CN103091604A - 一种光伏并网发电系统的孤岛检测方法和检测装置 - Google Patents

一种光伏并网发电系统的孤岛检测方法和检测装置 Download PDF

Info

Publication number
CN103091604A
CN103091604A CN2013100335570A CN201310033557A CN103091604A CN 103091604 A CN103091604 A CN 103091604A CN 2013100335570 A CN2013100335570 A CN 2013100335570A CN 201310033557 A CN201310033557 A CN 201310033557A CN 103091604 A CN103091604 A CN 103091604A
Authority
CN
China
Prior art keywords
frequency
voltage
grid
inverter
connected photovoltaic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013100335570A
Other languages
English (en)
Other versions
CN103091604B (zh
Inventor
刘建飞
谢春华
李战功
张立品
汪兆华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHENZHEN JINGQUANHUA ELECTRONICS CO LTD
Original Assignee
SHENZHEN JINGQUANHUA ELECTRONICS CO LTD
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHENZHEN JINGQUANHUA ELECTRONICS CO LTD filed Critical SHENZHEN JINGQUANHUA ELECTRONICS CO LTD
Priority to CN201310033557.0A priority Critical patent/CN103091604B/zh
Publication of CN103091604A publication Critical patent/CN103091604A/zh
Application granted granted Critical
Publication of CN103091604B publication Critical patent/CN103091604B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Inverter Devices (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种光伏并网发电系统的孤岛检测方法和检测装置,通过微处理器控制逆变电源,并改变逆变电源的输出电压的频率,使得每一个周期的电压频率都比前一个周期的电压频率高一预定值Δf;实时检测公共耦合点的电压的频率,判断公共耦合点的电压的频率是否达到系统的频率保护的阈值;当公共耦合点的电压的频率大于阈值时,控制逆变器停止工作;当公共耦合点的电压的频率不大于阈值时,继续检测公共耦合点处的电平的频率,很好的实现了对光伏并网发电系统中孤岛效应的准确检测,且检测方法简单,检测时间短检测迅速,可靠性高,易操作,成本较低。

Description

一种光伏并网发电系统的孤岛检测方法和检测装置
技术领域
 本发明涉及光伏并网发电技术领域,尤其涉及的是一种光伏并网发电系统的孤岛检测方法和检测装置。
背景技术
光伏并网发电系统是由光伏电池方阵、控制器和并网逆变器组成,不经过蓄电池储能,通过并网逆变器直接将电能输入公共电网。太阳能光伏并网发电系统与离网太阳能光伏发电系统相比,省掉了蓄电池储能和释放的过程,减少了其中的能量消耗,节约了占地空间,还降低了配置成本。
但在光伏并网发电系统中会产生孤岛效应,发电系统并网运行时如果处于孤岛状态将会对设备造成损坏,影响电力系统安全正常运行,严重时甚至可能威胁线路检修人员的人身安全。所谓孤岛效应是指电网由于电气故障、误操作或自然因素等原因中断供电时,光伏发电系统未能及时检测出停电状态而脱离电网,仍然向公共电网馈送电量,使太阳能并网发电系统和周围的负载组成了一个电力公司无法掌握的自给供电孤岛。因此,在光伏并网发电系统的应用中必须防止孤岛效应。
现有的检测方法包括:
被动检测法,具体为利用电网断电时逆变器输出端电压、频率、相位或谐波的变化进行孤岛效应检测。但当光伏系统输出功率与局部负载功率平衡时,则被动式检测方法将失去孤岛效应检测能力,存在较大的非检测区域。
主动检测法,具体为指通过控制逆变器,使其输出功率、频率或相位存在一定的扰动。电网正常工作时,由于电网的平衡作用,检测不到这些扰动。一旦电网出现故障,逆变器输出的扰动将快速累积并超出允许范围,从而触发孤岛效应检测电路。该方法检测精度高,非检测区小,但是控制较复杂。
因此,现有技术还有待于改进和发展。
发明内容
本发明要解决的技术问题在于,针对现有技术的上述缺陷,提供一种光伏并网发电系统的孤岛检测方法和检测装置。
本发明解决技术问题所采用的技术方案如下:
一种光伏并网发电系统的孤岛检测方法,其中,包括以下步骤:
A、微处理器控制逆变电源,并改变逆变电源的输出电压的频率,使得每一个周期的电压频率都比前一个周期的电压频率高一预定值Δf;
B、实时检测公共耦合点的电压的频率,判断公共耦合点的电压的频率是否达到系统的频率保护的阈值;
C、当公共耦合点的电压的频率大于阈值时,控制逆变器停止工作;当公共耦合点的电压的频率不大于阈值时,执行步骤B。
所述的光伏并网发电系统的孤岛检测方法,其中,所述步骤A之前还包括:
A0、判断系统是否处于并网发电状态,当系统处于并网发电状态时,进入步骤A。
所述的光伏并网发电系统的孤岛检测方法,其中,所述步骤A还包括:
A1、微处理器控制逆变电源的输出电压的频率高于电网电压的频率。
所述的光伏并网发电系统的孤岛检测方法,其中,所述步骤A还包括:
A2、当系统中有多个逆变电源时,微处理器控制每一个逆变电源的每一个周期的电压频率都比前一个周期的电压频率高一预定值Δf。
所述的光伏并网发电系统的孤岛检测方法,其中,所述步骤B还包括:
B1、当系统没有发生孤岛效应时,逆变电源的输出频率为电网电压输出频率,即公共耦合点的频率与电网电压的频率相同,即频率不会发生改变;当系统发生孤岛效应时,公共耦合点的频率会高于前一周期从该点测得的频率。
一种光伏并网发电系统的孤岛检测装置,其中,包括:
频率处理模块,用于控制逆变电源,并改变逆变电源的输出电压的频率,使得每一个周期的电压频率都比前一个周期的电压频率高一预定值Δf;
频率检测模块,用于实时检测公共耦合点的电压的频率;
第一判断模块,用于判断公共耦合点的电压的频率是否达到系统的频率保护的阈值;
控制模块,用于根据判断模块的结果来控制逆变器的工作状态。
所述的光伏并网发电系统的孤岛检测装置,其中,还包括:
第二判断模块,用于判断光伏并网发电系统是否处于并网发电状态。
本发明所提供的光伏并网发电系统的孤岛检测方法和检测装置,很好的实现了对光伏并网发电系统中的孤岛效应的准确检测,克服了现有反孤岛方案的缺陷,即被动检测方法存在较大的非检测区域,而主动检测法的检测精度高,非检测区小,但是控制较复杂的问题,本发明所提供的光伏并网发电系统的孤岛检测方法简单,检测时间短,可靠性高,易操作。
附图说明
图1为现有技术中分布式并网逆变器发电系统的电路原理图。
图2为本发明提供的光伏并网发电系统的孤岛检测方法流程图。
图3为本发明提供的光伏并网发电系统的孤岛检测方法的逆变电源输出电压和电网电压的波形图。
图4为本发明提供的光伏并网发电系统的孤岛检测装置的结构框图。
具体实施方式
本发明提供了一种光伏并网发电系统的孤岛检测方法和检测装置,为使本发明的目的、技术方案及优点更加清楚、明确,以下参照附图并举实施例对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
请参阅图1,图1为现有技术中分布式并网逆变器发电系统的电路原理图。所述分布式并网逆变器发电系统包括逆变电源10、电网20以及并联RLC负载。其中A为公共耦合点,RLC为局部负载。逆变电源10的输出电压是由电网20控制的,其电压频率和相位与电网20电压相同。所述逆变电源10也就是并网逆变器。并网逆变器将太阳能光伏组件产生的直流转换为交流。并网逆变器一般分为光伏并网逆变器、风力发电并网逆变器、动力设备并网逆变器和其他发电设备并网逆变器。所述光伏电池方阵、控制器和并网逆变器构成一光伏并网发电系统,在电网中,相当于一分布式电源。当分布式电源与电网20连接时,由于电网20强大的蓄电子能力,逆变电源10输出电压波形将被电网20拉成同电网20电压波形相似,即频率不会被改变的,譬如我国电网标准为220V AC,频率为50Hz,则公共耦合点A处电压的频率等于电网频率50hz。一旦分布式电源与电网20断开连接,公共耦合点A处电压的频率将会向上发生偏移。
基于上述原理,本发明提供了一种光伏并网发电系统的孤岛检测方法,如图2所示,包括以下步骤:
步骤S100、微处理器控制逆变电源,并改变逆变电源的输出电压的频率,使得每一个周期的电压频率都比前一个周期的电压频率高一预定值Δf;
步骤S200、实时检测公共耦合点的电压的频率,判断公共耦合点的电压的频率是否达到系统的频率保护的阈值;
步骤S300、当公共耦合点的电压的频率大于阈值时,系统产生孤岛效应,控制逆变器停止工作;当公共耦合点的电压的频率不大于阈值时,系统没有产生孤岛效应,执行步骤S200。
下面结合具体的实施例对上述步骤进行详细的描述。
在步骤S100中,微处理器控制光伏并网发电系统中的逆变器,从而控制并网逆变器的输出频率,也就是控制逆变电源的输出电压的频率。并进一步地改变逆变电源输出电压的频率,让每一个周期的电压频率都比前一周期的电压频率高一预定值Δf,即fi(k)=fv(k-1)+Δf,其中,K为正整数,fv(k-1)表示前一周期逆变电源的输出电压的频率,而fi(k)表示相邻下一个周期逆变电源的输出电压的频率。也就是说,随着周期的增加,逆变电源的输出电压的频率逐渐增加,并且响铃周期增加的频率值为预定值Δf。
优选地,所述步骤S100还包括:S101、微处理器控制逆变电源的输出电压的频率高于电网电压的频率。如图3所示,u1为电网电压的波形图,u2为逆变电源的输出电压的波形图,fu1<fu2。其中,微处理器控制逆变电源的输出电压频率略高于电网电压的频率,从而通过控制逆变器输出频率,得到一个略微失真的电压。由于电网的作用,即使微处理器控制光伏并网发电系统中逆变器的输出频率,公共耦合点处的频率也不会变化,等于电网频率。
在步骤S200中,实时检测公共耦合点的电压的频率,判断公共耦合点的电压的频率是否达到系统的频率保护的阈值。由于分布式电源与电网断开连接后,也就是光伏并网系统产生孤岛效应,公共耦合点处电压的频率将会向上发生偏移。逆变电源电压将会以比前一周期从公共耦合点测得的频率略高的频率运行,这种情况一直持续到频率偏移足够大,直到超过设定的频率保护的阈值。也就是说,当系统没有发生孤岛效应时,逆变电源的输出频率为电网电压输出频率,即公共耦合点的频率与电网电压的频率相同,即频率不会发生改变;当系统发生孤岛效应时,公共耦合点的频率会高于前一周期从该点测得的频率。
在步骤S300中,实时检测公共耦合点的电压的频率,当公共耦合点的电压的频率大于阈值时,则表明系统产生了孤岛效应,控制逆变器停止工作;当公共耦合点的电压的频率不大于阈值时,则表明系统没有产生孤岛效应,返回步骤S200。
进一步地,所述步骤S100还包括:步骤S102、判断系统是否处于并网发电状态,当系统处于并网发电状态时,进入步骤S100。当系统不处于并网发电状态时,则进入等待状态,不检测孤岛效应。
进一步地,在光伏并网发电系统中包含多个逆变电源时,微处理器控制每一个逆变电源的每一个周期的电压频率都比前一个周期的电压频率高一预定值Δf。在连接有多台并网逆变电源的系统中,需要统一不同并网逆变器的频率偏移方向才能维持该方法的有效性。如果有一部分并网逆变电源采用频率向上偏移,而另一部分采用向下偏移频率的方法,其综合效果可能会相互抵消。因此,微处理器控制每个逆变电源的频率向上偏移。
通过上述步骤,可以很好的实现对光伏并网发电系统中孤岛效应的准确检测,检测方法简单,检测方法时间短,可靠性高,易操作,成本较低。
基于上述本发明提供的光伏并网发电系统的孤岛检测方法,本发明还提供了一种光伏并网发电系统的孤岛检测装置,如图4所示,所示系统包括:
频率处理模块110,用于控制逆变电源,并改变逆变电源的输出电压的频率,使得每一个周期的电压频率都比前一个周期的电压频率高一预定值Δf,具体如上所述;
频率检测模块120,用于实时检测公共耦合点的电压的频率,具体如上所述;
第一判断模块130,用于判断公共耦合点的电压的频率是否达到系统的频率保护的阈值,具体如上所述;
控制模块140,用于根据判断模块的结果来控制逆变器的工作状态,具体如上所述。
进一步地,所述孤岛检测装置还包括第二判断模块150,用于判断光伏并网发电系统是否处于并网发电状态。具体如上所述。
综上所述,本发明提供的光伏并网发电系统的孤岛检测方法和检测装置,通过微处理器控制逆变电源,并改变逆变电源的输出电压的频率,使得每一个周期的电压频率都比前一个周期的电压频率高一预定值Δf;实时检测公共耦合点的电压的频率,判断公共耦合点的电压的频率是否达到系统的频率保护的阈值;当公共耦合点的电压的频率大于阈值时,控制逆变器停止工作;当公共耦合点的电压的频率不大于阈值时,继续检测公共耦合点处的电平的频率。本发明很好的实现了对光伏并网发电系统中孤岛效应的准确检测,且检测方法简单,检测时间短检测迅速,可靠性高,易操作,成本较低。
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (7)

1. 一种光伏并网发电系统的孤岛检测方法,其特征在于,包括以下步骤:
A、微处理器控制逆变电源,并改变逆变电源的输出电压的频率,使得每一个周期的电压频率都比前一个周期的电压频率高一预定值Δf;
B、实时检测公共耦合点的电压的频率,判断公共耦合点的电压的频率是否达到系统的频率保护的阈值;
C、当公共耦合点的电压的频率大于阈值时,控制逆变器停止工作;当公共耦合点的电压的频率不大于阈值时,执行步骤B。
2.根据权利要求1所述的光伏并网发电系统的孤岛检测方法,其特征在于,所述步骤A之前还包括:
A0、判断系统是否处于并网发电状态,当系统处于并网发电状态时,进入步骤A。
3.根据权利要求1所述的光伏并网发电系统的孤岛检测方法,其特征在于,所述步骤A还包括:
A1、微处理器控制逆变电源的输出电压的频率高于电网电压的频率。
4.根据权利要求1所述的光伏并网发电系统的孤岛检测方法,其特征在于,所述步骤A还包括:
A2、当系统中有多个逆变电源时,微处理器控制每一个逆变电源的每一个周期的电压频率都比前一个周期的电压频率高一预定值Δf。
5.根据权利要求1所述的光伏并网发电系统的孤岛检测方法,其特征在于,所述步骤B还包括:
B1、当系统没有发生孤岛效应时,逆变电源的输出频率为电网电压输出频率,即公共耦合点的频率与电网电压的频率相同,即频率不会发生改变;当系统发生孤岛效应时,公共耦合点的频率会高于前一周期从该点测得的频率。
6.一种光伏并网发电系统的孤岛检测装置,其特征在于,包括:
频率处理模块,用于控制逆变电源,并改变逆变电源的输出电压的频率,使得每一个周期的电压频率都比前一个周期的电压频率高一预定值Δf;
频率检测模块,用于实时检测公共耦合点的电压的频率;
第一判断模块,用于判断公共耦合点的电压的频率是否达到系统的频率保护的阈值;
控制模块,用于根据判断模块的结果来控制逆变器的工作状态。
7.根据权利要求6所述的光伏并网发电系统的孤岛检测装置,其特征在于,还包括:
第二判断模块,用于判断光伏并网发电系统是否处于并网发电状态。
CN201310033557.0A 2013-01-29 2013-01-29 一种光伏并网发电系统的孤岛检测方法和检测装置 Active CN103091604B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310033557.0A CN103091604B (zh) 2013-01-29 2013-01-29 一种光伏并网发电系统的孤岛检测方法和检测装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310033557.0A CN103091604B (zh) 2013-01-29 2013-01-29 一种光伏并网发电系统的孤岛检测方法和检测装置

Publications (2)

Publication Number Publication Date
CN103091604A true CN103091604A (zh) 2013-05-08
CN103091604B CN103091604B (zh) 2015-10-28

Family

ID=48204413

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310033557.0A Active CN103091604B (zh) 2013-01-29 2013-01-29 一种光伏并网发电系统的孤岛检测方法和检测装置

Country Status (1)

Country Link
CN (1) CN103091604B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103368136A (zh) * 2013-07-15 2013-10-23 国家电网公司 一种处理电网失电的方法和装置
CN103969549A (zh) * 2014-04-18 2014-08-06 珠海许继电气有限公司 电源设备的孤岛检测方法及孤岛检测装置
CN104598660A (zh) * 2013-10-31 2015-05-06 国际商业机器公司 在电力网络拓扑中检测孤岛效应的方法和系统
CN104730423A (zh) * 2015-04-07 2015-06-24 嘉兴金尚节能科技有限公司 光伏并网发电系统的孤岛效应检测方法
CN106124890A (zh) * 2016-04-14 2016-11-16 国网辽宁省电力有限公司电力科学研究院 一种光伏并网发电系统的反孤岛检测方法
US9520819B2 (en) 2014-02-28 2016-12-13 General Electric Company System and method for controlling a power generation system based on a detected islanding event
CN110401223A (zh) * 2019-07-31 2019-11-01 珠海格力电器股份有限公司 光伏系统的控制方法、控制装置和光伏系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040021470A1 (en) * 2002-08-05 2004-02-05 Adams Larry L. System and method for island detection
CN101257209A (zh) * 2008-01-10 2008-09-03 清华大学深圳研究生院 光伏并网发电系统的孤岛运行检测方法
CN101944723A (zh) * 2010-08-26 2011-01-12 哈尔滨九洲电气股份有限公司 一种光伏并网发电系统的孤岛运行检测方法
CN102262182A (zh) * 2011-07-07 2011-11-30 浙江大学 光伏并网逆变器孤岛检测方法
CN102437587A (zh) * 2011-09-23 2012-05-02 武汉新能源接入装备与技术研究院有限公司 一种大功率光伏并网变流器的孤岛检测方法
CN102608496A (zh) * 2012-03-15 2012-07-25 北京昆兰新能源技术有限公司 一种改进型正反馈主动频率偏移孤岛检测法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040021470A1 (en) * 2002-08-05 2004-02-05 Adams Larry L. System and method for island detection
CN101257209A (zh) * 2008-01-10 2008-09-03 清华大学深圳研究生院 光伏并网发电系统的孤岛运行检测方法
CN101944723A (zh) * 2010-08-26 2011-01-12 哈尔滨九洲电气股份有限公司 一种光伏并网发电系统的孤岛运行检测方法
CN102262182A (zh) * 2011-07-07 2011-11-30 浙江大学 光伏并网逆变器孤岛检测方法
CN102437587A (zh) * 2011-09-23 2012-05-02 武汉新能源接入装备与技术研究院有限公司 一种大功率光伏并网变流器的孤岛检测方法
CN102608496A (zh) * 2012-03-15 2012-07-25 北京昆兰新能源技术有限公司 一种改进型正反馈主动频率偏移孤岛检测法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
刘方锐 等: "主动移频法在光伏并网逆变器并联运行下的孤岛检测机理研究", 《中国电机工程学报》, vol. 29, no. 12, 25 April 2009 (2009-04-25), pages 47 - 51 *
张超 等: "一种新颖的光伏并网系统孤岛检测方法", 《电力电子技术》, vol. 41, no. 11, 20 November 2007 (2007-11-20) *
陈曦 等: "基于频率偏移法的光伏并网逆变器孤岛检测", 《2011中国电工技术学会学术年会论文集 》, 1 September 2011 (2011-09-01), pages 478 - 482 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103368136A (zh) * 2013-07-15 2013-10-23 国家电网公司 一种处理电网失电的方法和装置
CN104598660A (zh) * 2013-10-31 2015-05-06 国际商业机器公司 在电力网络拓扑中检测孤岛效应的方法和系统
CN104598660B (zh) * 2013-10-31 2017-11-17 国际商业机器公司 在电力网络拓扑中检测孤岛效应的方法和系统
US10103545B2 (en) 2013-10-31 2018-10-16 International Business Machines Corporation Method and system for detecting islanding effect in power electrical network topology
US9520819B2 (en) 2014-02-28 2016-12-13 General Electric Company System and method for controlling a power generation system based on a detected islanding event
CN103969549A (zh) * 2014-04-18 2014-08-06 珠海许继电气有限公司 电源设备的孤岛检测方法及孤岛检测装置
CN103969549B (zh) * 2014-04-18 2016-08-17 珠海许继电气有限公司 电源设备的孤岛检测方法及孤岛检测装置
CN104730423A (zh) * 2015-04-07 2015-06-24 嘉兴金尚节能科技有限公司 光伏并网发电系统的孤岛效应检测方法
CN106124890A (zh) * 2016-04-14 2016-11-16 国网辽宁省电力有限公司电力科学研究院 一种光伏并网发电系统的反孤岛检测方法
CN106124890B (zh) * 2016-04-14 2019-05-17 国网辽宁省电力有限公司电力科学研究院 一种光伏并网发电系统的反孤岛检测方法
CN110401223A (zh) * 2019-07-31 2019-11-01 珠海格力电器股份有限公司 光伏系统的控制方法、控制装置和光伏系统
CN110401223B (zh) * 2019-07-31 2021-04-27 珠海格力电器股份有限公司 光伏系统的控制方法、控制装置和光伏系统

Also Published As

Publication number Publication date
CN103091604B (zh) 2015-10-28

Similar Documents

Publication Publication Date Title
CN103091604B (zh) 一种光伏并网发电系统的孤岛检测方法和检测装置
JP3809316B2 (ja) 太陽光発電装置
US20120283890A1 (en) Control Apparatus for Micro-grid Connect/Disconnect from Grid
US9509231B2 (en) Power converter system, damping system, and method of operating a power converter system
US20140103724A1 (en) Bidirectional power system, operation method, and controller for operating
CN103401245A (zh) 智能环保高压岸电电源系统
Lin et al. Regional protection scheme designed for low-voltage micro-grids
JP2017187344A (ja) 地絡検出装置およびその制御方法、制御プログラム
CN104578137A (zh) 一种家用风光互补并网发电系统
CN106026160A (zh) 一种分布式光伏发电防孤岛保护装置
Reedy et al. Power line carrier permissive as a simple and safe method of enabling inverter ride-through operation of distributed grid-tied photovoltaic systems
CN203522212U (zh) 具有低电压穿越和防孤岛保护功能的光伏电站系统
WO2014047560A1 (en) Serially connected micro-inverter system having concertina output voltage control
Choudhury et al. A comprehensive review on modeling, control, protection and future prospects of Microgrid
CN203054118U (zh) 一种igbt功率单元短路保护测试装置
CN203084143U (zh) 一种光伏并网发电系统的孤岛检测装置
Farooq et al. A Reliable Approach to Protect and Control of Wind Solar Hybrid DC Microgrids
CN103475022A (zh) 具有低电压穿越和防孤岛保护功能的光伏电站系统
CN103887811A (zh) 具有低电压穿越和防孤岛保护功能的分布式电源系统及控制方法
WO2016176628A1 (en) Controller for micro-grid generator and renewable power and method of use
CN112234705A (zh) 一种工业备用电源系统及其控制方法
CN207853841U (zh) 一种光伏发电弹性控制装置
JP2013026516A (ja) 電力制御装置及び電力システム
Li et al. A protection method for microgrids based on information sharing
CN213637184U (zh) 一种工业备用电源系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: Islanding detection method and device for photovoltaic grid connected power generation system

Effective date of registration: 20211213

Granted publication date: 20151028

Pledgee: Shenzhen high tech investment and financing Company limited by guarantee

Pledgor: Shenzhen JingQuanHua Electronics Co.,Ltd.

Registration number: Y2021980014732

PE01 Entry into force of the registration of the contract for pledge of patent right