CN103090586A - 风冷散热tec电制冷ccd杜瓦 - Google Patents

风冷散热tec电制冷ccd杜瓦 Download PDF

Info

Publication number
CN103090586A
CN103090586A CN2013100180090A CN201310018009A CN103090586A CN 103090586 A CN103090586 A CN 103090586A CN 2013100180090 A CN2013100180090 A CN 2013100180090A CN 201310018009 A CN201310018009 A CN 201310018009A CN 103090586 A CN103090586 A CN 103090586A
Authority
CN
China
Prior art keywords
tec
dewar
ccd
cooling heat
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2013100180090A
Other languages
English (en)
Inventor
贾磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN2013100180090A priority Critical patent/CN103090586A/zh
Publication of CN103090586A publication Critical patent/CN103090586A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Radiation Pyrometers (AREA)

Abstract

本发明提供一种风冷散热TEC电制冷CCD杜瓦,包括真空杜瓦(1)、CCD探测器(3)、TEC制冷器、风冷散热系统(7)、分子筛(5),所述CCD探测器(3)、TEC制冷器、分子筛(5)设置在真空杜瓦(1)内部;所述TEC制冷器的冷端与CCD探测器(3)热导通,TEC制冷器的热端与风冷散热系统(7)热导通;所述风冷散热系统(7)与真空杜瓦腔体(1)密封连接。本发明采用TEC制冷、分子筛长时间维持真空和风冷散热等技术来保证系统运行时CCD的低温要求,热沉散热表面积大、降温速度快,绝对制冷温度低、真空维持时间长,体积小,质量轻,便于安装、控制,能进行任意角度观测,且运行和维护简单,可直接用于天文望远CCD镜成像及测光。

Description

风冷散热TEC电制冷CCD杜瓦
技术领域
本发明应用于CCD探测器制冷技术领域,具体涉及一种风冷散热TEC电制冷CCD杜瓦。
背景技术
CCD真空杜瓦通常安装在天文望远镜的成像焦面,用于装载CCD探测器对天体目标成像观测。目前天文观测研究追求更远、更暗的天体目标,这就要求CCD杜瓦内的制冷部件能够对CCD探测器进行深度制冷,一般制冷温度要低至-40~-80℃,才能很好的抑制CCD暗电流和热噪声,得到信噪比高的优质图像。
传统方法,CCD探测器设置在液氮真空杜瓦内,杜瓦中的CCD相当于人的眼睛,放到天文望远镜的成像焦面,利用液氮杜瓦将CCD探测器的工作温度降至-50~-100℃,以此来压制CCD电路的暗电流和热噪声,从而得到信噪比更高的光信号图像。液氮杜瓦的优点是冷量足,且没有任何震动,但是它也具有很多不足之处:
第一,在长时间曝光成像时,望远镜需要对目标进行跟踪,液氮杜瓦安装在望远镜后端焦面位置,也会跟随望远镜同步转动,这就要考虑液氮口的姿态,防止液氮杜瓦在转到某一角度,加液氮口过低导致液氮外流,损坏望远镜设备,这样就导致不能随时进行任意角度观测。
第二,液氮杜瓦体积和质量都比较大,它设计有一个2~3升的液氮腔体在装载液氮,保证液氮维持一个观测夜。传统液氮杜瓦体积一般都在300mm*400mm的圆柱大小,质量10约公斤或者更大。较大的质量和体积对望远镜负载设计要提出明确要求。
第三,液氮杜瓦需要每天维护。液氮杜瓦正常运行时,需要每天添加液氮来保证一个观测夜的制冷需求,后期设备运行阶段的人工维护和液氮耗费量都需要考虑。
发明内容
本发明要解决的技术问题在于提供一种风冷散热TEC电制冷CCD杜瓦,采用TEC制冷、分子筛长时间维持真空和风冷散热等技术来保证系统运行时CCD的低温要求,热沉散热表面积大、降温速度快,绝对制冷温度低、真空维持时间长,体积小,质量轻,便于安装、控制,能进行任意角度观测,且运行和维护简单,可直接用于天文望远CCD镜成像及测光。
为达到上述目的,本发明采用以下技术方案:
一种风冷散热TEC电制冷CCD杜瓦,包括真空杜瓦、CCD探测器、TEC制冷器、风冷散热系统、分子筛,所述CCD探测器、TEC制冷器、分子筛设置在真空杜瓦内部;所述TEC制冷器的冷端与CCD探测器热导通,TEC制冷器的热端与风冷散热系统热导通;所述风冷散热系统与真空杜瓦腔体密封连接。
优选地,所述TEC制冷器的冷端与CCD探测器通过冷指进行热导通,所述冷指的一端与CCD探测器底部接触,另一端与TEC制冷器冷端接触。
优选地,所述分子筛固定设置在冷指上。
优选地,所述风冷散热系统是由热沉和风扇连接组成。
优选地,所述真空杜瓦包括真空腔体,该真空腔体上部通过玻璃密封压圈和O型密封圈固定设置光学封窗玻璃达到密封效果;所述真空腔体内部设置CCD探测器、分子筛和TEC制冷器,底部由热沉密封设置;所述真空腔体侧壁设置CCD电路接口、TEC制冷温控电路接口、杜瓦真空抽口。
优选地,所述热沉的上端设置为平面,通过腔体O型密封圈与真空腔体密封连接,并与真空腔体内部的TEC制冷器热端连接;下端设置为散热通道,与风扇连接。
优选地,所述冷指靠近CCD探测器的一端设有温度传感器。
优选地,上述TEC制冷器为三级TEC制冷片。
本发明与现有技术相比具有以下优点:
1)本发明在真空杜瓦腔体内设置CCD探测器、TEC制冷器和优选型号的分子筛,通过热沉直连外部风冷散热系统,利用三级TEC制冷器制冷温差大、快速简单制冷、内置分子筛长时间维持较高真空度防止热对流和风冷散热系统的高效散热使TEC冷端达到较低制冷温度的优点,只需要加电就可以达到强制冷和维持高真空的目的,抛弃了繁琐的频繁加注液氮和抽真空的工作,有效解决了原先频繁操作加液氮的难题。
2)本发明采用TEC制冷器对CCD探测器进行制冷,60分钟内可使4000*4000像素,像素尺寸15微米的大面阵CCD温度降至低于-50℃,降温速度快,适用于非MPP型CCD短时间快速曝光观测和MPP型(IMO型)CCD的长时间曝光。在电力保证的条件下,本发明不需要每日进行特殊维护,除电力之外也无其它耗费,节能环保。
3)本发明在采用TEC制冷器进行制冷的同时,热端要产生大量的热,由风冷散热系统及时、高效的散掉,保证TEC达到足够的制冷深度。其中风冷散热系统的热沉部件由导热率很高的材料一体加工成型,一端为平面,在与TEC制冷器热端连接的同时用于封闭真空腔体;另一端一体加工成表面积很大的散热通道,在杜瓦外跟风扇连接,在高速散热风扇的配合下,可将4K*4K大面阵CCD探测器制冷至低于-50℃,有效地散掉TEC制冷器热端接近100瓦的热量,结构安全和简单,系统可靠性高,体积更为小巧,安装和运行和维护更为方便。
4)本发明利用分子筛在低温下能大量吸气、在高温下又能将吸附的气体释放出来的性质,采用分子筛作为气体吸附剂,通过给分子筛强力制冷,使其吸附能力倍增,可以长时间维持杜瓦较高真空度,经过实验证明通常可将杜瓦真空度维持在10E-5mbar达6个月,满足一个冬季观测季;这种较高的真空状态,可以防止气体对流热传递,有效节省TEC制冷器的制冷能量,提高对CCD探测器的制冷效率。
5)传统液氮杜瓦有加注液氮的液氮口,为了防止液氮流出,观测时成像系统不能转至某些角度;本发明体积小,质量轻,可以在任意角度、姿态工作,便于旋转控制。
附图说明
图1为本实施例的结构示意图;
图2为图1的B-B剖面图;
图3为杜瓦的真空腔体的结构示意图;
图4为风冷散热系统的结构示意图。
具体实施方式
下面结合附图对本发明做进一步描述:
实施例
如图1、2所示,本实施例包括真空杜瓦1、CCD探测器3、三级TEC制冷片6、风冷散热系统7、分子筛5;如图1、3、4所示,所述风冷散热系统7是由热沉11和风扇14连接组成。如图1、3所示,所述真空杜瓦1包括真空腔体13,该真空腔体13上部通过玻璃密封压圈8和玻璃O型密封圈9固定设置光学封窗玻璃10,达到密封效果;所述真空腔体13内部设置CCD探测器3、分子筛5和三级TEC制冷片6,底部由热沉11密封设置;所述热沉11的上端设置为平面,通过腔体O型密封圈12与真空腔体13密封连接,并与真空腔体13内部的三级TEC制冷片6的热端连接进行热传导;热沉11的下端加工成表面积很大的散热通道,在真空杜瓦1外与风扇14连接,热沉11上有安装孔位,风扇14用螺栓连接散热通道。所述真空腔体13侧壁设置CCD电路接口15、TEC制冷温控电路接口16、杜瓦真空抽口17。
如图2所示,所述三级TEC制冷片6的冷端与CCD探测器3通过冷指2进行热导通,所述冷指2的一端与CCD探测器3底部接触,另一端与三级TEC制冷片6冷端接触。所述分子筛5固定设置在冷指2上。所述冷指2靠近CCD探测器3的一端连接温度传感器4,用于检测CCD探测器3温度,根据探测的温度进行温控。
所述三级TEC制冷片6的热端与风冷散热系统7热导通,进行强力散热。
使用时,将所述CCD电路接口15和TEC制冷温控电路接口16分别焊接在各自的航空密封插座上,保证真空杜瓦1内、外电路正确连接。安装CCD探测器3,密封真空杜瓦1,将风扇14安装在真空杜瓦1底部热沉11上;连接外部电路航空插座;将真空杜瓦1安装在望远镜后端,保证CCD成像靶面严格位于望远镜成像焦面。
使用真空泵连接杜瓦真空抽口17,将真空杜瓦1真空度抽至10E-2mbar以上,关闭杜瓦抽口阀门和真空泵。开启TEC制冷控制器电路,同时开启风扇14散热,所述三级TEC制冷片6通电后一端变冷一端变热,冷端和热端会有一个温度差。冷端与CCD探测器3热导通,热端与风冷散热系统7热导通,三级TEC制冷片6热端的热量被风冷散热系统7带走,热量传递效率更高,导热效果更好,且不会有大量热量积累,如此热端通过风冷散热系统7的热量不断被带走,使得冷端连接的CCD探测器3的温度降的更低。
所述分子筛5固定设置在冷指2上通过三级TEC制冷片6制冷进行热传导降温,在10E-2mbar真空度以上开始吸附真空腔体内的残留大气成分和真空内线缆等部件挥发物,分子筛温度越低,分子筛的吸附能力越强,分子筛可以将真空度提高到10E-6mbar或10E-6mbar以上,这种较高的真空状态,可以防止气体对流热传递,有效节省三级TEC制冷片6的制冷能量,提高对CCD探测器3的制冷效率。
在真空和低温的环境下,CCD探测器3的暗电流和热噪声被压制,能够捕捉极为微弱的电信号,用于观测探极暗、极远发光星体。
本发明上述实施例仅为本专利较好的实施方式,凡采用本技术方案描述的构造、特征及在其精神原理上的变化、修饰均属于本专利的保护范围。

Claims (8)

1.一种风冷散热TEC电制冷CCD杜瓦,其特征在于:包括真空杜瓦(1)、CCD探测器(3)、TEC制冷器、风冷散热系统(7)、分子筛(5),所述CCD探测器(3)、TEC制冷器、分子筛(5)设置在真空杜瓦(1)内部;所述TEC制冷器的冷端与CCD探测器(3)热导通,TEC制冷器的热端与风冷散热系统(7)热导通;所述风冷散热系统(7)与真空杜瓦腔体(1)密封连接。
2.根据权利要求1所述的风冷散热TEC电制冷CCD杜瓦,其特征在于,所述TEC制冷器的冷端与CCD探测器(3)通过冷指(2)进行热导通,所述冷指(2)的一端与CCD探测器(3)底部接触,另一端与TEC制冷器冷端接触。
3.根据权利要求2所述的风冷散热TEC电制冷CCD杜瓦,其特征在于:所述分子筛(5)固定设置在冷指(2)上。
4.根据权利要求1所述的风冷散热TEC电制冷CCD杜瓦,其特征在于:所述风冷散热系统(7)是由热沉(11)和风扇(14)连接组成。
5.根据权利要求1或4所述的风冷散热TEC电制冷CCD杜瓦,其特征在于,所述真空杜瓦(1)包括真空腔体(13),该真空腔体(13)上部通过玻璃密封压圈(8)和O型密封圈(9)密封固定设置光学封窗玻璃(10);所述真空腔体(13)内部设置CCD探测器(3)、分子筛(5)和TEC制冷器,底部由热沉(11)密封;所述真空腔体(13)侧壁设置CCD电路接口(15)、TEC制冷温控电路接口(16)、杜瓦真空抽口(17)。
6.根据权利要求4所述的风冷散热TEC电制冷CCD杜瓦,其特征在于:所述热沉(11)的上端设置为平面,通过腔体O型密封圈(12)与真空腔体(13)密封连接,并与真空腔体(13)内部的TEC制冷器热端连接;下端设置为散热通道,与风扇(14)连接。
7.根据权利要求1所述的风冷散热TEC电制冷CCD杜瓦,其特征在于:所述冷指(2)靠近CCD探测器(3)的一端设有温度传感器(4)。
8.根据上述任一权利要求所述的风冷散热TEC电制冷CCD杜瓦,其特征在于:所述的TEC制冷器采用三级TEC制冷片(6)。
CN2013100180090A 2013-01-17 2013-01-17 风冷散热tec电制冷ccd杜瓦 Pending CN103090586A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2013100180090A CN103090586A (zh) 2013-01-17 2013-01-17 风冷散热tec电制冷ccd杜瓦

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2013100180090A CN103090586A (zh) 2013-01-17 2013-01-17 风冷散热tec电制冷ccd杜瓦

Publications (1)

Publication Number Publication Date
CN103090586A true CN103090586A (zh) 2013-05-08

Family

ID=48203478

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2013100180090A Pending CN103090586A (zh) 2013-01-17 2013-01-17 风冷散热tec电制冷ccd杜瓦

Country Status (1)

Country Link
CN (1) CN103090586A (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103398493A (zh) * 2013-07-23 2013-11-20 中国科学院光电技术研究所 一种氪气隔热的emccd相机制冷系统
CN103458198A (zh) * 2013-07-22 2013-12-18 中国科学院光电技术研究所 一种emccd相机制冷系统密封腔信号输出装置
CN104580843A (zh) * 2013-10-21 2015-04-29 维信科技(新加坡)有限公司 快速获取硅片光致发光影像的Si-CCD照相机及方法
CN105352217A (zh) * 2015-12-10 2016-02-24 中国科学技术大学 一种用于水冷和风冷散热的热电制冷装置
WO2017177517A1 (zh) * 2016-04-11 2017-10-19 中国科学院声学研究所 一种用于深井探测的x射线荧光测井探管
CN108180672A (zh) * 2017-12-13 2018-06-19 中国科学院光电技术研究所 一种emccd探测器的真空封装杜瓦
CN108391042A (zh) * 2018-05-21 2018-08-10 光速视觉(北京)科技有限公司 一种真空封装图像传感器芯片的相机图像转换系统
CN108731299A (zh) * 2018-05-18 2018-11-02 中国航空工业集团公司洛阳电光设备研究所 一种光学元件组件及其温度控制装置
CN109373630A (zh) * 2018-11-05 2019-02-22 中国科学院西安光学精密机械研究所 一种用于图像探测器的大温差小型制冷装置
CN109557743A (zh) * 2018-12-17 2019-04-02 中国科学院长春光学精密机械与物理研究所 一种航空相机焦面温度控制系统及其控制方法
CN110501752A (zh) * 2019-07-10 2019-11-26 中国科学院上海技术物理研究所 一种基于tec制冷的探测器散热装置
CN110752198A (zh) * 2019-10-28 2020-02-04 中国电子科技集团公司第四十四研究所 一种背照式雪崩增益型emccd制冷封装结构及方法
CN112834452A (zh) * 2020-12-31 2021-05-25 杭州谱育科技发展有限公司 Ftir分析仪

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1356491A (zh) * 2001-12-30 2002-07-03 上海交通大学 高频无磁液氮杜瓦
CN101957334A (zh) * 2010-09-26 2011-01-26 东南大学 固体材料低温物性测量装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1356491A (zh) * 2001-12-30 2002-07-03 上海交通大学 高频无磁液氮杜瓦
CN101957334A (zh) * 2010-09-26 2011-01-26 东南大学 固体材料低温物性测量装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
秦伟等: "天文用热电制冷杜瓦的一种实现", 《云南天文台台刊》 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103458198A (zh) * 2013-07-22 2013-12-18 中国科学院光电技术研究所 一种emccd相机制冷系统密封腔信号输出装置
CN103398493B (zh) * 2013-07-23 2015-07-29 中国科学院光电技术研究所 一种氪气隔热的emccd相机制冷系统
CN103398493A (zh) * 2013-07-23 2013-11-20 中国科学院光电技术研究所 一种氪气隔热的emccd相机制冷系统
CN104580843A (zh) * 2013-10-21 2015-04-29 维信科技(新加坡)有限公司 快速获取硅片光致发光影像的Si-CCD照相机及方法
CN104580843B (zh) * 2013-10-21 2017-12-08 维信科技(新加坡)有限公司 快速获取硅片光致发光影像的Si‑CCD照相机及方法
CN105352217A (zh) * 2015-12-10 2016-02-24 中国科学技术大学 一种用于水冷和风冷散热的热电制冷装置
WO2017177517A1 (zh) * 2016-04-11 2017-10-19 中国科学院声学研究所 一种用于深井探测的x射线荧光测井探管
CN108180672A (zh) * 2017-12-13 2018-06-19 中国科学院光电技术研究所 一种emccd探测器的真空封装杜瓦
CN108731299A (zh) * 2018-05-18 2018-11-02 中国航空工业集团公司洛阳电光设备研究所 一种光学元件组件及其温度控制装置
CN108391042A (zh) * 2018-05-21 2018-08-10 光速视觉(北京)科技有限公司 一种真空封装图像传感器芯片的相机图像转换系统
CN108391042B (zh) * 2018-05-21 2023-09-19 光速视觉(北京)科技有限公司 一种真空封装图像传感器芯片的相机图像转换系统
CN109373630A (zh) * 2018-11-05 2019-02-22 中国科学院西安光学精密机械研究所 一种用于图像探测器的大温差小型制冷装置
CN109557743A (zh) * 2018-12-17 2019-04-02 中国科学院长春光学精密机械与物理研究所 一种航空相机焦面温度控制系统及其控制方法
CN109557743B (zh) * 2018-12-17 2020-06-12 中国科学院长春光学精密机械与物理研究所 一种航空相机焦面温度控制系统及其控制方法
CN110501752A (zh) * 2019-07-10 2019-11-26 中国科学院上海技术物理研究所 一种基于tec制冷的探测器散热装置
CN110501752B (zh) * 2019-07-10 2021-06-15 中国科学院上海技术物理研究所 一种基于tec制冷的探测器散热装置
CN110752198A (zh) * 2019-10-28 2020-02-04 中国电子科技集团公司第四十四研究所 一种背照式雪崩增益型emccd制冷封装结构及方法
CN112834452A (zh) * 2020-12-31 2021-05-25 杭州谱育科技发展有限公司 Ftir分析仪

Similar Documents

Publication Publication Date Title
CN103090586A (zh) 风冷散热tec电制冷ccd杜瓦
WO2009099709A3 (en) Method and apparatus for solid state cooling system
US20130182179A1 (en) CCD camera architecture and methods of manufacture
CN108692813B (zh) 用于近红外检测器的辐射护罩
CN203216146U (zh) 用于大面阵天文ccd探测器深度制冷的tec电制冷结构
CN103234299A (zh) 一种提升和维持真空腔体真空度的方法
EP3212504B1 (fr) Engin spatial
US9377216B2 (en) Overheat protection mechanism for solar thermal collector
EP3433548A1 (en) Magnetocaloric device
CN103763464A (zh) 半导体制冷摄像仪及其半导体制冷装置
EP2827375A1 (fr) Dispositif de détection comportant un doigt froid amélioré
CN105552095B (zh) 一种用于面阵ccd的非真空热电制冷装置
CN205119555U (zh) 可预防结露的图像传感器半导体热电制冷装置
CN107655928A (zh) 一种大温差环境热电性能测试装置
US3994277A (en) Radiation cooling devices and processes
CN206757274U (zh) 一种空间相机主动制冷真空密封焦面组件
CN103307802B (zh) 内置水循环系统的tec电制冷ccd杜瓦
US10298817B1 (en) Reduce multispectral IR sensor power usage
CN115765526A (zh) 一种基于光谱调节的全天候温差发电装置及其制备方法
CN213069443U (zh) 一种带吸热结构的制冷相机
US20230263062A1 (en) Apparatuses and methods involving electrical power generation with radiative cooling
CN108180672B (zh) 一种emccd探测器的真空封装杜瓦
CN107045251A (zh) 一种空间相机主动制冷真空密封焦面组件
Palumbo et al. Balloon-borne 3He cryostat for millimetre bolometric photometry
Qu et al. Thermal management technology of high-power light-emitting diodes for automotive headlights

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20130508