的直径较小,排布较密,且第一介质柱2的直径与相邻的第一介质柱2的间距之比较大。由光子晶体光纤理论,间距较小的介质柱组成的包层结构,其等效的折射率较低,因此,可以在直波导和弯曲时在一定程度上束缚住光纤基模。但由于只有一层介质柱,其束缚光的能力有限,而光纤的高阶模能量更易向包层区扩展,因此,光纤的高阶模仍然能够保持高损耗。 Fig. 1 shows a schematic cross-sectional view of an embodiment of the present invention, the fiber core 4 is surrounded by two layers of low-refractive-index medium pillars with different diameters. The diameter of the first dielectric columns 2 is relatively small, the arrangement is relatively dense, and the ratio between the diameter of the first dielectric columns 2 and the distance between the adjacent first dielectric columns 2 is relatively large. According to the photonic crystal fiber theory, the cladding structure composed of dielectric columns with small spacing has a low equivalent refractive index, so the fundamental mode of the fiber can be bound to a certain extent during straight waveguide and bending. However, since there is only one layer of dielectric column, its ability to confine light is limited, and the high-order mode energy of the fiber is easier to expand to the cladding region, so the high-order mode of the fiber can still maintain high loss.
如果光纤仅由基质材料1和第一介质柱2组成,其基模与高阶模的损耗差别很小。图2给出第一介质柱2的直径变化时光纤基模与高阶模的束缚损耗曲线。由图可见,两者相差较小,光纤基模损耗较大,不适合实际应用。 If the optical fiber is only composed of the matrix material 1 and the first dielectric column 2, the loss difference between the fundamental mode and the high-order mode is very small. Fig. 2 shows the confinement loss curves of the optical fiber fundamental mode and higher order modes when the diameter of the first dielectric column 2 changes. It can be seen from the figure that the difference between the two is small, and the fundamental mode loss of the fiber is relatively large, which is not suitable for practical applications.
由光子晶体光纤理论,引入多层低折射率介质柱即可有效地束缚光。但在大模场光纤中,由于纤芯尺寸大,引入两层低折射率柱即可使光纤的高阶模损耗很小,无法实现单模传输的目的。例如,如图2中例子,当取第一介质柱2的直径为5μm时,若只有一层介质柱,其高阶模束缚损耗为2.98 dB/m,若在其外侧再增加一层直径相同、与第一介质柱2间距相同的低折射率介质柱,则基模、高阶模的束缚损耗分别降至0.51dB/m,2.13dB/m。因此,光纤仍然是非单模光纤。 According to the photonic crystal fiber theory, the introduction of multi-layer low refractive index dielectric pillars can effectively confine light. However, in the large mode field fiber, due to the large core size, the introduction of two layers of low refractive index columns can make the high-order mode loss of the fiber very small, and the purpose of single-mode transmission cannot be achieved. For example, as shown in the example in Figure 2, when the diameter of the first dielectric column 2 is 5 μm, if there is only one layer of dielectric column, the high-order mode confinement loss is 2.98 dB/m, and if an additional layer with the same diameter as For the low-refractive-index dielectric pillars with the same distance between the first dielectric pillars 2, the confinement losses of the fundamental mode and the high-order mode are reduced to 0.51 dB/m and 2.13 dB/m, respectively. Therefore, the fiber is still a non-single-mode fiber.
为此,我们在第一介质柱2外侧增加一层距离纤芯较远、直径较大、其直径与介质柱的间距之比较小的第二介质柱3以实现降低基模损耗,同时保持高阶模的高损耗的目的。可以这样来看第二介质柱3的作用:若无第一介质柱2,则光纤纤芯是由第二介质柱3所包围以束缚光。由于第二介质柱3距离纤芯远、其直径与第二介质柱3间距之比较大,因此其类似于只有单层孔组成的光子晶体光纤,是单模传输的,即高阶模可以从第二介质柱3的空隙中泄漏出去。因此第二介质柱3的引入,不会对光纤的高阶模损耗产生较大影响。但第二介质柱3却可以有效地降低光纤基模的束缚损耗和弯曲损耗。例如,第二介质柱3引入后,其基模束缚损耗可以降低1200倍。 To this end, we add a layer of second dielectric column 3 on the outside of the first dielectric column 2, which is farther away from the fiber core, has a larger diameter, and has a smaller ratio of its diameter to the distance between the dielectric column to reduce the loss of the fundamental mode while maintaining the high-order mode. high-loss purposes. The function of the second dielectric column 3 can be seen in this way: if there is no first dielectric column 2, the fiber core is surrounded by the second dielectric column 3 to confine light. Because the second dielectric column 3 is far away from the fiber core, and the ratio of its diameter to the distance between the second dielectric column 3 is large, it is similar to the photonic crystal fiber that only has a single layer of holes, and is single-mode transmission, that is, the high-order mode can be transmitted from the second The gap of medium column 3 leaks out. Therefore, the introduction of the second dielectric column 3 will not have a great impact on the high-order mode loss of the optical fiber. However, the second dielectric column 3 can effectively reduce the binding loss and bending loss of the fundamental mode of the fiber. For example, after the second dielectric column 3 is introduced, its fundamental mode confinement loss can be reduced by 1200 times.
由于第一介质柱2与基质材料1组成的包层区域有效折射率应较低,因此,第一介质柱2的直径应较小,同时其数量N1应较多,即第一介质柱2排布较密。而第二介质柱3是要束缚基模而泄漏高阶模,因此,其直径应较大,同时其数量N2较少。特别地,应有第二介质柱3的直径d2满足1.5πL2 /N2≥d2≥0.4πL2 /N2。即第二介质柱3的直径与相邻第二介质柱3的间距之比不大于0.75,从而满足使高阶模损耗保持在较高的要求。 Since the effective refractive index of the cladding area composed of the first dielectric column 2 and the matrix material 1 should be low, the diameter of the first dielectric column 2 should be relatively small, and its number N should be relatively large, that is, the first dielectric column 2 The arrangement is denser. The second dielectric column 3 is to bind the fundamental mode and leak high-order modes, therefore, its diameter should be relatively large, and its number N 2 should be relatively small. In particular, the diameter d 2 of the second medium column 3 should satisfy 1.5πL 2 /N 2 ≥d 2 ≥0.4πL 2 /N 2 . That is, the ratio of the diameter of the second dielectric pillar 3 to the distance between adjacent second dielectric pillars 3 is not greater than 0.75, so as to meet the requirement of keeping high-order mode loss at a high level.
若第二介质柱3距离第一介质柱2很近,则高阶模泄漏的空间变小,因此,第二介质柱3应和第一介质柱2保持一定的距离。但若过远又会使其束缚基模作用减弱。因此,要求:第一介质柱2中心与光纤中心的距离L1,第二介质柱3中心与光纤中心的距离L2之间满足:4L1>L2>1.5L1。 If the second dielectric column 3 is very close to the first dielectric column 2 , the space for high-order mode leakage becomes smaller. Therefore, the second dielectric column 3 should keep a certain distance from the first dielectric column 2 . But if it is too far away, it will weaken the effect of its binding schema. Therefore, it is required that: the distance L 1 between the center of the first dielectric column 2 and the center of the optical fiber, and the distance L 2 between the center of the second dielectric column 3 and the center of the optical fiber satisfy: 4L 1 >L 2 >1.5L 1 .
图3为第二介质柱3参数不变的情况下,内层第一介质柱2的相邻圆心角θ从6°到15°,直径d1从2μm到5μm时的高阶模和基模的束缚损耗以及损耗比。由图可见,增大第二介质柱3的直径可以提高高阶模和基模的损耗比,实现很好的单模传输。 Figure 3 shows the confinement of higher-order modes and fundamental modes when the parameters of the second dielectric column 3 are constant, the central angle θ of the adjacent first dielectric column 2 in the inner layer is from 6° to 15°, and the diameter d1 is from 2 μm to 5 μm loss and loss ratio. It can be seen from the figure that increasing the diameter of the second dielectric column 3 can increase the loss ratio between the high-order mode and the fundamental mode, and achieve good single-mode transmission.
图4为第二介质柱3的L2不变为60μm,内层孔圆心角为15°,直径d1为5μm时,高阶模和基模的束缚损耗与直径d2的变化关系。由图可见,在外层孔的归一化直径为0.7左右时,损耗比达到最大。 Figure 4 shows the relationship between the confinement loss of the high-order mode and the fundamental mode and the diameter d2 when the L2 of the second dielectric column 3 does not change to 60 μm, the central angle of the inner layer hole is 15°, and the diameter d1 is 5 μm. It can be seen from the figure that the loss ratio reaches the maximum when the normalized diameter of the outer hole is about 0.7.
图5为第二介质柱3直径d2=42μm, L2=59μm,内层孔圆心角θ为18°,直径d1为4μm时,基模的弯曲损耗和光纤弯曲半径的变化关系。从图中可以发现,在弯曲半径为0.5m时,弯曲损耗小于0.1 dB/m。 Fig. 5 shows the relationship between the bending loss of the fundamental mode and the bending radius of the optical fiber when the diameter of the second dielectric column 3 is d 2 =42 μm, L 2 =59 μm, the central angle θ of the inner layer hole is 18°, and the diameter d 1 is 4 μm. It can be found from the figure that when the bending radius is 0.5m, the bending loss is less than 0.1 dB/m.
以下以石英为基质材料为例,说明光纤的传输特性。实际应用时,可根据不同的基质材料和基质材料所适用的波长范围来选择相应的光纤结构。 The following takes quartz as the matrix material as an example to illustrate the transmission characteristics of the optical fiber. In practical application, the corresponding optical fiber structure can be selected according to different matrix materials and applicable wavelength ranges of the matrix materials.
实施例:Example:
光纤的横截面结构如图1所示。基质材料采用纯石英,孔材料采用掺杂的石英材料。第一介质柱2的直径d1=5μm,与光纤中心间距L1=30μm,数量N1=20。第二介质柱3的直径d2=42μm,与光纤中心间距L2=60μm,数量N2=6。低折射率介质柱的折射率比基质材料低0.004。传输波长为1064 nm时,在直光纤时的基模模场面积可达1498 μm2,在弯曲半径为50 cm时,基模的模场面积为1384 μm2。光纤在弯曲半径为50cm时弯曲损耗为0.095dB/m。直光纤时其基模泄漏损耗小于0.002dB/m,高阶模损耗大于 1.11dB/m。 The cross-sectional structure of the optical fiber is shown in Figure 1. The matrix material adopts pure quartz, and the hole material adopts doped quartz material. The diameter of the first dielectric column 2 is d 1 =5 μm, the distance from the center of the optical fiber is L 1 =30 μm, and the number N 1 =20. The diameter of the second dielectric column 3 is d 2 =42 μm, the distance from the center of the optical fiber is L 2 =60 μm, and the number N 2 =6. The low refractive index dielectric pillars have a refractive index 0.004 lower than the matrix material. When the transmission wavelength is 1064 nm, the mode field area of the fundamental mode can reach 1498 μm 2 in a straight fiber, and the mode field area of the fundamental mode is 1384 μm 2 when the bending radius is 50 cm. The bending loss of the optical fiber is 0.095dB/m when the bending radius is 50cm. When the fiber is straight, its fundamental mode leakage loss is less than 0.002dB/m, and its high-order mode loss is greater than 1.11dB/m.
上述附图仅为说明性示意图,并不对本发明的保护范围形成限制。应理解,这些实施例只是为了举例说明本发明,而非以任何方式限制本发明的范围。 The above drawings are only illustrative diagrams, and do not limit the protection scope of the present invention. It should be understood that these examples are only for illustration of the present invention, but not to limit the scope of the present invention in any way.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210582476.1A CN103091769B (en) | 2012-12-28 | 2012-12-28 | A kind of annular microstructured optical fibers |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210582476.1A CN103091769B (en) | 2012-12-28 | 2012-12-28 | A kind of annular microstructured optical fibers |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103091769A CN103091769A (en) | 2013-05-08 |
CN103091769B true CN103091769B (en) | 2015-08-26 |
Family
ID=48204561
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210582476.1A Active CN103091769B (en) | 2012-12-28 | 2012-12-28 | A kind of annular microstructured optical fibers |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103091769B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104316991B (en) * | 2014-11-05 | 2017-10-31 | 国家电网公司 | Flat-top photon band-gap optical fiber |
KR101874694B1 (en) | 2016-03-28 | 2018-07-04 | 한국과학기술원 | Waveguide for transmission of electomagnetic signal |
CN109188598B (en) * | 2018-10-15 | 2019-11-01 | 燕山大学 | A kind of super model microstructured optical fibers being used for transmission orbital angular momentum |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1449504A (en) * | 2000-08-25 | 2003-10-15 | 悉尼大学 | Polymer optical waveguide |
JP2009230080A (en) * | 2008-03-25 | 2009-10-08 | Nippon Telegr & Teleph Corp <Ntt> | Photonic crystal fiber |
CN101625438A (en) * | 2009-08-11 | 2010-01-13 | 长飞光纤光缆有限公司 | Bend insensitive single mode optic fiber with large effective area and manufacturing method thereof |
US7970248B2 (en) * | 2004-12-30 | 2011-06-28 | Imra America, Inc. | Photonic bandgap fibers |
CN102375176A (en) * | 2011-11-11 | 2012-03-14 | 江苏大学 | Low-bending-loss optical fiber |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2083291B1 (en) * | 2004-07-13 | 2012-07-04 | Fujikura, Ltd. | Low bending loss multimode holey fiber |
-
2012
- 2012-12-28 CN CN201210582476.1A patent/CN103091769B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1449504A (en) * | 2000-08-25 | 2003-10-15 | 悉尼大学 | Polymer optical waveguide |
US7970248B2 (en) * | 2004-12-30 | 2011-06-28 | Imra America, Inc. | Photonic bandgap fibers |
JP2009230080A (en) * | 2008-03-25 | 2009-10-08 | Nippon Telegr & Teleph Corp <Ntt> | Photonic crystal fiber |
CN101625438A (en) * | 2009-08-11 | 2010-01-13 | 长飞光纤光缆有限公司 | Bend insensitive single mode optic fiber with large effective area and manufacturing method thereof |
CN102375176A (en) * | 2011-11-11 | 2012-03-14 | 江苏大学 | Low-bending-loss optical fiber |
Also Published As
Publication number | Publication date |
---|---|
CN103091769A (en) | 2013-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111474628B (en) | Polarization-maintaining hollow anti-resonance optical fiber | |
CN105467509B (en) | A kind of photonic crystal fiber based on graphene | |
CN103698843B (en) | A kind of Low-degeneracy few-mode fiber | |
CN103472527B (en) | A kind of High-birefringence low-confinement-lossphotonic photonic crystal fiber | |
CN110221381B (en) | Node type hollow anti-resonance photonic crystal fiber and preparation method thereof | |
CN101464538A (en) | Photonic crystal fiber with ultra-high double refraction and ultra-low limitation loss | |
CN106597603B (en) | A new type of few-mode fiber | |
CN103645536B (en) | A kind of all solid state large mould field photon band-gap optical fiber | |
US20140003778A1 (en) | Hollow core fiber with improvements relating to optical properties and its use, method of its production and use thereof | |
CN103913801A (en) | Novel pohotonic crystal fiber | |
CN104297837A (en) | Single-core photonic crystal fiber polarization splitter | |
CN102368103B (en) | Microstructure optical fiber with large mode area | |
CN103091769B (en) | A kind of annular microstructured optical fibers | |
CN102375176B (en) | A low bending loss optical fiber | |
CN102279439A (en) | Hybrid light-guiding type single-polarization single-mode optical fiber | |
CN112859235B (en) | A hollow-core microstructured fiber with angular mode selectivity | |
CN1971323A (en) | Large mode field double-cladding single-mode optical fiber | |
CN103529510B (en) | A kind of high birefringence Low Loss Photonic Crystal Fiber | |
Wang et al. | Design and analysis for large-mode-area photonic crystal fiber with negative-curvature air ring | |
CN103197371B (en) | Birefringence photonic crystal fiber | |
CN104020521A (en) | Square structured all-solid-state band gap fiber | |
CN102819062A (en) | Air hole square array fiber core annular doping four-core photonic crystal fiber | |
CN103048730A (en) | Microstructural terahertz (THz) optical fiber | |
CN110780378A (en) | A multilayer refractive index groove gradient fiber leaking high-order modes | |
CN106908894B (en) | A dispersion-flattened all-solid microstructured fiber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C56 | Change in the name or address of the patentee | ||
CP02 | Change in the address of a patent holder |
Address after: 212114 Zhenjiang, Zhejiang Province, Dantu high capital street, Xiangshan Road, No. 1 Patentee after: Jiangsu University Address before: Zhenjiang City, Jiangsu Province, 212013 Jingkou District Road No. 301 Patentee before: Jiangsu University |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20210201 Address after: 226001 room 1002, Huali building, No.6 Gongnong Road, Chongchuan District, Nantong City, Jiangsu Province Patentee after: Nantong Ningjing Information Technology Co.,Ltd. Address before: 212114 No. 1 Xiangshan Road, high street, Dantu District, Zhenjiang, Jiangsu Patentee before: JIANGSU University |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20210805 Address after: No.10, Rongyuan Road, Huayuan Industrial Zone, Binhai New Area, Tianjin 300450 Patentee after: Tianjin Futong Information Technology Co.,Ltd. Address before: 226001 room 1002, Huali building, No.6 Gongnong Road, Chongchuan District, Nantong City, Jiangsu Province Patentee before: Nantong Ningjing Information Technology Co.,Ltd. |
|
PP01 | Preservation of patent right | ||
PP01 | Preservation of patent right |
Effective date of registration: 20241216 Granted publication date: 20150826 |