CN103064259A - 一种极紫外激光等离子体光源碎屑的隔离方法及系统 - Google Patents

一种极紫外激光等离子体光源碎屑的隔离方法及系统 Download PDF

Info

Publication number
CN103064259A
CN103064259A CN2012105319211A CN201210531921A CN103064259A CN 103064259 A CN103064259 A CN 103064259A CN 2012105319211 A CN2012105319211 A CN 2012105319211A CN 201210531921 A CN201210531921 A CN 201210531921A CN 103064259 A CN103064259 A CN 103064259A
Authority
CN
China
Prior art keywords
gas
intake opening
air intake
extreme ultraviolet
buffer gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012105319211A
Other languages
English (en)
Other versions
CN103064259B (zh
Inventor
陈子琪
王新兵
左都罗
陆培祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN201210531921.1A priority Critical patent/CN103064259B/zh
Publication of CN103064259A publication Critical patent/CN103064259A/zh
Application granted granted Critical
Publication of CN103064259B publication Critical patent/CN103064259B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

本发明公开了一种极紫外激光等离子体光源碎屑的隔离方法及系统,该方法包括步骤S1:将靶体所在的腔体抽成真空;S2:从进气口导入缓冲气体,使得缓冲气体覆盖收集镜并沿收集镜表面流动形成气流层;S3:从出气口导出缓冲气体;S4:待腔体内的气流稳定后,使用激光照射靶体,产生极紫外辐射的同时产生了向四周运动的等离子体碎屑;S5:保持缓冲气体持续的导入和导出,气流层使所述等离子体碎屑的运动减缓,等离子体碎屑随着气流从出气口导出。本发明适用于CO2激光锡滴等离子体碎屑的隔离;使用的设备简单、易于操作控制,可有效解决激光照射液滴靶体所产生的碎屑对光学系统的污染和破坏,对提高极紫外光刻系统的寿命有重要意义。

Description

一种极紫外激光等离子体光源碎屑的隔离方法及系统
技术领域
本发明属于激光技术领域,更具体地,涉及一种极紫外激光等离子体光源碎屑的隔离方法及系统。
背景技术
目前,LPP-EUVL(Laser Produced Plasma-Extreme Ultra VioletLithography,激光等离子体极紫外光刻)被国际上广泛认为是最有前途的方法之一,但是LPP-EUVL光源仍然有两大难题亟需解决,即:尽量提高光源的EUV辐射功率达到规模性量产的要求,同时要尽量减少等离子体碎屑对光学系统尤其是EUV收集镜的污染和损伤,提高光刻系统的使用寿命。
激光照射靶体之后,不仅产生极紫外辐射,并且会产生向周围溅射的等离子体碎屑。这些等离子体碎屑不仅包含有高能的离子,而且有高速的中性原子和尺寸较大的液滴、团簇或溶胶颗粒等。一旦碎屑溅射到EUV收集镜之后,会对收集镜产生污染,从而影响极紫外辐射的反射效率和光学系统的寿命。国际光刻机供应商ASML于2004年率先提出了满足商业生产要求的EUV光源的各项指标,其中碎屑影响的光学系统寿命技术要求高于30000小时。可见,有效隔离等离子体碎屑,提高光刻系统使用寿命对极紫外光刻技术的发展有重大意义。
一些学者为了解决碎屑污染问题,使用了一些方法来隔离碎屑。现有技术(Ueno Y,Soumagne G,Sumitani A,et al.Reduction of debris of a CO2laser-produced Sn plasma extreme ultraviolet source using a magnetic field.Appl.Phys.Lett.,2008,92:211503)中日本学者使用1T的磁场引导CO2激光辐照平板Sn靶产生的等离子体离子碎屑,使碎屑在Mo/Si多层膜反射镜上的沉积量与未施加磁场相比减少了五倍。这种方法可以非常有效地减少离子碎屑在反射镜上的沉积,但是无法有效隔离其他中性原子的污染,并且磁场装置的成本相对较高。
发明内容
针对现有技术的缺陷,本发明的目的在于提供一种极紫外激光等离子体光源碎屑的隔离方法,旨在解决现有技术无法有效隔离中性原子的污染的问题。
为实现上述目的,本发明提供了一种极紫外激光等离子体光源碎屑的隔离方法,包括下述步骤:
S1:将靶体所在的腔体抽成真空;
S2:从进气口导入缓冲气体,使得所述缓冲气体覆盖收集镜并沿收集镜表面流动形成气流层;
S3:从出气口导出所述缓冲气体;
S4:待所述腔体内的气流稳定后,使用激光照射靶体,产生极紫外辐射的同时产生了向四周运动的等离子体碎屑;
S5:保持所述缓冲气体持续的导入和导出,所述气流层使所述等离子体碎屑的运动减缓,所述等离子体碎屑随着气流从所述出气口导出。
更进一步地,所述隔离方法还包括下述步骤:S6:将从出气口导出的气流进行冷却并过滤后再从进气口导入至所述腔体。
更进一步地,所述缓冲气体为氢气。
更进一步地,所述进气口与所述出气口沿着所述收集镜中心对称设置。
更进一步地,在步骤S2中,通过扇形喷嘴使得导入的气流呈扇形分布;扇形圆心角为90°-180°。
本发明提供了极紫外激光等离子体光源碎屑的隔离方法特别适用于CO2激光锡滴等离子体碎屑的隔离;使用的设备简单、易于操作控制,可有效解决激光照射液滴靶体所产生的碎屑对光学系统的污染和破坏,对提高极紫外光刻系统的寿命有重要意义。
本发明还提供了一种极紫外激光等离子体光源碎屑的隔离系统,包括:进气口、出气口、压缩机和真空泵;所述进气口设置于收集镜的顶部,所述出气口设置于所述收集镜的底部;所述进气口与所述出气口沿着所述收集镜中心对称设置;所述压缩机与所述进气口连接,用于使缓冲气体沿着所述进气口喷入;所述真空泵用于维持所述出气口处于低压状态;在压力差的作用下,缓冲气体沿着所述收集镜的表面流动并形成气流层。
更进一步地,所述缓冲气体为氢气。
更进一步地,所述隔离系统还包括:导入装置,设置于所述进气口处,用于导入所述缓冲气体。
更进一步地,所述导入装置为扇形喷嘴,扇形圆心角为90°-180°。
更进一步地,所述隔离系统还包括:冷却模块,与所述出气口连接,用于对从出气口导出的气流进行冷却;过滤模块,与所述冷却模块连接,用于对冷却后的气流进行过滤处理;以及循环模块,连接在所述过滤模块与所述进气口之间,用于将冷却过滤后气体从进气口循环导入至所述腔体。
本发明提供的极紫外激光等离子体光源碎屑的隔离系统通过压缩机使缓冲气体沿喷嘴高速喷出,气体出口外通过真空泵维持出口低压,使喷嘴喷出的气体能顺利流出,气体朝收集镜表面喷出后,会由于附壁效应贴着镜面流动,形成气流层;这时激光照射靶体所产生的溅射碎屑若飞向收集镜则会被气流层阻隔并带走,而不会污染到收集镜。
附图说明
图1是本发明第一实施例提供的极紫外激光等离子体光源碎屑的隔离方法的实现流程图;
图2是本发明第二实施例提供的极紫外激光等离子体光源碎屑的隔离方法的实现流程图;
图3是本发明实施例提供的极紫外激光等离子体光源碎屑的隔离系统中扇形喷嘴的结构示意图;
图4是本发明实施例提供的极紫外激光等离子体光源碎屑的隔离系统的结构示意图;
图5是本发明实施例提供的极紫外激光等离子体光源碎屑的隔离系统中收集镜表面气流流动的示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
基于现有技术对于隔离等离子体碎屑的一些优点和不足,本发明提供了一种适用性较广,用于极紫外激光等离子体光源碎片的隔离方法,特别适用于CO2激光锡滴等离子体碎屑的隔离。该方法设备简单、易于操作控制,可有效解决激光照射液滴靶体所产生的碎屑对光学系统的污染和破坏,对提高极紫外光刻系统的寿命有重要意义。
图1示出了本发明第一实施例提供的极紫外激光等离子体光源碎屑的隔离方法的实现流程,具体包括下述步骤:
S1:将靶体所在的腔体抽成真空;
S2:从进气口导入缓冲气体,使得缓冲气体覆盖收集镜并沿收集镜表面流动形成气流层;
S3:从出气口导出所述缓冲气体;
S4:待腔体内的气流稳定后,使用激光照射靶体,产生极紫外辐射的同时产生了向四周运动的等离子体碎屑;
S5:保持缓冲气体持续的导入和导出,气流层使等离子体碎屑的运动减缓,等离子体碎屑随着气流从出气口导出。
在本发明实施例中,先将靶体所在腔体抽成真空;从收集镜边缘某一位置导入缓冲气体,并使得缓冲气体覆盖收集镜并沿收集镜表面高速流动;从气体导入位置在所述收集镜的中心对称位置处高速导出气体;待腔体内气流稳定后,使用激光照射靶体,产生极紫外辐射的同时产生向四周运动的等离子体碎屑;保持气体持续高速导入和导出,使所述碎屑的运动减缓,并随着气流一并导出腔体。该方法通过高速导入,使其能覆盖整个收集镜并沿着收集镜表面流动。缓冲气体在收集镜上导入的对称位置被导出。这种导入和导出使得气体在收集镜表面形成覆盖整个表面的高速气流层。激光照射靶体产生的等离子体碎屑会向四周运动,无论是离子碎屑,还是中性原子或尺寸较大的液滴、颗粒等,其中向收集镜方向运动的碎屑会遇到高速气流层,气体分子与碎屑的碰撞使得碎屑受到阻滞并减速,并在溅射到收集镜表面之前被气流导出腔体。向其他方向运动的碎屑也被气流阻隔并逐渐导出腔体。
如图2所示,该隔离方法还包括下述步骤S6:将从出气口导出的气流进行冷却并过滤后再从进气口导入至所述腔体。出口流出的气体经过冷却过滤之后可以循环使用。
在本发明实施例中,进气口与所述出气口沿着所述收集镜中心对称设置。基于缓冲气体可以有效阻隔等离子体碎屑对收集镜的污染,在收集镜的顶部通过一个喷嘴喷出缓冲气体。缓冲气体选择对极紫外辐射影响较小的氢气。收集镜底部区域设置一个气体出口。
在本发明实施例中,在步骤S2中,通过扇形喷嘴使得导入的气流呈扇形分布;扇形圆心角为90°-180°。
本发明还提供了一种极紫外激光等离子体光源碎屑的隔离系统,包括:进气口、出气口、压缩机和真空泵;进气口设置于收集镜的顶部,出气口设置于收集镜的底部;进气口与出气口沿着收集镜中心对称设置;压缩机与进气口连接,用于使缓冲气体沿着所述进气口喷入;真空泵用于维持出气口处于低压状态;在压力差的作用下,缓冲气体沿着所述收集镜的表面流动并形成气流层。由激光照射靶体所产生的等离子体碎屑有较高的温度,向四周溅射的过程中遇到导入的低温气体后会发生热传导,使得碎屑自身温度降低,离子或者分子碎屑的活跃程度降低,运动速度减缓更快,即低温气体减缓碎屑运动的效率更高。
在本发明实施例中,隔离系统还包括:导入装置,设置于进气口处,用于导入所述缓冲气体。导入装置可以为扇形喷嘴,扇形喷嘴的具体结构如图3所示,扇形圆心角为90°-180°。
在本发明实施例中,通过压缩机使缓冲气体沿喷嘴高速喷出。气体出口外通过真空泵维持出口低压,使喷嘴喷出的气体能顺利流出。气体朝收集镜表面喷出后,会由于附壁效应贴着镜面流动,形成气流层。这时激光照射靶体所产生的溅射碎屑若飞向收集镜则会被气流层阻隔并带走,而不会污染到收集镜。
在本发明实施例中,隔离系统还包括:冷却模块,与所述出气口连接,用于对从出气口导出的气流进行冷却;过滤模块,与所述冷却模块连接,用于对冷却后的气流进行过滤处理;以及循环模块,连接在所述过滤模块与所述进气口之间,用于将冷却过滤后气体从进气口循环导入至所述腔体。
图4示出了本发明实施例提供的极紫外激光等离子体光源碎屑的隔离系统的具体结构,为了便于说明,仅示出了与本发明实施例相关的部分,详述如下:
内腔7首先由真空泵11经气体出口9抽成真空,废气经由排气阀12排出。相比惰性气体,氢气对极紫外辐射影响较小,使用氢气作为所设计装置中的缓冲气体。氢气由储气瓶13供应,经过换热器2降温至0~-20℃,再由气体压缩机3作用,输送至气体导入装置5,并由此导入内腔7。内腔7外包裹隔热材料(如隔热铝箔等)保持腔内气体温度稳定。气体导入的位置与气体出口9沿收集镜8中心对称,导入装置5的形状可以为扇形,其扇形圆心角为90°-180°,故导入的气流呈扇形分布,使导入的气体沿收集镜表面均匀流动,形成覆盖整个收集镜的气流层,如图5所示。气体导入的压力由气压控制阀3控制,调节导入气压为100~2000pa。真空泵11保持气体出口9处气压为0~10pa。导入和导出的压力差使得气体沿收集镜表面高速流动,形成低温气流层。激光照射液滴靶产生的等离子体碎屑受到气流层的阻隔和降温,导致运动减缓,并随着气流一并导出内腔7,避免了碎屑对收集镜8的污染。导出的气体经过过滤填料10(如多孔泡沫)过滤,再输送至气体压缩机1作用,回到储气瓶13中储存。储气瓶13中气体的进出由气阀14控制,实现气体循环利用。
本发明实施例提供的极紫外激光等离子体光源碎屑的隔离系统设备简单、组配容易,特别适用于使用椭球型收集镜的极紫外光源系统。腔内的氢气在收集镜表面形成稳定的低温气流层,即收集镜表面的气体不断流动更新,并最终流出腔体循环。此时激光照射液滴靶产生的碎屑立刻就处于气流环境中,不断流动的氢气分子对碎屑的碰撞使得其运动减缓,碎屑不断被降温导致活跃性降低,最终被导出腔体,避免污染收集镜。这种具有一定厚度的低温气流层能有效地减缓离子碎屑和中性原子碎屑,特别是高功率激光照射下产生的高温碎屑。
为了更进一步的说明本发明实施例提供的极紫外激光等离子体光源碎屑的隔离系统,现结合图4详述其工作原理如下:
(1)关闭压力控制阀4以及,打开排气阀12;
(2)开启真空泵11,抽空内腔7中的气体,使气压达到10-4~10-3pa;
(3)打开气阀14,关闭排气阀12,并开启气体压缩机1和气体压缩机3;
(4)调节气压控制阀4,使由气体导入装置5导入的氢气保持在指定压力,并高速导入内腔7;
(5)开启换热器2,对氢气进行降温;
(6)待气体导入装置5处气流温度达到要求并且流动循环稳定后即可开始激光照射靶体。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种极紫外激光等离子体光源碎屑的隔离方法,其特征在于,包括下述步骤:
S1:将靶体所在的腔体抽成真空;
S2:从进气口导入缓冲气体,使得所述缓冲气体覆盖收集镜并沿收集镜表面流动形成气流层;
S3:从出气口导出所述缓冲气体;
S4:待所述腔体内的气流稳定后,使用激光照射靶体,产生极紫外辐射的同时产生了向四周运动的等离子体碎屑;
S5:保持所述缓冲气体持续的导入和导出,所述气流层使所述等离子体碎屑的运动减缓,所述等离子体碎屑随着气流从所述出气口导出。
2.如权利要求1所述的隔离方法,其特征在于,所述隔离方法还包括下述步骤:
S6:将从出气口导出的气流进行冷却并过滤后再从进气口导入至所述腔体。
3.如权利要求1所述的隔离方法,其特征在于,所述缓冲气体为氢气。
4.如权利要求1所述的隔离方法,其特征在于,所述进气口与所述出气口沿着所述收集镜中心对称设置。
5.如权利要求1所述的隔离方法,其特征在于,在步骤S2中,通过扇形喷嘴使得导入的气流呈扇形分布;扇形圆心角为90°-180°。
6.一种极紫外激光等离子体光源碎屑的隔离系统,其特征在于,包括:进气口、出气口、压缩机和真空泵;
所述进气口设置于收集镜的顶部,所述出气口设置于所述收集镜的底部;所述进气口与所述出气口沿着所述收集镜中心对称设置;
所述压缩机与所述进气口连接,用于使缓冲气体沿着所述进气口喷入;
所述真空泵用于维持所述出气口处于低压状态;在压力差的作用下,缓冲气体沿着所述收集镜的表面流动并形成气流层。
7.如权利要求6所述的隔离系统,其特征在于,所述缓冲气体为氢气。
8.如权利要求6所述的隔离系统,其特征在于,所述隔离系统还包括:导入装置,设置于所述进气口处,用于导入所述缓冲气体。
9.如权利要求8所述的隔离系统,其特征在于,所述导入装置为扇形喷嘴,扇形圆心角为90°-180°。
10.如权利要求6所述的隔离系统,其特征在于,所述隔离系统还包括:
冷却模块,与所述出气口连接,用于对从出气口导出的气流进行冷却;
过滤模块,与所述冷却模块连接,用于对冷却后的气流进行过滤处理;以及
循环模块,连接在所述过滤模块与所述进气口之间,用于将冷却过滤后气体从进气口循环导入至所述腔体。
CN201210531921.1A 2012-12-10 2012-12-10 一种极紫外激光等离子体光源碎屑的隔离方法及系统 Expired - Fee Related CN103064259B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210531921.1A CN103064259B (zh) 2012-12-10 2012-12-10 一种极紫外激光等离子体光源碎屑的隔离方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210531921.1A CN103064259B (zh) 2012-12-10 2012-12-10 一种极紫外激光等离子体光源碎屑的隔离方法及系统

Publications (2)

Publication Number Publication Date
CN103064259A true CN103064259A (zh) 2013-04-24
CN103064259B CN103064259B (zh) 2014-11-12

Family

ID=48106938

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210531921.1A Expired - Fee Related CN103064259B (zh) 2012-12-10 2012-12-10 一种极紫外激光等离子体光源碎屑的隔离方法及系统

Country Status (1)

Country Link
CN (1) CN103064259B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104914680A (zh) * 2015-05-25 2015-09-16 中国科学院上海光学精密机械研究所 基于溶胶射流靶的lpp-euv光源系统
CN106448748A (zh) * 2016-08-31 2017-02-22 中国工程物理研究院激光聚变研究中心 激光瞄准定位装置
CN109290295A (zh) * 2018-12-03 2019-02-01 哈尔滨工业大学 一种防氧化激光清洗装置
CN109581819A (zh) * 2017-09-28 2019-04-05 台湾积体电路制造股份有限公司 放射源设备
CN110967937A (zh) * 2018-09-28 2020-04-07 台湾积体电路制造股份有限公司 操作极紫外光产生装置的方法及极紫外辐射产生装置
CN113267963A (zh) * 2020-05-07 2021-08-17 台湾积体电路制造股份有限公司 用于执行极紫外光刻工艺的系统和方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1514305A (zh) * 2002-12-23 2004-07-21 Asml荷兰有限公司 具有残余物抑制装置的光刻装置和器件制造方法
US20080267816A1 (en) * 2007-04-27 2008-10-30 Komatsu Ltd. Optical element contamination preventing method and optical element contamination preventing device of extreme ultraviolet light source
US20090314967A1 (en) * 2008-06-12 2009-12-24 Masato Moriya Extreme ultra violet light source apparatus
CN101785369A (zh) * 2007-08-23 2010-07-21 Asml荷兰有限公司 用于产生极紫外辐射的模块和方法
CN102119365A (zh) * 2008-08-14 2011-07-06 Asml荷兰有限公司 辐射源、光刻设备和器件制造方法
CN102576195A (zh) * 2009-09-25 2012-07-11 Asml荷兰有限公司 源收集器设备、光刻设备以及器件制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1514305A (zh) * 2002-12-23 2004-07-21 Asml荷兰有限公司 具有残余物抑制装置的光刻装置和器件制造方法
US20080267816A1 (en) * 2007-04-27 2008-10-30 Komatsu Ltd. Optical element contamination preventing method and optical element contamination preventing device of extreme ultraviolet light source
CN101785369A (zh) * 2007-08-23 2010-07-21 Asml荷兰有限公司 用于产生极紫外辐射的模块和方法
US20090314967A1 (en) * 2008-06-12 2009-12-24 Masato Moriya Extreme ultra violet light source apparatus
CN102119365A (zh) * 2008-08-14 2011-07-06 Asml荷兰有限公司 辐射源、光刻设备和器件制造方法
CN102576195A (zh) * 2009-09-25 2012-07-11 Asml荷兰有限公司 源收集器设备、光刻设备以及器件制造方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104914680A (zh) * 2015-05-25 2015-09-16 中国科学院上海光学精密机械研究所 基于溶胶射流靶的lpp-euv光源系统
CN106448748A (zh) * 2016-08-31 2017-02-22 中国工程物理研究院激光聚变研究中心 激光瞄准定位装置
CN106448748B (zh) * 2016-08-31 2018-01-23 中国工程物理研究院激光聚变研究中心 激光瞄准定位装置
CN109581819A (zh) * 2017-09-28 2019-04-05 台湾积体电路制造股份有限公司 放射源设备
US11531278B2 (en) 2017-09-28 2022-12-20 Taiwan Semiconductor Manufacturing Company, Ltd. EUV lithography system and method for decreasing debris in EUV lithography system
CN109581819B (zh) * 2017-09-28 2024-03-22 台湾积体电路制造股份有限公司 放射源设备
CN110967937A (zh) * 2018-09-28 2020-04-07 台湾积体电路制造股份有限公司 操作极紫外光产生装置的方法及极紫外辐射产生装置
CN109290295A (zh) * 2018-12-03 2019-02-01 哈尔滨工业大学 一种防氧化激光清洗装置
CN109290295B (zh) * 2018-12-03 2020-11-06 哈尔滨工业大学 一种防氧化激光清洗装置
CN113267963A (zh) * 2020-05-07 2021-08-17 台湾积体电路制造股份有限公司 用于执行极紫外光刻工艺的系统和方法

Also Published As

Publication number Publication date
CN103064259B (zh) 2014-11-12

Similar Documents

Publication Publication Date Title
CN103064259B (zh) 一种极紫外激光等离子体光源碎屑的隔离方法及系统
CN103108480B (zh) 一种euv光源污染物收集装置
CN102744652B (zh) 大面积平面光学零件加工装置及加工方法
CN108557805B (zh) 一种激光液相辐照法制备石墨烯的装置
CN103177822A (zh) 基于气流的低压聚乙烯电缆辐照冷却装置
CN106034371A (zh) 等离子体射流阵列协同机械旋转运动的材料处理装置
CN111816557A (zh) 太阳能电池片的切割方法、切割设备和光伏组件
CN105957925A (zh) 一种链式传输系统
CN103107477B (zh) 抑制气体激光器的谐振腔内油污染的方法
CN203937738U (zh) 一种汽车引擎盖
CN105568229B (zh) 一种掺氮二氧化钛薄膜的制备方法
CN211311588U (zh) 一种应用于激光辐照制备涂层的气氛保护装置
CN104747386A (zh) 风力发电机组变频器冷却降温装置
CN108133905A (zh) 一种cigs薄膜预处理的系统及方法
CN103227093A (zh) 适用于大口径非球面光学零件的大气等离子体加工装置
CN102169815B (zh) 一种高产率的真空激光处理装置及处理方法
CN116765636A (zh) 一种屏幕保护膜及其加工处理装置
CN103706952A (zh) 激光加工装置及激光加工方法
CN207958482U (zh) 一种连续低沸点材料热蒸发镀膜装置
CN205863207U (zh) 一种链式传输系统
CN103014616B (zh) 一种提高减反射膜激光损伤阈值的制备方法
CN112695278A (zh) 一种真空镀膜加工装置
CN210722984U (zh) 激光退火系统
CN201236209Y (zh) 一种带有窗口片保护气路的反应腔
CN204553115U (zh) 一种风力发电机组变频器冷却降温装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20141112

Termination date: 20201210

CF01 Termination of patent right due to non-payment of annual fee