CN103090925A - 一种液氮液面计 - Google Patents

一种液氮液面计 Download PDF

Info

Publication number
CN103090925A
CN103090925A CN2013100280493A CN201310028049A CN103090925A CN 103090925 A CN103090925 A CN 103090925A CN 2013100280493 A CN2013100280493 A CN 2013100280493A CN 201310028049 A CN201310028049 A CN 201310028049A CN 103090925 A CN103090925 A CN 103090925A
Authority
CN
China
Prior art keywords
liquid nitrogen
hts band
liquid level
well heater
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2013100280493A
Other languages
English (en)
Inventor
李毅
王秋良
胡新宁
陈顺中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Electrical Engineering of CAS
Original Assignee
Institute of Electrical Engineering of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Electrical Engineering of CAS filed Critical Institute of Electrical Engineering of CAS
Priority to CN2013100280493A priority Critical patent/CN103090925A/zh
Publication of CN103090925A publication Critical patent/CN103090925A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

一种液氮液面计,由高温超导带(1)、加热器(2)、支撑底板(3)、支撑盖板(4)、主电源(5)、加热器电源(6)、测量引线(7)及电流引线(8)组成。高温超导带(1)的两端通过电流引线(8)分别与主电源(5)的正极和负极相连。高温超导带(1)的两端还连接有一对测量引线(7)。加热器(2)通过电流引线(8)与加热器电源(6)的正负两极相连。主电源(5)和加热器电源(6)均为直流电源。高温超导带(1)的一面粘附于支撑底板(3)上,另一面粘贴有加热器(2)。支撑盖板(4)粘附于支撑底板(3)上。加热器(2)和高温超导带(1)位于支撑底板(3)与支撑盖板(4)之间。

Description

一种液氮液面计
技术领域
本发明涉及一种用于测量液氮液面的装置。
背景技术
液氮制冷作为一项低温技术广泛应用于国民经济、科学实验以及国防军工等各个领域。以应用在超导磁体领域为例,低温超导磁体的运行需要超导磁体的温度降低到液氦温区,即4.2K。从室温到4.2K超导磁体系统需要释放大量的热能,这些热能如果全部用液氦来吸收则会消耗太多液氦,而液氦又是非常昂贵的工业原料,因此在利用液氦降温前,一般先用液氮来进行预冷处理,即现将超导磁体从室温降低到77K液氮温区,再输入液氦将超导磁体冷却至4.2K温区。由于液氮在60K温区即变为固态,固态氮会堵塞输液管道同时含有大量的热容消耗过多的液氦,因此在输完液氮给磁体预冷后,需要先将液氮排出杜瓦才能再输入液氦而进行进一步冷却工作。
在用液氮对超导磁体系统进行预冷时,将输液管插入超导磁体杜瓦容器的底部,打开液氮储液灌的开关,使液氮缓缓流入超导磁体内。由于超导磁体杜瓦等低温容器常用不锈钢等材料做成较为封闭的系统,因此流入杜瓦容器内的液体是无法直接看到的,容器内是否已经存有输入的低温液体,低温液体的液面有多高都是无法直接测量的。对于灌输液氮来讲,现在一般是凭借经验观察低温容器出气孔气流的颜色和形状,或者估算所需输满容器所需的时间来判断液氮液面的大致位置。实际上这种凭借经验的方法常常会带来较大错误,液氮经常会输入过多而直接从出气孔喷出,造成较大的浪费,而更严重的问题是,在预冷步骤完成后的排液氮工作中,经常会遇到液氮没有排除干净而造成后续液氦输入时固氮降温消耗过多液氦甚至输液管被固氮堵塞的现象,造成液氦的浪费乃至输液系统失效。
因此在给低温杜瓦容器输入液氮时,需要液氮液面计来检测和监控液氮的输入情况,提高低温液体的利用率以及避免输液系统的失效。液面计的使用和种类多样丰富,但是大多数液面计都不是为低温液体设计的,常规的液面计很难直接应用到低温液体液面的检测中。比如传统的靠机械浮力来判断液面的液面计,由于低温系统在制冷时会有结冰现象,同时低温下各种材料的机械性能甚至体积都会发生不同变化,那么机械装置会有发生卡壳等现象而无法工作的可能。对于液氮等低温液体的液面检测,常用的方法是电容传感器来检测,电容传感器具安装制造简易,可测范围大等特点,但是电容传感器精度较差,一般为10cm左右,对于大型液氮存储来讲是可以接受的,但是对于超导磁体预冷系统需要将液氮尽可能排尽,液氮液面应低于1cm以下,因此电容法的精度达不到。此外还有用传统热电偶及目测来探测液氮液面的,这些方法的测量精度就更差了。
近年来,高温超导技术得到快速发展和越来越多的应用。高温超导体具有非常独特的电、热特性,高温超导体一般是陶瓷材料制成,具有非常低的热导率,因此超导体不同部位的温度基本取决于该部位所在的低温环境而受其他部位温度的影响较小,高温超导体一般在冷却至110K以下时即显示出超导态,其电阻率接近为0,而在非超导态其电阻率又非常高,超过绝大多数金属材料。利用高温超导体独特的热学及电学特性,可以开发很多应用于低温系统的装置和设备。
发明内容
本发明的目的是克服现有常规液面计很难应用到低温液体液面检测,现有液氮液面检测设备精度较低的问题,提出一种新的利用高温超导体特殊的热学及电学特性制造的用于检测液氮液面的装置。
本发明所述的液氮液面计由高温超导带、加热器、支撑底板、支撑盖板、主电源、加热器电源、测量引线及电流引线组成。
所述的高温超导带的一端通过电流引线与主电源的正极相连,高温超导带的另一端通过电流引线与主电源的负极相连。高温超导带的两端还连接一对测量引线。所述的加热器通过电流引线与加热器电源的正负两极相连。所述的主电源和加热器电源均为直流电源。
所述的高温超导带的一面粘附于支撑底板上,高温超导带的另一面粘贴有加热器。支撑盖板的两端固定在支撑底板上,加热器和高温超导带位于支撑底板与支撑盖板之间。所述的支撑底板的宽度略大于高温超导带,支撑底板的长度略长于高温超导带,厚度为3毫米以上,以保持一定机械强度。所述的支撑盖板与支撑底板等宽等长,厚度可以几毫米以保持一定机械强度,支撑底板与支撑盖板主要起保护高温超导带材和便于移动安装的作用,可以用绝缘材料制成,如四氟聚氯乙烯、环氧树脂或经过绝缘喷漆处理的不锈钢等。
所述的高温超导带可由Bi2223等高温超导带材制造,高温超导带表面包有绝缘层,高温超导带在室温非超导态下单位长度的电阻须事先测定。
所述的加热器可以做成薄带状,加热器的长度与高温超导带相近,宽度比高温超导带略宽,加热器的材料可以是高电阻率且电阻率随温度变化很小的材料,如不锈钢。加热器的尺寸和材料的选择原则是使加热器在约77K冷氮气环境下被加热器电源通电加热时,温度超过120K,但不高于室温,在约77K液氮浸泡环境下被加热器电源通电加热时,温度仍能够保持约77K。
将所述的液氮液面计的一端垂直放置于灌有液氮的容器的底部后,接通所述的主电源及加热器电源。由于液氮浸泡,处于液氮液面以下的高温超导带的温度接近77K,属于超导态,其对应电阻值近似为0,对于位于液氮液面以上的高温超导带,由于加热器发热而导致其温度超过高温超导材料的临界温度,因此仍表现有较高的电阻。通过测量引线测量高温超导带两端的电压值,由电压值求出电阻值,由于高温超导带在非超导态下不同温度的电阻率变化很小,因此可以根据事先测定的室温下单位长度高温超导带的电阻来计算出未被液氮浸泡的高温超导带的长度,从而能够估测出液氮液面以下高温超导带的长度,即得到液氮的深度或液氮液面的高度。由于高温超导带在超导态与非超导态下的电阻差异极大,因此所述液面计具有很高的测量精度。
附图说明
图1是本发明实施例用于测量液氮液面装置的结构示意图,图中:1高温超导带、2加热器、3支撑底板、4支撑盖板、7测量引线、8电流引线;
图2是本发明实施例用于测量液氮液面装置的应用示意图,图中:5主电源、6加热器电源、9液氮、10容器。
具体实施方式
以下结合附图和具体实施方式进一步说明本发明。
图1所示为本发明用于测量液氮液面的液氮液面计的实施例。该液氮液面计由高温超导带1、加热器2、支撑底板3、支撑盖板4、测量引线7及电流引线8组成;所述的高温超导带1的两端通过电流引线8与主电源5的正、负极相连,高温超导带1的两端还连接有一对测量引线7。所述的加热器2通过电流引线8与加热器电源6的正极和负极相连。所述的主电源5和加热器电源6均为直流电源。
如图1所示,所述的高温超导带1的一面粘附于支撑底板3上,高温超导带1的另一面粘贴有加热器2。支撑盖板4的两端固定在支撑底板3上,加热器2和高温超导带1位于支撑底板3与支撑盖板4之间。所述的支撑底板3的宽度略大于高温超导带1,支撑底板3的长度略长于高温超导带1,支撑底板3的厚度5毫米以上,以保持一定机械强度。所述的支撑盖板4与支撑底板3等宽等长,厚度可以为几毫米,以保持一定机械强度。支撑底板3与支撑盖板4可以选用绝缘材料制成,如四氟聚氯乙烯、环氧树脂,或经过绝缘喷漆处理的不锈钢等。所述的高温超导带1的两端分别连接有一对电流引线8,以及一对测量引线7。
所述的高温超导带1可由Bi2223等高温超导带材制造。高温超导带的表面包有绝缘层,高温超导带在室温非超导态下单位长度的电阻需事先测定,如aΩ/cm。
所述的加热器2可以做成薄带状。加热器2的长度与高温超导带1相近,宽度比高温超导带1略宽。加热器的材料可以是高电阻率且电阻率随温度变化很小的材料,如不锈钢。选取加热器的尺寸和材料的原则是使加热器在约77K冷氮气环境下被一定大小的电流通电加热时,温度超过120K,但不高于室温,在约77K液氮浸泡环境下被加热器电源通电加热时,温度仍能够保持约77K。
图2所示为使用本发明液氮液面计的测量方法。将所述的液氮液面计的一端垂直放置于灌有液氮9的容器10的底部后,接通所述的主电源5及加热器电源6。由于液氮浸泡,处于液氮9液面以下的高温超导带1的温度接近77K,处于超导态,其对应电阻值近似为0,对于位于液氮液面以上的高温超导带1,由于加热器2发热而导致其温度超过高温超导材料的临界温度,因此仍表现有较高的电阻。通过测量引线7测量高温超导带两端的电压值,由电压值求出电阻值R,由于高温超导带在非超导态下不同温度的电阻率变化很小,因此可以根据事先测定的室温下单位长度高温超导带的电阻a,计算出未被液氮浸泡的高温超导带的长度为R/a,若高温超导带的总长度为L,则由此估算出液氮液面以下高温超导带的长度为L-R/a,即得到液氮的深度或液氮液面的高度。

Claims (7)

1.一种液氮液面计,其特征是,所述的液面计由高温超导带(1)、加热器(2)、支撑底板(3)、支撑盖板(4)、主电源(5)、加热器电源(6)、测量引线(7)及电流引线(8)组成;所述的高温超导带(1)的两端通过一对电流引线(8)分别与主电源(5)的正极和负极相连;高温超导带(1)的两端还连接有一对测量引线(7);所述的加热器(2)通过电流引线(8)与加热器电源(6)的正负两极相连;所述的主电源(5)和加热器电源(6)均为直流电源;所述的高温超导带(1)的一面粘附于支撑底板(3)上,高温超导带(1)的另一面粘贴加热器(2);支撑盖板(4)粘附于支撑底板(3)上,所述的加热器(2)和高温超导带(1)位于支撑底板(3)与支撑盖板(4)之间。
2.按照权利要求1所述的液氮液面计,其特征是,所述的加热器(2)为薄带状,所述的加热器(2)的长度与高温超导带(1)相近,所述的加热器(2)的宽度比高温超导带(1)略宽。
3.按照权利要求1所述的液氮液面计,其特征是,所述的支撑底板(3)的宽度略大于高温超导带(1),支撑底板(3)的长度略长于高温超导带(1),所述的支撑盖板(3)与支撑底板(4)等宽等长,均采用绝缘材料制成。
4.按照权利要求1所述的液氮液面计,其特征是,所述的高温超导带(1)由Bi2223制造;高温超导带(1)表面包有绝缘层。
5.按照权利要求1或4所述的液氮液面计,其特征是,所述的高温超导带(1)在室温非超导态下单位长度的电阻须事先测定。
6.按照权利要求1或2所述的液氮液面计,其特征是,所述的加热器(2)的尺寸和材料的选择原则是:加热器(2)在约77K冷氮气环境下被加热器电源(6)通电加热时,温度超过120K,但不高于室温,在约77K液氮浸泡环境下被加热器电源(6)通电加热时,温度为约77K。
7.按照权利要求1所述的液氮液面计,其特征是,将所述的液氮液面计的一端垂直放置于灌有液氮(9)的容器(10)的底部,接通所述的主电源(5)及加热器电源(6);由于液氮浸泡,处于液氮液面以下的高温超导带(1)的温度接近77K,属于超导态,其对应电阻值近似为0,对于位于液氮液面以上的高温超导带(1),由于加热器(2)发热而导致其温度超过高温超导材料的临界温度,因此仍表现有较高的电阻;通过测量引线(7)测量高温超导带(1)两端的电压值,由电压值求出电阻值,再根据事先测定的单位长度高温超导带的电阻来计算出未被液氮浸泡的高温超导带(1)的长度,估算出液氮(9)液面以下的长度,即得到液氮的深度或液氮液面的高度。
CN2013100280493A 2013-01-24 2013-01-24 一种液氮液面计 Pending CN103090925A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2013100280493A CN103090925A (zh) 2013-01-24 2013-01-24 一种液氮液面计

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2013100280493A CN103090925A (zh) 2013-01-24 2013-01-24 一种液氮液面计

Publications (1)

Publication Number Publication Date
CN103090925A true CN103090925A (zh) 2013-05-08

Family

ID=48203780

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2013100280493A Pending CN103090925A (zh) 2013-01-24 2013-01-24 一种液氮液面计

Country Status (1)

Country Link
CN (1) CN103090925A (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104568053A (zh) * 2014-12-11 2015-04-29 中国核电工程有限公司 一种自热式差分热电阻液位传感器及其测量液位的方法
CN104568054A (zh) * 2014-12-11 2015-04-29 中国核电工程有限公司 一种加热式差分热电阻液位传感器及其测量液位的方法
CN106441636A (zh) * 2016-11-23 2017-02-22 西南交通大学 一种高温超导块材发热量的检测方法及装置
CN107843317A (zh) * 2017-12-12 2018-03-27 合肥中科离子医学技术装备有限公司 一种用于超导线液位计标定的测试杆及其标定方法
CN110879091A (zh) * 2019-11-01 2020-03-13 东软医疗系统股份有限公司 用于液氦的液位计及其标定方法、液氦容器
CN111596240A (zh) * 2020-06-17 2020-08-28 中国科学院合肥物质科学研究院 一种质子重离子医疗设备超导二极铁快速励磁测试装置
CN113340376A (zh) * 2020-03-02 2021-09-03 中国科学院理化技术研究所 用于液氦液面测量的超导液位计及超导液位计测量系统
CN113340377A (zh) * 2020-03-02 2021-09-03 中国科学院理化技术研究所 用于液氦液面测量的超导液位计
CN113483854A (zh) * 2021-09-07 2021-10-08 山东奥新医疗科技有限公司 一种低温液位测量装置
CN115979444A (zh) * 2023-03-21 2023-04-18 北京中科富海低温科技有限公司 一种低温管道的测温方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1550766A (zh) * 2003-05-16 2004-12-01 GEҽ��ϵͳ���������޹�˾ 用于低温环境的液态氦液位传感器及其组装方法
CN101438137A (zh) * 2006-03-06 2009-05-20 马格纳斯泰尔汽车技术两合公司 用于低温液体的液位传感器以及带有这种传感器的容器
CN102494734A (zh) * 2011-12-29 2012-06-13 中国科学院电工研究所 一种液氦液位计分时供电控制系统
CN102740512A (zh) * 2011-04-15 2012-10-17 西门子公司 加热装置和低温液体的液位检测系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1550766A (zh) * 2003-05-16 2004-12-01 GEҽ��ϵͳ���������޹�˾ 用于低温环境的液态氦液位传感器及其组装方法
CN101438137A (zh) * 2006-03-06 2009-05-20 马格纳斯泰尔汽车技术两合公司 用于低温液体的液位传感器以及带有这种传感器的容器
CN102740512A (zh) * 2011-04-15 2012-10-17 西门子公司 加热装置和低温液体的液位检测系统
CN102494734A (zh) * 2011-12-29 2012-06-13 中国科学院电工研究所 一种液氦液位计分时供电控制系统

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104568054A (zh) * 2014-12-11 2015-04-29 中国核电工程有限公司 一种加热式差分热电阻液位传感器及其测量液位的方法
CN104568053B (zh) * 2014-12-11 2018-11-20 中国核电工程有限公司 一种自热式差分热电阻液位传感器及其测量液位的方法
CN104568054B (zh) * 2014-12-11 2018-11-20 中国核电工程有限公司 一种加热式差分热电阻液位传感器及其测量液位的方法
CN104568053A (zh) * 2014-12-11 2015-04-29 中国核电工程有限公司 一种自热式差分热电阻液位传感器及其测量液位的方法
CN106441636B (zh) * 2016-11-23 2022-11-25 西南交通大学 一种高温超导块材发热量的检测方法及装置
CN106441636A (zh) * 2016-11-23 2017-02-22 西南交通大学 一种高温超导块材发热量的检测方法及装置
CN107843317A (zh) * 2017-12-12 2018-03-27 合肥中科离子医学技术装备有限公司 一种用于超导线液位计标定的测试杆及其标定方法
CN110879091A (zh) * 2019-11-01 2020-03-13 东软医疗系统股份有限公司 用于液氦的液位计及其标定方法、液氦容器
CN113340376A (zh) * 2020-03-02 2021-09-03 中国科学院理化技术研究所 用于液氦液面测量的超导液位计及超导液位计测量系统
CN113340377A (zh) * 2020-03-02 2021-09-03 中国科学院理化技术研究所 用于液氦液面测量的超导液位计
CN113340377B (zh) * 2020-03-02 2022-10-11 中国科学院理化技术研究所 用于液氦液面测量的超导液位计
CN111596240A (zh) * 2020-06-17 2020-08-28 中国科学院合肥物质科学研究院 一种质子重离子医疗设备超导二极铁快速励磁测试装置
CN113483854A (zh) * 2021-09-07 2021-10-08 山东奥新医疗科技有限公司 一种低温液位测量装置
CN115979444A (zh) * 2023-03-21 2023-04-18 北京中科富海低温科技有限公司 一种低温管道的测温方法

Similar Documents

Publication Publication Date Title
CN103090925A (zh) 一种液氮液面计
CN102353582B (zh) 超导材料力学性能测试用低温实验箱
CN202794074U (zh) 一种基于低温制冷机的高温超导转变温度测量装置
CN104034983A (zh) 多样品高温超导材料性能测试系统
CN105783838A (zh) 一种冻土深度传感器
CN103677011B (zh) 一种适用于真空条件下面源黑体宽温度范围控制系统
CN208334251U (zh) 一种散热指数测量装置
CN103063699A (zh) 以制冷机做冷源的材料低温热膨胀系数测试装置
CN202735281U (zh) 导热系数测定仪
CN104014893A (zh) 一种智能温控型高温超导带材的焊接装置
CN110702599B (zh) 一种顶部腐蚀监测实验系统及监测方法
CN202362044U (zh) 一种超导磁体用复合式超导液位计
CN202886304U (zh) 用于固体材料热扩散率测量的低温-加热装置
CN208504772U (zh) 浓度检测装置、浓度监控装置和太阳能热水器
CN110879091A (zh) 用于液氦的液位计及其标定方法、液氦容器
CN117665045A (zh) 一种围护系统绝热模块的综合导温系数测量系统及测量方法
CN105004399B (zh) 比热液位计
Yeom et al. Study of cryogenic conduction cooling systems for an HTS SMES
CN202229975U (zh) 超导材料力学性能测试用低温实验箱
CN104317336B (zh) 低温工质浸泡式超导磁体的压力控制装置的控制方法
CN205607365U (zh) 一种具有总线驱动能力增强电路的冻土深度传感器
CN201892711U (zh) 可提供恒温恒湿检测环境的高功率电子组件检测装置
KR100570631B1 (ko) 온도가변식 초전도코일 특성 측정장치
CN102353583B (zh) 超导材料力学性能测试系统的温控系统
Yamaguchi et al. Experiment of the 200-meter superconducting DC transmission power cable in Chubu University

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20130508